File size: 33,486 Bytes
23804b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 |
"""
Workflow Analytics and Reporting System for Advanced Orchestration
Provides comprehensive analytics, performance metrics, and detailed reporting
"""
import os
import json
from typing import Dict, List, Any, Optional, Tuple
from datetime import datetime, timedelta
from pathlib import Path
from dataclasses import dataclass, asdict
import pandas as pd
import numpy as np
from collections import defaultdict, Counter
import matplotlib.pyplot as plt
import seaborn as sns
import plotly.graph_objects as go
import plotly.express as px
from plotly.subplots import make_subplots
from ..utils.logging_system import CyberLLMLogger
from .advanced_workflows import WorkflowContext, WorkflowStatus
@dataclass
class WorkflowMetrics:
"""Comprehensive workflow execution metrics"""
workflow_id: str
template_name: str
execution_time: float
total_stages: int
completed_stages: int
failed_stages: int
success_rate: float
average_stage_time: float
resource_utilization: Dict[str, float]
agent_performance: Dict[str, Dict[str, float]]
external_tool_performance: Dict[str, Dict[str, float]]
adaptation_events: int
rollback_events: int
error_count: int
warning_count: int
@dataclass
class PerformanceReport:
"""Performance analysis report"""
report_id: str
generated_at: datetime
time_period: Tuple[datetime, datetime]
total_workflows: int
success_rate: float
average_execution_time: float
top_performing_templates: List[Dict[str, Any]]
bottleneck_analysis: Dict[str, Any]
trend_analysis: Dict[str, List[float]]
recommendations: List[str]
class WorkflowAnalytics:
"""Advanced workflow analytics and reporting system"""
def __init__(self,
data_directory: str = "analytics_data",
logger: Optional[CyberLLMLogger] = None):
self.logger = logger or CyberLLMLogger(name="workflow_analytics")
self.data_dir = Path(data_directory)
self.data_dir.mkdir(exist_ok=True)
# Analytics storage
self.workflow_history: List[Dict[str, Any]] = []
self.performance_metrics: List[WorkflowMetrics] = []
self.agent_statistics: Dict[str, Dict[str, Any]] = defaultdict(dict)
self.template_statistics: Dict[str, Dict[str, Any]] = defaultdict(dict)
# Load existing data
self._load_historical_data()
def _load_historical_data(self):
"""Load historical analytics data"""
history_file = self.data_dir / "workflow_history.json"
if history_file.exists():
try:
with open(history_file, 'r') as f:
data = json.load(f)
self.workflow_history = data.get("workflows", [])
self.logger.info(f"Loaded {len(self.workflow_history)} historical workflow records")
except Exception as e:
self.logger.error(f"Failed to load historical data", error=str(e))
def record_workflow_execution(self,
workflow_id: str,
template_name: str,
execution_result: Dict[str, Any],
context: WorkflowContext):
"""Record workflow execution for analytics"""
# Extract metrics from execution result
metrics = self._extract_workflow_metrics(
workflow_id, template_name, execution_result, context
)
# Store workflow record
workflow_record = {
"workflow_id": workflow_id,
"template_name": template_name,
"executed_at": datetime.now().isoformat(),
"duration": execution_result.get("duration", 0),
"success": execution_result.get("overall_success", False),
"stages_executed": execution_result.get("stages_executed", 0),
"results": execution_result.get("results", {}),
"metrics": asdict(metrics),
"context_variables": context.variables,
"adaptation_events": len(context.execution_history),
"rollback_events": len(context.rollback_points)
}
self.workflow_history.append(workflow_record)
self.performance_metrics.append(metrics)
# Update statistics
self._update_template_statistics(template_name, workflow_record)
self._update_agent_statistics(execution_result.get("results", {}))
# Save to disk
self._save_analytics_data()
self.logger.info(f"Recorded workflow execution: {workflow_id}")
def _extract_workflow_metrics(self,
workflow_id: str,
template_name: str,
execution_result: Dict[str, Any],
context: WorkflowContext) -> WorkflowMetrics:
"""Extract comprehensive metrics from workflow execution"""
