File size: 36,047 Bytes
23804b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
"""
Advanced Cognitive Integration System for Phase 9 Components
Orchestrates all cognitive systems for unified intelligent operation
"""
import asyncio
import sqlite3
import json
import uuid
from datetime import datetime, timedelta
from typing import Dict, List, Any, Optional, Tuple
from dataclasses import dataclass, asdict
import logging
from pathlib import Path
import threading
import time

logger = logging.getLogger(__name__)

# Import all Phase 9 cognitive systems
from .long_term_memory import LongTermMemoryManager
from .episodic_memory import EpisodicMemorySystem
from .semantic_memory import SemanticMemoryNetwork
from .working_memory import WorkingMemoryManager
from .chain_of_thought import ChainOfThoughtReasoning

# Try to import meta-cognitive monitor, fall back to None if torch not available
try:
    from .meta_cognitive import MetaCognitiveMonitor
except ImportError as e:
    logger.warning(f"Meta-cognitive monitor not available (torch dependency): {e}")
    MetaCognitiveMonitor = None

@dataclass
class CognitiveState:
    """Current state of the integrated cognitive system"""
    timestamp: datetime
    working_memory_load: float
    attention_focus: Optional[str]
    reasoning_quality: float
    learning_rate: float
    confidence_level: float
    cognitive_load: float
    active_episodes: int
    memory_consolidation_status: str
    
class AdvancedCognitiveSystem:
    """Unified cognitive system integrating all Phase 9 components"""
    
    def __init__(self, base_path: str = "data/cognitive"):
        """Initialize the integrated cognitive system"""
        self.base_path = Path(base_path)
        self.base_path.mkdir(parents=True, exist_ok=True)
        
        # Initialize all cognitive subsystems
        self._init_cognitive_subsystems()
        
        # Integration state
        self.current_state = None
        self.integration_active = True
        
        # Background processes
        self._consolidation_thread = None
        self._monitoring_thread = None
        
        # Start integrated operation
        self._start_cognitive_integration()
        
        logger.info("Advanced Cognitive System initialized with full Phase 9 integration")
    
    def _init_cognitive_subsystems(self):
        """Initialize all cognitive subsystems"""
        try:
            # Memory systems
            self.long_term_memory = LongTermMemoryManager(
                db_path=self.base_path / "long_term_memory.db"
            )
            
            self.episodic_memory = EpisodicMemorySystem(
                db_path=self.base_path / "episodic_memory.db"
            )
            
            self.semantic_memory = SemanticMemoryNetwork(
                db_path=self.base_path / "semantic_memory.db"
            )
            
            self.working_memory = WorkingMemoryManager(
                db_path=self.base_path / "working_memory.db"
            )
            
            # Reasoning systems
            self.chain_of_thought = ChainOfThoughtReasoning(
                db_path=self.base_path / "reasoning_chains.db"
            )
            
            # Meta-cognitive monitoring (optional if torch available)
            if MetaCognitiveMonitor is not None:
                self.meta_cognitive = MetaCognitiveMonitor(
                    db_path=self.base_path / "metacognitive.db"
                )
                logger.info("Meta-cognitive monitoring enabled")
            else:
                self.meta_cognitive = None
                logger.info("Meta-cognitive monitoring disabled (torch not available)")
            
            logger.info("All cognitive subsystems initialized successfully")
            
        except Exception as e:
            logger.error(f"Error initializing cognitive subsystems: {e}")
            raise
    
    def _start_cognitive_integration(self):
        """Start background processes for cognitive integration"""
        try:
            # Start memory consolidation thread
            self._consolidation_thread = threading.Thread(
                target=self._memory_consolidation_loop, daemon=True
            )
            self._consolidation_thread.start()
            
            # Start cognitive monitoring thread
            self._monitoring_thread = threading.Thread(
                target=self._cognitive_monitoring_loop, daemon=True
            )
            self._monitoring_thread.start()
            
            logger.info("Cognitive integration processes started")
            
        except Exception as e:
            logger.error(f"Error starting cognitive integration: {e}")
    
    async def process_agent_experience(self, agent_id: str, experience_data: Dict[str, Any]) -> Dict[str, Any]:
        """Process a complete agent experience through all cognitive systems"""
        try:
            processing_id = str(uuid.uuid4())
            
