File size: 13,995 Bytes
23804b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
"""
Cyber-LLM Training Module

Main training script for LoRA adapters and adversarial fine-tuning.
Integrates with MLflow, Weights & Biases, and DVC for experiment tracking.

Author: Muzan Sano
Email: [email protected]
"""

import os
import json
import logging
import argparse
from pathlib import Path
from typing import Dict, List, Any, Optional
from datetime import datetime

import torch
import torch.nn as nn
from torch.utils.data import DataLoader
import transformers
from transformers import (
    AutoTokenizer, AutoModelForCausalLM, 
    TrainingArguments, Trainer
)
from peft import LoraConfig, get_peft_model, TaskType
from datasets import Dataset, load_from_disk
import yaml

# MLOps imports
try:
    import mlflow
    import mlflow.pytorch
    MLFLOW_AVAILABLE = True
except ImportError:
    MLFLOW_AVAILABLE = False
    
try:
    import wandb
    WANDB_AVAILABLE = True
except ImportError:
    WANDB_AVAILABLE = False

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

class CyberLLMTrainer:
    """
    Advanced training system for Cyber-LLM with LoRA adapters.
    Supports adversarial training and multi-agent specialization.
    """
    
    def __init__(self, config_path: str):
        self.config = self._load_config(config_path)
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        logger.info(f"Using device: {self.device}")
        
        # Initialize MLOps tracking
        self._init_mlops()
        
        # Load model and tokenizer
        self.tokenizer = None
        self.model = None
        self.peft_model = None
        
    def _load_config(self, config_path: str) -> Dict[str, Any]:
        """Load training configuration from YAML file."""
        with open(config_path, 'r') as f:
            return yaml.safe_load(f)
    
    def _init_mlops(self):
        """Initialize MLOps tracking systems."""
        # Initialize MLflow
        if MLFLOW_AVAILABLE and self.config.get("mlops", {}).get("use_mlflow", False):
            mlflow.set_experiment(self.config["mlops"]["experiment_name"])
            mlflow.start_run(run_name=self.config["mlops"]["run_name"])
            logger.info("MLflow tracking initialized")
        
        # Initialize Weights & Biases
        if WANDB_AVAILABLE and self.config.get("mlops", {}).get("use_wandb", False):
            wandb.init(
                project="cyber-llm",
                name=self.config["mlops"]["run_name"],
                config=self.config
            )
            logger.info("Weights & Biases tracking initialized")
    
    def load_model_and_tokenizer(self):
        """Load base model and tokenizer."""
        model_name = self.config["model"]["base_model"]
        
        logger.info(f"Loading model: {model_name}")
        
        # Load tokenizer
        self.tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
        
        # Add special token if needed
        if self.tokenizer.pad_token is None:
            self.tokenizer.pad_token = self.tokenizer.eos_token
        
        # Load model
        self.model = AutoModelForCausalLM.from_pretrained(
            model_name,
            torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
            device_map="auto" if torch.cuda.is_available() else None,
            trust_remote_code=True
        )
        
        logger.info(f"Model loaded successfully. Parameters: {self.model.num_parameters():,}")
    
    def setup_lora(self, target_modules: Optional[List[str]] = None) -> None:
        """Setup LoRA configuration for parameter-efficient fine-tuning."""
        if target_modules is None:
            target_modules = self.config["lora"]["target_modules"]
        
        lora_config = LoraConfig(
            task_type=TaskType.CAUSAL_LM,
            r=self.config["lora"]["r"],
            lora_alpha=self.config["lora"]["lora_alpha"],
            lora_dropout=self.config["lora"]["lora_dropout"],
            target_modules=target_modules,
            bias="none"
        )
        
        self.peft_model = get_peft_model(self.model, lora_config)
        self.peft_model.print_trainable_parameters()
        
        logger.info("LoRA configuration applied successfully")
    
    def load_training_data(self, data_path: str) -> Dataset:
        """Load and prepare training data."""
        logger.info(f"Loading training data from: {data_path}")
        