results = execution_result.get("results", {})
# Calculate stage metrics
total_stages = len(results)
completed_stages = sum(1 for r in results.values() if r.get("success", False))
failed_stages = total_stages - completed_stages
success_rate = completed_stages / total_stages if total_stages > 0 else 0
# Calculate timing metrics
stage_times = [r.get("duration", 0) for r in results.values()]
average_stage_time = np.mean(stage_times) if stage_times else 0
# Extract agent performance
agent_performance = {}
for stage_name, stage_result in results.items():
tasks = stage_result.get("tasks", {})
for task_name, task_result in tasks.items():
if "agent" in task_result.get("task_config", {}):
agent_name = task_result["task_config"]["agent"]
if agent_name not in agent_performance:
agent_performance[agent_name] = {
"success_rate": 0,
"avg_duration": 0,
"task_count": 0
}
agent_performance[agent_name]["task_count"] += 1
if task_result.get("success", False):
agent_performance[agent_name]["success_rate"] += 1
task_duration = self._parse_duration(
task_result.get("started_at", ""),
task_result.get("completed_at", "")
)
agent_performance[agent_name]["avg_duration"] += task_duration
# Calculate final agent metrics
for agent_name, metrics in agent_performance.items():
if metrics["task_count"] > 0:
metrics["success_rate"] = metrics["success_rate"] / metrics["task_count"]
metrics["avg_duration"] = metrics["avg_duration"] / metrics["task_count"]
# Extract external tool performance
external_tool_performance = {}
for stage_name, stage_result in results.items():
tasks = stage_result.get("tasks", {})
for task_name, task_result in tasks.items():
if "external_tool" in task_result.get("task_config", {}):
tool_name = task_result["task_config"]["external_tool"]
if tool_name not in external_tool_performance:
external_tool_performance[tool_name] = {
"success_rate": 0,
"avg_duration": 0,
"usage_count": 0
}
external_tool_performance[tool_name]["usage_count"] += 1
if task_result.get("success", False):
external_tool_performance[tool_name]["success_rate"] += 1
task_duration = self._parse_duration(
task_result.get("started_at", ""),
task_result.get("completed_at", "")
)
external_tool_performance[tool_name]["avg_duration"] += task_duration
# Calculate final tool metrics
for tool_name, metrics in external_tool_performance.items():
if metrics["usage_count"] > 0:
metrics["success_rate"] = metrics["success_rate"] / metrics["usage_count"]
metrics["avg_duration"] = metrics["avg_duration"] / metrics["usage_count"]
# Resource utilization (simulated for now)
resource_utilization = {
"cpu_avg": np.random.uniform(20, 80),
"memory_avg": np.random.uniform(30, 70),
"network_usage": np.random.uniform(10, 50)
}
return WorkflowMetrics(
workflow_id=workflow_id,
template_name=template_name,
execution_time=execution_result.get("duration", 0),
total_stages=total_stages,
completed_stages=completed_stages,
failed_stages=failed_stages,
success_rate=success_rate,
average_stage_time=average_stage_time,
resource_utilization=resource_utilization,
agent_performance=agent_performance,
external_tool_performance=external_tool_performance,
adaptation_events=len(context.execution_history),
rollback_events=len(context.rollback_points),
error_count=len([e for r in results.values() for e in r.get("errors", [])]),
warning_count=0 # Would be extracted from logs
)
def _parse_duration(self, start_time: str, end_time: str) -> float:
"""Parse duration between timestamp strings"""
try:
if start_time and end_time:
start = datetime.fromisoformat(start_time)
end = datetime.fromisoformat(end_time)
return (end - start).total_seconds()
except:
pass
return 0.0
def _update_template_statistics(self, template_name: str, workflow_record: Dict[str, Any]):
"""Update template performance statistics"""
if template_name not in self.template_statistics:
self.template_statistics[template_name] = {
"execution_count": 0,
"success_count": 0,
"total_duration": 0,
"avg_stages_completed": 0,
"adaptation_events": 0,
"first_seen": workflow_record["executed_at"],
"last_seen": workflow_record["executed_at"]
}
stats = self.template_statistics[template_name]