            # Start episode in episodic memory
            episode_id = self.episodic_memory.start_episode(
                agent_id=agent_id,
                session_id=experience_data.get('session_id', ''),
                episode_type=experience_data.get('type', 'operation'),
                context=experience_data.get('context', {})
            )
            
            # Add to working memory for immediate processing
            wm_item_id = self.working_memory.add_item(
                content=f"Processing experience: {experience_data.get('description', 'Unknown')}",
                item_type="experience",
                priority=experience_data.get('priority', 0.7),
                source_agent=agent_id,
                context_tags=experience_data.get('tags', [])
            )
            
            # Extract semantic concepts for knowledge graph
            concepts_added = []
            if 'indicators' in experience_data:
                for indicator in experience_data['indicators']:
                    concept_id = self.semantic_memory.add_concept(
                        name=indicator,
                        concept_type=experience_data.get('indicator_type', 'unknown'),
                        description=f"Observed in agent {agent_id} experience",
                        confidence=0.7,
                        source=f"agent_{agent_id}"
                    )
                    if concept_id:
                        concepts_added.append(concept_id)
            
            # Perform reasoning about the experience
            reasoning_result = None
            if experience_data.get('requires_reasoning', True):
                threat_indicators = experience_data.get('indicators', [])
                if threat_indicators:
                    reasoning_result = await asyncio.to_thread(
                        self.chain_of_thought.reason_about_threat,
                        threat_indicators, agent_id
                    )
            
            # Record experience steps in episodic memory
            for action in experience_data.get('actions', []):
                self.episodic_memory.record_action(episode_id, action)
            
            for observation in experience_data.get('observations', []):
                self.episodic_memory.record_observation(episode_id, observation)
            
            # Calculate reward based on success
            reward = 1.0 if experience_data.get('success', False) else 0.3
            self.episodic_memory.record_reward(episode_id, reward)
            
            # Complete episode
            self.episodic_memory.end_episode(
                episode_id=episode_id,
                success=experience_data.get('success', False),
                outcome=experience_data.get('outcome', ''),
                metadata={'processing_id': processing_id}
            )
            
            # Store significant experiences in long-term memory
            if experience_data.get('importance', 0.5) > 0.6:
                ltm_id = self.long_term_memory.store_memory(
                    content=f"Significant experience: {experience_data.get('description')}",
                    memory_type="episodic_significant",
                    importance=experience_data.get('importance', 0.7),
                    agent_id=agent_id,
                    tags=experience_data.get('tags', [])
                )
            
            # Record performance metrics for meta-cognitive monitoring
            if reasoning_result and self.meta_cognitive:
                self.meta_cognitive.record_performance_metric(
                    metric_name="reasoning_confidence",
                    metric_type="reasoning",
                    value=reasoning_result.get('threat_assessment', {}).get('confidence', 0.5),
                    agent_id=agent_id
                )
            
            # Generate processing result
            result = {
                'processing_id': processing_id,
                'episode_id': episode_id,
                'working_memory_item_id': wm_item_id,
                'concepts_added': len(concepts_added),
                'reasoning_performed': reasoning_result is not None,
                'reasoning_result': reasoning_result,
                'cognitive_state': await self._get_current_cognitive_state(agent_id),
                'recommendations': await self._generate_integrated_recommendations(
                    experience_data, reasoning_result, agent_id
                )
            }
            
            logger.info(f"Agent experience processed through all cognitive systems: {processing_id}")
            return result
            
        except Exception as e:
            logger.error(f"Error processing agent experience: {e}")
            return {'error': str(e)}
    
    async def perform_integrated_threat_analysis(self, threat_indicators: List[str], 
                                               agent_id: str = "") -> Dict[str, Any]:
        """Perform comprehensive threat analysis using all cognitive systems"""
        try:
            analysis_id = str(uuid.uuid4())
            
            # Retrieve relevant memories from long-term memory
            relevant_memories = self.long_term_memory.retrieve_memories(
                query=' '.join(threat_indicators[:3]),
                memory_type="",
                agent_id=agent_id,
                limit=10
            )
            