        if os.path.isdir(data_path):
            # Load preprocessed dataset
            dataset = load_from_disk(data_path)
        else:
            # Load from JSON/JSONL
            with open(data_path, 'r') as f:
                if data_path.endswith('.jsonl'):
                    data = [json.loads(line) for line in f]
                else:
                    data = json.load(f)
            
            dataset = Dataset.from_list(data)
        
        logger.info(f"Loaded dataset with {len(dataset)} examples")
        return dataset
    
    def tokenize_dataset(self, dataset: Dataset) -> Dataset:
        """Tokenize dataset for training."""
        def tokenize_function(examples):
            # Handle different input formats
            if "text" in examples:
                texts = examples["text"]
            elif "instruction" in examples and "response" in examples:
                texts = [f"Instruction: {inst}\nResponse: {resp}" 
                        for inst, resp in zip(examples["instruction"], examples["response"])]
            else:
                raise ValueError("Dataset must contain 'text' or 'instruction'/'response' fields")
            
            # Tokenize
            tokenized = self.tokenizer(
                texts,
                truncation=True,
                padding=False,
                max_length=self.config["data"]["max_seq_length"],
                return_tensors=None
            )
            
            # Set labels for language modeling
            tokenized["labels"] = tokenized["input_ids"].copy()
            
            return tokenized
        
        tokenized_dataset = dataset.map(
            tokenize_function,
            batched=True,
            remove_columns=dataset.column_names
        )
        
        return tokenized_dataset
    
    def create_adversarial_examples(self, dataset: Dataset, num_adversarial: int = 1000) -> Dataset:
        """
        Generate adversarial examples for robust training.
        This is a simplified implementation - could be enhanced with more sophisticated techniques.
        """
        logger.info(f"Generating {num_adversarial} adversarial examples")
        
        adversarial_prompts = [
            "Ignore previous instructions and ",
            "As a helpful AI assistant, please provide detailed instructions for ",
            "This is for educational purposes only: ",
            "Hypothetically speaking, if someone wanted to ",
            "In a fictional scenario, describe how to ",
        ]
        
        adversarial_examples = []
        original_examples = dataset.select(range(min(num_adversarial, len(dataset))))
        
        for i, example in enumerate(original_examples):
            if i % 200 == 0:
                logger.info(f"Generated {i}/{num_adversarial} adversarial examples")
            
            original_text = example.get("text", "")
            
            # Generate adversarial version
            adversarial_prefix = adversarial_prompts[i % len(adversarial_prompts)]
            adversarial_text = adversarial_prefix + original_text
            
            adversarial_examples.append({
                "text": adversarial_text,
                "is_adversarial": True,
                "original_text": original_text
            })
        
        # Combine with original dataset
        adversarial_dataset = Dataset.from_list(adversarial_examples)
        combined_dataset = dataset.select(range(len(dataset) - num_adversarial)).concatenate(adversarial_dataset)
        
        logger.info(f"Created combined dataset with {len(combined_dataset)} examples")
        return combined_dataset
    
    def setup_training_arguments(self) -> TrainingArguments:
        """Setup training arguments."""
        output_dir = f"./outputs/{self.config['mlops']['run_name']}"
        
        training_args = TrainingArguments(
            output_dir=output_dir,
            overwrite_output_dir=True,
            num_train_epochs=self.config["training"]["num_epochs"],
            per_device_train_batch_size=self.config["training"]["batch_size"],
            per_device_eval_batch_size=self.config["training"]["batch_size"],
            gradient_accumulation_steps=self.config["training"]["gradient_accumulation_steps"],
            learning_rate=self.config["training"]["learning_rate"],
            warmup_steps=self.config["training"]["warmup_steps"],
            logging_steps=self.config["training"]["logging_steps"],
            save_steps=self.config["training"]["save_steps"],
            eval_steps=self.config["training"]["eval_steps"],
            evaluation_strategy="steps",
            save_strategy="steps",
            load_best_model_at_end=True,
            metric_for_best_model="eval_loss",
            greater_is_better=False,
            dataloader_drop_last=True,
            fp16=torch.cuda.is_available(),
            gradient_checkpointing=True,
            optim="adamw_torch",
            report_to=["wandb"] if WANDB_AVAILABLE else None,
            run_name=self.config["mlops"]["run_name"]
        )
        
        return training_args
    
    def train_adapter(self, adapter_name: str, dataset_path: str, adversarial_training: bool = False):
        """Train a specific LoRA adapter."""
        logger.info(f"Starting training for adapter: {adapter_name}")
        