stats["execution_count"] += 1
stats["total_duration"] += workflow_record["duration"]
stats["avg_stages_completed"] += workflow_record["stages_executed"]
stats["adaptation_events"] += workflow_record["adaptation_events"]
stats["last_seen"] = workflow_record["executed_at"]
if workflow_record["success"]:
stats["success_count"] += 1
def _update_agent_statistics(self, stage_results: Dict[str, Any]):
"""Update agent performance statistics"""
for stage_name, stage_result in stage_results.items():
tasks = stage_result.get("tasks", {})
for task_name, task_result in tasks.items():
if "agent" in task_result.get("task_config", {}):
agent_name = task_result["task_config"]["agent"]
if agent_name not in self.agent_statistics:
self.agent_statistics[agent_name] = {
"total_tasks": 0,
"successful_tasks": 0,
"total_duration": 0,
"error_count": 0
}
stats = self.agent_statistics[agent_name]
stats["total_tasks"] += 1
if task_result.get("success", False):
stats["successful_tasks"] += 1
task_duration = self._parse_duration(
task_result.get("started_at", ""),
task_result.get("completed_at", "")
)
stats["total_duration"] += task_duration
stats["error_count"] += len(task_result.get("errors", []))
def generate_performance_report(self,
days_back: int = 30,
template_filter: Optional[str] = None) -> PerformanceReport:
"""Generate comprehensive performance report"""
end_date = datetime.now()
start_date = end_date - timedelta(days=days_back)
# Filter workflows by date range and template
filtered_workflows = []
for workflow in self.workflow_history:
executed_at = datetime.fromisoformat(workflow["executed_at"])
if start_date <= executed_at <= end_date:
if not template_filter or workflow["template_name"] == template_filter:
filtered_workflows.append(workflow)
if not filtered_workflows:
self.logger.warning("No workflows found for report generation")
return PerformanceReport(
report_id=f"report_{datetime.now().strftime('%Y%m%d_%H%M%S')}",
generated_at=datetime.now(),
time_period=(start_date, end_date),
total_workflows=0,
success_rate=0.0,
average_execution_time=0.0,
top_performing_templates=[],
bottleneck_analysis={},
trend_analysis={},
recommendations=[]
)
# Calculate overall metrics
total_workflows = len(filtered_workflows)
successful_workflows = sum(1 for w in filtered_workflows if w["success"])
success_rate = successful_workflows / total_workflows
average_execution_time = np.mean([w["duration"] for w in filtered_workflows])
# Top performing templates
template_performance = defaultdict(lambda: {"count": 0, "success": 0, "avg_time": 0})
for workflow in filtered_workflows:
template = workflow["template_name"]
template_performance[template]["count"] += 1
template_performance[template]["avg_time"] += workflow["duration"]
if workflow["success"]:
template_performance[template]["success"] += 1
top_templates = []
for template, stats in template_performance.items():
success_rate_template = stats["success"] / stats["count"]
avg_time = stats["avg_time"] / stats["count"]
top_templates.append({
"template": template,
"execution_count": stats["count"],
"success_rate": success_rate_template,
"average_time": avg_time,
"score": success_rate_template * (1 / (avg_time + 1)) # Combined score
})
top_templates.sort(key=lambda x: x["score"], reverse=True)
# Bottleneck analysis
bottleneck_analysis = self._analyze_bottlenecks(filtered_workflows)
# Trend analysis
trend_analysis = self._analyze_trends(filtered_workflows, days_back)
# Generate recommendations
recommendations = self._generate_recommendations(
filtered_workflows, bottleneck_analysis, trend_analysis
)
report = PerformanceReport(
report_id=f"report_{datetime.now().strftime('%Y%m%d_%H%M%S')}",
generated_at=datetime.now(),
time_period=(start_date, end_date),
total_workflows=total_workflows,
success_rate=success_rate,
average_execution_time=average_execution_time,
top_performing_templates=top_templates[:5],
bottleneck_analysis=bottleneck_analysis,
trend_analysis=trend_analysis,
recommendations=recommendations
)
self.logger.info(f"Generated performance report: {report.report_id}")
return report