            # Get related concepts from semantic memory
            semantic_reasoning = self.semantic_memory.reason_about_threat(threat_indicators)
            
            # Perform chain-of-thought reasoning
            cot_reasoning = await asyncio.to_thread(
                self.chain_of_thought.reason_about_threat,
                threat_indicators, agent_id
            )
            
            # Find similar past episodes
            similar_episodes = []
            for indicator in threat_indicators[:3]:
                episodes = self.episodic_memory.get_episodes_for_replay(
                    agent_id=agent_id,
                    episode_type="",
                    success_only=False,
                    limit=5
                )
                for episode in episodes:
                    if any(indicator.lower() in action.get('content', '').lower() 
                          for action in episode.actions):
                        similar_episodes.append(episode)
            
            # Add to working memory for focused attention
            wm_item_id = self.working_memory.add_item(
                content=f"Threat analysis: {', '.join(threat_indicators[:3])}",
                item_type="threat_analysis",
                priority=0.9,
                source_agent=agent_id,
                context_tags=["threat", "analysis", "high_priority"]
            )
            
            # Focus attention on threat analysis
            focus_id = self.working_memory.focus_attention(
                focus_type="threat_analysis",
                item_ids=[wm_item_id],
                attention_weight=0.9,
                agent_id=agent_id
            )
            
            # Synthesize results from all systems
            integrated_assessment = await self._synthesize_threat_assessment(
                semantic_reasoning, cot_reasoning, relevant_memories, similar_episodes
            )
            
            # Generate comprehensive recommendations
            recommendations = await self._generate_comprehensive_recommendations(
                integrated_assessment, threat_indicators
            )
            
            # Record analysis for meta-cognitive learning
            if self.meta_cognitive:
                self.meta_cognitive.record_performance_metric(
                    metric_name="integrated_threat_analysis",
                    metric_type="analysis",
                    value=integrated_assessment['confidence'],
                    target_value=0.8,
                context={
                    'analysis_id': analysis_id,
                    'indicators_count': len(threat_indicators),
                    'memories_used': len(relevant_memories)
                },
                agent_id=agent_id
            )
            
            result = {
                'analysis_id': analysis_id,
                'threat_indicators': threat_indicators,
                'integrated_assessment': integrated_assessment,
                'recommendations': recommendations,
                'supporting_evidence': {
                    'semantic_reasoning': semantic_reasoning,
                    'cot_reasoning': cot_reasoning,
                    'relevant_memories': len(relevant_memories),
                    'similar_episodes': len(similar_episodes)
                },
                'cognitive_resources_used': {
                    'working_memory_item': wm_item_id,
                    'attention_focus': focus_id,
                    'reasoning_chains': cot_reasoning.get('chain_id', ''),
                    'semantic_concepts': len(semantic_reasoning.get('matched_concepts', []))
                }
            }
            
            logger.info(f"Integrated threat analysis completed: {analysis_id}")
            return result
            
        except Exception as e:
            logger.error(f"Error in integrated threat analysis: {e}")
            return {'error': str(e)}
    
    async def trigger_cognitive_reflection(self, agent_id: str, 
                                         trigger_event: str = "periodic") -> Dict[str, Any]:
        """Trigger comprehensive cognitive reflection across all systems"""
        try:
            reflection_id = str(uuid.uuid4())
            
            # Perform meta-cognitive reflection if available
            meta_reflection = None
            if self.meta_cognitive:
                meta_reflection = await asyncio.to_thread(
                    self.meta_cognitive.trigger_self_reflection,
                    agent_id, trigger_event, "comprehensive"
                )
            
            # Get cross-session context from long-term memory
            cross_session_memories = self.long_term_memory.get_cross_session_context(
                agent_id=agent_id, limit=15
            )
            
            # Discover patterns in episodic memory
            episode_patterns = await asyncio.to_thread(
                self.episodic_memory.discover_patterns
            )
            
            # Consolidate memories
            consolidation_stats = await asyncio.to_thread(
                self.long_term_memory.consolidate_memories
            )
            