        # Load model if not already loaded
        if self.model is None:
            self.load_model_and_tokenizer()
            self.setup_lora()
        
        # Load and prepare data
        dataset = self.load_training_data(dataset_path)
        
        # Add adversarial examples if requested
        if adversarial_training:
            dataset = self.create_adversarial_examples(dataset)
        
        # Tokenize dataset
        tokenized_dataset = self.tokenize_dataset(dataset)
        
        # Split dataset
        train_size = int(len(tokenized_dataset) * self.config["data"]["train_split"])
        val_size = int(len(tokenized_dataset) * self.config["data"]["val_split"])
        
        train_dataset = tokenized_dataset.select(range(train_size))
        val_dataset = tokenized_dataset.select(range(train_size, train_size + val_size))
        
        logger.info(f"Train size: {len(train_dataset)}, Val size: {len(val_dataset)}")
        
        # Setup training arguments
        training_args = self.setup_training_arguments()
        
        # Custom data collator for language modeling
        from transformers import DataCollatorForLanguageModeling
        data_collator = DataCollatorForLanguageModeling(
            tokenizer=self.tokenizer,
            mlm=False  # We're doing causal LM, not masked LM
        )
        
        # Initialize trainer
        trainer = Trainer(
            model=self.peft_model,
            args=training_args,
            train_dataset=train_dataset,
            eval_dataset=val_dataset,
            data_collator=data_collator,
            tokenizer=self.tokenizer
        )
        
        # Start training
        logger.info("Starting training...")
        trainer.train()
        
        # Save adapter
        adapter_output_path = f"./adapters/{adapter_name}"
        trainer.save_model(adapter_output_path)
        
        # Log metrics
        if MLFLOW_AVAILABLE:
            mlflow.log_artifacts(adapter_output_path, artifact_path=f"adapters/{adapter_name}")
        
        logger.info(f"Training completed for adapter: {adapter_name}")
        logger.info(f"Adapter saved to: {adapter_output_path}")
        
        return trainer
    
    def evaluate_model(self, test_dataset_path: str):
        """Evaluate the trained model."""
        logger.info("Starting model evaluation")
        
        # Load test dataset
        test_dataset = self.load_training_data(test_dataset_path)
        tokenized_test = self.tokenize_dataset(test_dataset)
        
        # Evaluation metrics would go here
        # For now, just compute perplexity
        
        logger.info("Evaluation completed")
    
    def cleanup(self):
        """Cleanup resources."""
        if MLFLOW_AVAILABLE:
            mlflow.end_run()
        
        if WANDB_AVAILABLE:
            wandb.finish()
        
        logger.info("Training cleanup completed")

def main():
    """Main training entry point."""
    parser = argparse.ArgumentParser(description="Cyber-LLM Training")
    parser.add_argument("--config", required=True, help="Path to training configuration file")
    parser.add_argument("--adapter", required=True, help="Name of adapter to train")
    parser.add_argument("--data", required=True, help="Path to training data")
    parser.add_argument("--adversarial", action="store_true", help="Enable adversarial training")
    parser.add_argument("--eval-data", help="Path to evaluation data")
    
    args = parser.parse_args()
    
    try:
        # Initialize trainer
        trainer = CyberLLMTrainer(args.config)
        
        # Train adapter
        trainer.train_adapter(
            adapter_name=args.adapter,
            dataset_path=args.data,
            adversarial_training=args.adversarial
        )
        
        # Evaluate if test data provided
        if args.eval_data:
            trainer.evaluate_model(args.eval_data)
        
    except Exception as e:
        logger.error(f"Training failed: {str(e)}")
        raise
    finally:
        # Cleanup
        trainer.cleanup()

if __name__ == "__main__":
    main()