def _analyze_bottlenecks(self, workflows: List[Dict[str, Any]]) -> Dict[str, Any]:
"""Analyze performance bottlenecks"""
stage_times = defaultdict(list)
agent_times = defaultdict(list)
tool_times = defaultdict(list)
for workflow in workflows:
results = workflow.get("results", {})
for stage_name, stage_result in results.items():
stage_duration = stage_result.get("duration", 0)
stage_times[stage_name].append(stage_duration)
tasks = stage_result.get("tasks", {})
for task_name, task_result in tasks.items():
task_duration = self._parse_duration(
task_result.get("started_at", ""),
task_result.get("completed_at", "")
)
if "agent" in task_result.get("task_config", {}):
agent_name = task_result["task_config"]["agent"]
agent_times[agent_name].append(task_duration)
if "external_tool" in task_result.get("task_config", {}):
tool_name = task_result["task_config"]["external_tool"]
tool_times[tool_name].append(task_duration)
# Find bottlenecks
slowest_stages = sorted(
[(stage, np.mean(times)) for stage, times in stage_times.items()],
key=lambda x: x[1], reverse=True
)[:5]
slowest_agents = sorted(
[(agent, np.mean(times)) for agent, times in agent_times.items()],
key=lambda x: x[1], reverse=True
)[:3]
slowest_tools = sorted(
[(tool, np.mean(times)) for tool, times in tool_times.items()],
key=lambda x: x[1], reverse=True
)[:3]
return {
"slowest_stages": [{"name": name, "avg_time": time} for name, time in slowest_stages],
"slowest_agents": [{"name": name, "avg_time": time} for name, time in slowest_agents],
"slowest_tools": [{"name": name, "avg_time": time} for name, time in slowest_tools]
}
def _analyze_trends(self, workflows: List[Dict[str, Any]], days_back: int) -> Dict[str, List[float]]:
"""Analyze performance trends over time"""
# Group workflows by day
daily_metrics = defaultdict(lambda: {"count": 0, "success": 0, "avg_time": 0})
for workflow in workflows:
executed_date = datetime.fromisoformat(workflow["executed_at"]).date()
daily_metrics[executed_date]["count"] += 1
daily_metrics[executed_date]["avg_time"] += workflow["duration"]
if workflow["success"]:
daily_metrics[executed_date]["success"] += 1
# Calculate daily averages
dates = sorted(daily_metrics.keys())
daily_success_rates = []
daily_avg_times = []
daily_counts = []
for date in dates:
metrics = daily_metrics[date]
success_rate = metrics["success"] / metrics["count"] if metrics["count"] > 0 else 0
avg_time = metrics["avg_time"] / metrics["count"] if metrics["count"] > 0 else 0
daily_success_rates.append(success_rate)
daily_avg_times.append(avg_time)
daily_counts.append(metrics["count"])
return {
"dates": [date.isoformat() for date in dates],
"success_rates": daily_success_rates,
"average_times": daily_avg_times,
"workflow_counts": daily_counts
}
def _generate_recommendations(self,
workflows: List[Dict[str, Any]],
bottlenecks: Dict[str, Any],
trends: Dict[str, List[float]]) -> List[str]:
"""Generate performance improvement recommendations"""
recommendations = []
# Success rate recommendations
overall_success_rate = np.mean([w["success"] for w in workflows])
if overall_success_rate < 0.8:
recommendations.append(
f"Overall success rate is {overall_success_rate:.1%}. Consider reviewing and improving "
"error handling and retry mechanisms."
)
# Performance recommendations
avg_execution_time = np.mean([w["duration"] for w in workflows])
if avg_execution_time > 1800: # 30 minutes
recommendations.append(
f"Average execution time is {avg_execution_time/60:.1f} minutes. Consider optimizing "
"slow stages and enabling more parallel execution."
)
# Bottleneck recommendations
if bottlenecks["slowest_stages"]:
slowest_stage = bottlenecks["slowest_stages"][0]
recommendations.append(
f"'{slowest_stage['name']}' stage is the slowest ({slowest_stage['avg_time']:.1f}s). "
"Consider breaking it into smaller parallel tasks."
)
# Trend-based recommendations
if len(trends["success_rates"]) >= 7:
recent_trend = np.polyfit(range(7), trends["success_rates"][-7:], 1)[0]
if recent_trend < -0.01: # Declining success rate
recommendations.append(
"Success rate has been declining recently. Investigate recent changes "
"and consider additional testing."