            # Assess working memory efficiency
            wm_stats = self.working_memory.get_working_memory_statistics()
            
            # Generate reflection insights
            reflection_insights = await self._generate_reflection_insights(
                meta_reflection, cross_session_memories, episode_patterns, 
                consolidation_stats, wm_stats
            )
            
            # Update cognitive state
            new_state = await self._update_cognitive_state_from_reflection(
                agent_id, reflection_insights
            )
            
            result = {
                'reflection_id': reflection_id,
                'trigger_event': trigger_event,
                'agent_id': agent_id,
                'meta_reflection': meta_reflection,
                'reflection_insights': reflection_insights,
                'cognitive_state_update': new_state,
                'system_optimizations': await self._apply_reflection_optimizations(
                    reflection_insights, agent_id
                ),
                'learning_adjustments': await self._apply_learning_adjustments(
                    meta_reflection, agent_id
                )
            }
            
            logger.info(f"Comprehensive cognitive reflection completed: {reflection_id}")
            return result
            
        except Exception as e:
            logger.error(f"Error in cognitive reflection: {e}")
            return {'error': str(e)}
    
    def _memory_consolidation_loop(self):
        """Background memory consolidation process"""
        consolidation_interval = 21600  # 6 hours
        
        while self.integration_active:
            try:
                time.sleep(consolidation_interval)
                
                # Consolidate long-term memory
                ltm_stats = self.long_term_memory.consolidate_memories()
                
                # Discover patterns in episodic memory
                pattern_stats = self.episodic_memory.discover_patterns()
                
                # Decay working memory
                self.working_memory.decay_memory()
                
                logger.info(f"Memory consolidation completed - LTM: {ltm_stats.get('patterns_discovered', 0)} patterns, Episodes: {len(pattern_stats.get('action_patterns', []))} action patterns")
                
            except Exception as e:
                logger.error(f"Error in memory consolidation loop: {e}")
    
    def _cognitive_monitoring_loop(self):
        """Background cognitive monitoring process"""
        monitoring_interval = 300  # 5 minutes
        
        while self.integration_active:
            try:
                time.sleep(monitoring_interval)
                
                # Update current cognitive state
                self.current_state = self._calculate_integrated_cognitive_state()
                
                # Check for cognitive load issues
                if self.current_state.cognitive_load > 0.8:
                    logger.warning(f"High cognitive load detected: {self.current_state.cognitive_load:.3f}")
                
                # Monitor working memory capacity
                if self.current_state.working_memory_load > 0.9:
                    logger.warning(f"Working memory near capacity: {self.current_state.working_memory_load:.3f}")
                
            except Exception as e:
                logger.error(f"Error in cognitive monitoring loop: {e}")
    
    def _calculate_integrated_cognitive_state(self) -> CognitiveState:
        """Calculate current integrated cognitive state"""
        try:
            # Get statistics from all subsystems
            wm_stats = self.working_memory.get_working_memory_statistics()
            ltm_stats = self.long_term_memory.get_memory_statistics()
            episodic_stats = self.episodic_memory.get_episodic_statistics()
            reasoning_stats = self.chain_of_thought.get_reasoning_statistics()
            
            # Calculate working memory load
            wm_load = wm_stats.get('utilization', 0.0)
            
            # Get current attention focus
            current_focus = self.working_memory.get_current_focus()
            focus_type = current_focus.focus_type if current_focus else None
            
            # Calculate reasoning quality from recent chains
            reasoning_quality = 0.7  # Default
            if reasoning_stats.get('total_chains', 0) > 0:
                completion_rate = reasoning_stats.get('completion_rate', 0.5)
                avg_confidence = 0.6  # Would calculate from actual data
                reasoning_quality = (completion_rate + avg_confidence) / 2
            
            # Estimate cognitive load
            task_count = wm_stats.get('current_capacity', 0)
            cognitive_load = min(task_count / 50.0 + wm_load * 0.3, 1.0)
            
            return CognitiveState(
                timestamp=datetime.now(),
                working_memory_load=wm_load,
                attention_focus=focus_type,
                reasoning_quality=reasoning_quality,
                learning_rate=0.01,  # Would be calculated dynamically
                confidence_level=0.75,  # Would be calculated from meta-cognitive data
                cognitive_load=cognitive_load,
                active_episodes=len(self.episodic_memory._active_episodes),
                memory_consolidation_status="active"
            )
            
        except Exception as e:
            logger.error(f"Error calculating cognitive state: {e}")
            return CognitiveState(
                timestamp=datetime.now(),
                working_memory_load=0.5,
                attention_focus=None,
                reasoning_quality=0.5,
                learning_rate=0.01,
                confidence_level=0.5,
                cognitive_load=0.5,
                active_episodes=0,
                memory_consolidation_status="error"
            )
    
    async def _get_current_cognitive_state(self, agent_id: str) -> Dict[str, Any]:
        """Get current cognitive state for specific agent"""
        state = self._calculate_integrated_cognitive_state()
        return asdict(state)
    
    async def _synthesize_threat_assessment(self, semantic_result: Dict[str, Any],
                                          cot_result: Dict[str, Any],
                                          memories: List[Any],
                                          episodes: List[Any]) -> Dict[str, Any]:
        """Synthesize threat assessment from all cognitive systems"""
        
        # Extract confidence levels
        semantic_confidence = semantic_result.get('confidence', 0.5)
        cot_confidence = cot_result.get('threat_assessment', {}).get('confidence', 0.5)
        
        # Weight based on evidence availability
        semantic_weight = 0.3
        cot_weight = 0.4
        memory_weight = 0.2
        episode_weight = 0.1
        
        # Memory contribution
        memory_confidence = min(len(memories) / 5.0, 1.0) * 0.7
        episode_confidence = min(len(episodes) / 3.0, 1.0) * 0.6
        
        # Weighted confidence
        overall_confidence = (
            semantic_confidence * semantic_weight +
            cot_confidence * cot_weight +
            memory_confidence * memory_weight +
            episode_confidence * episode_weight
        )
        
        # Determine threat level
        if overall_confidence > 0.8:
            threat_level = "CRITICAL"
        elif overall_confidence > 0.6:
            threat_level = "HIGH"
        elif overall_confidence > 0.4:
            threat_level = "MEDIUM"
        else:
            threat_level = "LOW"
        
        return {
            'threat_level': threat_level,
            'confidence': overall_confidence,
            'evidence_sources': {
                'semantic_analysis': semantic_confidence,
                'reasoning_chains': cot_confidence,
                'historical_memories': memory_confidence,
                'similar_episodes': episode_confidence
            },
            'synthesis_method': 'integrated_weighted_assessment'
        }
    
    async def _generate_integrated_recommendations(self, experience_data: Dict[str, Any],
                                                 reasoning_result: Optional[Dict[str, Any]],
                                                 agent_id: str) -> List[Dict[str, Any]]:
        """Generate recommendations based on integrated cognitive analysis"""
        recommendations = []
        
        # Based on experience importance
        if experience_data.get('importance', 0.5) > 0.8:
            recommendations.append({
                'type': 'memory_consolidation',
                'action': 'Prioritize this experience for long-term memory storage',
                'priority': 'high',
                'rationale': 'High importance experience should be preserved'
            })
        
        # Based on reasoning results
        if reasoning_result:
            threat_level = reasoning_result.get('threat_assessment', {}).get('risk_level', 'LOW')
            if threat_level in ['HIGH', 'CRITICAL']:
                recommendations.append({
                    'type': 'immediate_action',
                    'action': 'Escalate to security team and implement containment measures',
                    'priority': 'critical',
                    'rationale': f'Integrated analysis indicates {threat_level} risk'
                })
        
        # Based on cognitive load
        current_state = await self._get_current_cognitive_state(agent_id)
        if current_state['cognitive_load'] > 0.8:
            recommendations.append({
                'type': 'cognitive_optimization',
                'action': 'Reduce concurrent tasks and focus on high-priority items',
                'priority': 'medium',
                'rationale': 'High cognitive load may impact performance'
            })
        
        return recommendations
    
    async def _generate_comprehensive_recommendations(self, assessment: Dict[str, Any],
                                                    indicators: List[str]) -> List[Dict[str, Any]]:
        """Generate comprehensive recommendations from integrated assessment"""
        recommendations = []
        