)
# Agent performance recommendations
agent_success_rates = {}
for workflow in workflows:
results = workflow.get("results", {})
for stage_result in results.values():
tasks = stage_result.get("tasks", {})
for task_result in tasks.values():
if "agent" in task_result.get("task_config", {}):
agent_name = task_result["task_config"]["agent"]
if agent_name not in agent_success_rates:
agent_success_rates[agent_name] = []
agent_success_rates[agent_name].append(task_result.get("success", False))
for agent_name, successes in agent_success_rates.items():
success_rate = np.mean(successes)
if success_rate < 0.7:
recommendations.append(
f"{agent_name} has a low success rate ({success_rate:.1%}). "
"Consider reviewing its implementation and training data."
)
if not recommendations:
recommendations.append("System performance looks good! Continue monitoring for any changes.")
return recommendations
def create_performance_dashboard(self,
report: PerformanceReport,
output_file: str = "performance_dashboard.html"):
"""Create interactive performance dashboard"""
fig = make_subplots(
rows=3, cols=2,
subplot_titles=[
'Success Rate Trend', 'Execution Time Trend',
'Template Performance', 'Stage Performance',
'Agent Performance', 'Resource Utilization'
],
specs=[
[{"secondary_y": True}, {"secondary_y": False}],
[{"type": "bar"}, {"type": "bar"}],
[{"type": "bar"}, {"type": "pie"}]
]
)
# Success rate trend
if report.trend_analysis.get("dates"):
fig.add_trace(
go.Scatter(
x=report.trend_analysis["dates"],
y=report.trend_analysis["success_rates"],
mode='lines+markers',
name='Success Rate',
line=dict(color='green')
),
row=1, col=1
)
# Execution time trend
if report.trend_analysis.get("dates"):
fig.add_trace(
go.Scatter(
x=report.trend_analysis["dates"],
y=report.trend_analysis["average_times"],
mode='lines+markers',
name='Avg Execution Time',
line=dict(color='blue')
),
row=1, col=2
)
# Template performance
if report.top_performing_templates:
templates = [t["template"] for t in report.top_performing_templates]
success_rates = [t["success_rate"] for t in report.top_performing_templates]
fig.add_trace(
go.Bar(
x=templates,
y=success_rates,
name='Template Success Rate',
marker_color='lightblue'
),
row=2, col=1
)
# Bottleneck analysis
if report.bottleneck_analysis.get("slowest_stages"):
stages = [s["name"] for s in report.bottleneck_analysis["slowest_stages"]]
times = [s["avg_time"] for s in report.bottleneck_analysis["slowest_stages"]]
fig.add_trace(
go.Bar(
x=stages,
y=times,
name='Stage Avg Time',
marker_color='orange'
),
row=2, col=2
)
# Agent performance (if available)
if hasattr(self, 'agent_statistics') and self.agent_statistics:
agents = list(self.agent_statistics.keys())
success_rates = [
self.agent_statistics[agent]["successful_tasks"] /
max(self.agent_statistics[agent]["total_tasks"], 1)
for agent in agents
]
fig.add_trace(
go.Bar(
x=agents,
y=success_rates,
name='Agent Success Rate',
marker_color='purple'
),
row=3, col=1
)
# Resource utilization pie chart (simulated)
resource_types = ['CPU', 'Memory', 'Network', 'Storage']
resource_usage = [25, 35, 20, 20]
fig.add_trace(
go.Pie(
labels=resource_types,
values=resource_usage,
name="Resource Usage"
),
row=3, col=2
)
# Update layout
fig.update_layout(
title=f"Workflow Performance Dashboard - {report.report_id}",
height=900,
showlegend=True
)
# Save dashboard
dashboard_path = self.data_dir / output_file
fig.write_html(str(dashboard_path))
self.logger.info(f"Created performance dashboard: {dashboard_path}")
return str(dashboard_path)
def _save_analytics_data(self):
"""Save analytics data to disk"""
try:
# Save workflow history
history_data = {
"workflows": self.workflow_history,
"last_updated": datetime.now().isoformat()
}
with open(self.data_dir / "workflow_history.json", 'w') as f:
json.dump(history_data, f, indent=2, default=str)
# Save performance metrics
metrics_data = [asdict(metric) for metric in self.performance_metrics]
with open(self.data_dir / "performance_metrics.json", 'w') as f:
json.dump(metrics_data, f, indent=2, default=str)
# Save statistics
with open(self.data_dir / "template_statistics.json", 'w') as f:
json.dump(dict(self.template_statistics), f, indent=2, default=str)
with open(self.data_dir / "agent_statistics.json", 'w') as f:
json.dump(dict(self.agent_statistics), f, indent=2, default=str)
except Exception as e:
self.logger.error("Failed to save analytics data", error=str(e))
def export_report(self,
report: PerformanceReport,
format: str = "json",
filename: Optional[str] = None) -> str:
"""Export performance report in various formats"""
if not filename:
filename = f"{report.report_id}.{format}"
output_path = self.data_dir / filename
try:
if format.lower() == "json":
with open(output_path, 'w') as f:
json.dump(asdict(report), f, indent=2, default=str)
elif format.lower() == "csv":
# Convert to DataFrame for CSV export
df_data = []
for template in report.top_performing_templates:
df_data.append({
"template": template["template"],
"execution_count": template["execution_count"],
"success_rate": template["success_rate"],
"average_time": template["average_time"]
})
df = pd.DataFrame(df_data)
df.to_csv(output_path, index=False)
elif format.lower() == "markdown":
markdown_content = self._generate_markdown_report(report)
with open(output_path, 'w') as f:
f.write(markdown_content)
else:
raise ValueError(f"Unsupported format: {format}")
self.logger.info(f"Exported report to: {output_path}")
return str(output_path)
except Exception as e:
self.logger.error(f"Failed to export report", error=str(e))
raise
def _generate_markdown_report(self, report: PerformanceReport) -> str:
"""Generate markdown formatted report"""
md_lines = [
f"# Workflow Performance Report",
f"**Report ID:** {report.report_id}",
f"**Generated:** {report.generated_at.strftime('%Y-%m-%d %H:%M:%S')}",
f"**Time Period:** {report.time_period[0].strftime('%Y-%m-%d')} to {report.time_period[1].strftime('%Y-%m-%d')}",
"",
"## Executive Summary",
f"- **Total Workflows:** {report.total_workflows}",
f"- **Overall Success Rate:** {report.success_rate:.1%}",
f"- **Average Execution Time:** {report.average_execution_time:.1f} seconds",
"",
"## Top Performing Templates",
]
for i, template in enumerate(report.top_performing_templates, 1):
md_lines.extend([
f"### {i}. {template['template']}",
f"- **Executions:** {template['execution_count']}",
f"- **Success Rate:** {template['success_rate']:.1%}",
f"- **Average Time:** {template['average_time']:.1f}s",
""
])
md_lines.extend([
"## Performance Bottlenecks",
"### Slowest Stages"
])
for stage in report.bottleneck_analysis.get("slowest_stages", []):
md_lines.append(f"- **{stage['name']}:** {stage['avg_time']:.1f}s")
md_lines.extend([
"",
"### Slowest Agents"
])
for agent in report.bottleneck_analysis.get("slowest_agents", []):
md_lines.append(f"- **{agent['name']}:** {agent['avg_time']:.1f}s")
md_lines.extend([
"",
"## Recommendations"
])
for i, recommendation in enumerate(report.recommendations, 1):
md_lines.append(f"{i}. {recommendation}")
return "\n".join(md_lines)
# Example usage
if __name__ == "__main__":
# Initialize analytics system
analytics = WorkflowAnalytics()
# Generate performance report
report = analytics.generate_performance_report(days_back=7)
# Create dashboard
dashboard_path = analytics.create_performance_dashboard(report)
print(f"Dashboard created: {dashboard_path}")
# Export report
json_report = analytics.export_report(report, "json")
markdown_report = analytics.export_report(report, "markdown")
print(f"Reports exported:")
print(f"- JSON: {json_report}")
print(f"- Markdown: {markdown_report}")
|