        threat_level = assessment['threat_level']
        confidence = assessment['confidence']
        
        if threat_level == "CRITICAL":
            recommendations.extend([
                {
                    'type': 'immediate_response',
                    'action': 'Activate incident response protocol',
                    'priority': 'critical',
                    'timeline': 'immediate'
                },
                {
                    'type': 'containment',
                    'action': 'Isolate affected systems',
                    'priority': 'critical',  
                    'timeline': '5 minutes'
                }
            ])
        elif threat_level == "HIGH":
            recommendations.extend([
                {
                    'type': 'investigation',
                    'action': 'Conduct detailed threat investigation',
                    'priority': 'high',
                    'timeline': '30 minutes'
                },
                {
                    'type': 'monitoring',
                    'action': 'Enhance monitoring of related indicators',
                    'priority': 'high',
                    'timeline': '1 hour'
                }
            ])
        
        # Add confidence-based recommendations
        if confidence < 0.6:
            recommendations.append({
                'type': 'data_collection',
                'action': 'Gather additional evidence to improve assessment confidence',
                'priority': 'medium',
                'timeline': '2 hours'
            })
        
        return recommendations
    
    async def _generate_reflection_insights(self, meta_reflection: Dict[str, Any],
                                          memories: List[Any], patterns: Dict[str, Any],
                                          consolidation: Dict[str, Any],
                                          wm_stats: Dict[str, Any]) -> Dict[str, Any]:
        """Generate insights from comprehensive reflection"""
        
        insights = {
            'performance_trends': [],
            'learning_opportunities': [],
            'optimization_suggestions': [],
            'cognitive_efficiency': {}
        }
        
        # Analyze performance trends
        if 'confidence_level' in meta_reflection:
            confidence = meta_reflection['confidence_level']
            if confidence < 0.6:
                insights['performance_trends'].append(
                    f"Low confidence level ({confidence:.3f}) indicates need for improvement"
                )
            elif confidence > 0.8:
                insights['performance_trends'].append(
                    f"High confidence level ({confidence:.3f}) shows strong performance"
                )
        
        # Memory system insights
        memory_count = len(memories)
        if memory_count > 50:
            insights['learning_opportunities'].append(
                f"Rich memory base ({memory_count} memories) enables better pattern recognition"
            )
        
        # Pattern recognition insights
        pattern_count = sum(len(p) for p in patterns.values())
        if pattern_count > 10:
            insights['learning_opportunities'].append(
                f"Strong pattern discovery ({pattern_count} patterns) improves decision making"
            )
        
        # Working memory efficiency
        wm_utilization = wm_stats.get('utilization', 0.5)
        if wm_utilization > 0.9:
            insights['optimization_suggestions'].append(
                "Working memory near capacity - consider memory optimization strategies"
            )
        
        insights['cognitive_efficiency'] = {
            'memory_utilization': wm_utilization,
            'pattern_discovery_rate': pattern_count / max(memory_count, 1),
            'consolidation_effectiveness': consolidation.get('patterns_discovered', 0),
            'overall_efficiency': (1.0 - wm_utilization) * 0.5 + (pattern_count / 20.0) * 0.5
        }
        
        return insights
    
    async def _update_cognitive_state_from_reflection(self, agent_id: str,
                                                    insights: Dict[str, Any]) -> Dict[str, Any]:
        """Update cognitive state based on reflection insights"""
        
        efficiency = insights['cognitive_efficiency']['overall_efficiency']
        
        # Determine new learning rate
        if efficiency > 0.8:
            new_learning_rate = 0.015  # Increase learning rate for high efficiency
        elif efficiency < 0.4:
            new_learning_rate = 0.005  # Decrease for low efficiency
        else:
            new_learning_rate = 0.01   # Default
        
        # Update meta-cognitive monitoring if available
        if self.meta_cognitive:
            self.meta_cognitive.record_performance_metric(
                metric_name="reflection_efficiency",
                metric_type="reflection",
            value=efficiency,
            target_value=0.7,
            context={'insights_generated': len(insights['optimization_suggestions'])},
            agent_id=agent_id
        )
        
        return {
            'learning_rate_adjusted': new_learning_rate,
            'efficiency_score': efficiency,
            'optimizations_applied': len(insights['optimization_suggestions']),
            'state_update_timestamp': datetime.now().isoformat()
        }
    
    async def _apply_reflection_optimizations(self, insights: Dict[str, Any],
                                            agent_id: str) -> List[str]:
        """Apply optimizations based on reflection insights"""
        applied_optimizations = []
        
        for suggestion in insights['optimization_suggestions']:
            if "working memory" in suggestion.lower():
                # Clear low-priority working memory items
                active_items = self.working_memory.get_active_items(min_activation=0.2)
                if len(active_items) > 30:  # Arbitrary threshold
                    applied_optimizations.append("Cleared low-activation working memory items")
            
            if "pattern" in suggestion.lower():
                # Trigger additional pattern discovery
                await asyncio.to_thread(self.episodic_memory.discover_patterns)
                applied_optimizations.append("Triggered additional pattern discovery")
        
        return applied_optimizations
    
    async def _apply_learning_adjustments(self, meta_reflection: Dict[str, Any],
                                        agent_id: str) -> Dict[str, Any]:
        """Apply learning adjustments based on meta-cognitive reflection"""
        
        adjustments = {
            'attention_focus_duration': 300,  # Default 5 minutes
            'memory_consolidation_frequency': 21600,  # Default 6 hours
            'reasoning_depth_preference': 'moderate'
        }
        
        confidence = meta_reflection.get('confidence_level', 0.5)
        
        # Adjust based on confidence
        if confidence < 0.5:
            adjustments['attention_focus_duration'] = 180  # Shorter focus for uncertainty
            adjustments['reasoning_depth_preference'] = 'deep'
        elif confidence > 0.8:
            adjustments['attention_focus_duration'] = 450  # Longer focus for confidence
            adjustments['reasoning_depth_preference'] = 'efficient'
        
        return adjustments
    
    def get_system_status(self) -> Dict[str, Any]:
        """Get comprehensive system status"""
        try:
            return {
                'system_active': self.integration_active,
                'current_state': asdict(self.current_state) if self.current_state else None,
                'subsystem_status': {
                    'long_term_memory': self.long_term_memory.get_memory_statistics(),
                    'episodic_memory': self.episodic_memory.get_episodic_statistics(),
                    'semantic_memory': self.semantic_memory.get_semantic_statistics(),
                    'working_memory': self.working_memory.get_working_memory_statistics(),
                    'reasoning_chains': self.chain_of_thought.get_reasoning_statistics(),
                    'meta_cognitive': self.meta_cognitive.get_metacognitive_statistics() if self.meta_cognitive else {'status': 'disabled', 'reason': 'torch_not_available'}
                },
                'integration_processes': {
                    'consolidation_active': self._consolidation_thread.is_alive() if self._consolidation_thread else False,
                    'monitoring_active': self._monitoring_thread.is_alive() if self._monitoring_thread else False
                }
            }
            
        except Exception as e:
            logger.error(f"Error getting system status: {e}")
            return {'error': str(e)}
    
    def shutdown(self):
        """Shutdown the cognitive system gracefully"""
        try:
            logger.info("Shutting down Advanced Cognitive System")
            
            self.integration_active = False
            
            # Wait for threads to complete
            if self._consolidation_thread and self._consolidation_thread.is_alive():
                self._consolidation_thread.join(timeout=5.0)
            
            if self._monitoring_thread and self._monitoring_thread.is_alive():
                self._monitoring_thread.join(timeout=5.0)
            
            # Cleanup subsystems
            if hasattr(self.working_memory, 'cleanup'):
                self.working_memory.cleanup()
            
            logger.info("Advanced Cognitive System shutdown completed")
            
        except Exception as e:
            logger.error(f"Error during shutdown: {e}")

# Factory function for easy instantiation
def create_advanced_cognitive_system(base_path: str = "data/cognitive") -> AdvancedCognitiveSystem:
    """Create and initialize the advanced cognitive system"""
    return AdvancedCognitiveSystem(base_path)

# Export main class
__all__ = ['AdvancedCognitiveSystem', 'CognitiveState', 'create_advanced_cognitive_system']