File size: 32,698 Bytes
23804b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 |
"""
Advanced Persistent Memory System for Cyber-LLM
Long-term memory, reasoning chains, and strategic planning capabilities
Author: Muzan Sano <[email protected]>
"""
import asyncio
import json
import logging
from datetime import datetime, timedelta
from typing import Dict, List, Any, Optional, Tuple, Union
from dataclasses import dataclass, field
from enum import Enum
import sqlite3
import pickle
import hashlib
from pathlib import Path
import numpy as np
from collections import defaultdict, deque
import threading
import time
from ..utils.logging_system import CyberLLMLogger, CyberLLMError, ErrorCategory
from ..utils.secrets_manager import get_secrets_manager
class MemoryType(Enum):
"""Types of memory in the system"""
EPISODIC = "episodic" # Specific events and experiences
SEMANTIC = "semantic" # General knowledge and facts
PROCEDURAL = "procedural" # Skills and procedures
WORKING = "working" # Temporary active information
STRATEGIC = "strategic" # Long-term goals and plans
class ReasoningType(Enum):
"""Types of reasoning chains"""
DEDUCTIVE = "deductive" # From general to specific
INDUCTIVE = "inductive" # From specific to general
ABDUCTIVE = "abductive" # Best explanation inference
CAUSAL = "causal" # Cause-effect relationships
STRATEGIC = "strategic" # Goal-oriented planning
COUNTERFACTUAL = "counterfactual" # What-if scenarios
@dataclass
class MemoryItem:
"""Individual memory item"""
memory_id: str
memory_type: MemoryType
content: Dict[str, Any]
# Temporal information
created_at: datetime
last_accessed: datetime
access_count: int = 0
# Memory strength and importance
importance_score: float = 0.5 # 0-1 scale
confidence: float = 1.0
decay_rate: float = 0.1
# Associations and context
associated_memories: List[str] = field(default_factory=list)
context_tags: List[str] = field(default_factory=list)
agent_id: Optional[str] = None
# Metadata
source: str = "unknown"
validated: bool = False
compressed: bool = False
@dataclass
class ReasoningChain:
"""Multi-step reasoning chain"""
chain_id: str
reasoning_type: ReasoningType
goal: str
# Reasoning steps
steps: List[Dict[str, Any]] = field(default_factory=list)
premises: List[str] = field(default_factory=list)
conclusions: List[str] = field(default_factory=list)
# Chain metadata
created_at: datetime = field(default_factory=datetime.now)
completed: bool = False
confidence: float = 0.0
agent_id: Optional[str] = None
# Execution tracking
current_step: int = 0
execution_time: float = 0.0
memory_references: List[str] = field(default_factory=list)
@dataclass
class StrategicPlan:
"""Long-term strategic plan"""
plan_id: str
objective: str
timeline: timedelta
# Plan structure
phases: List[Dict[str, Any]] = field(default_factory=list)
milestones: List[Dict[str, Any]] = field(default_factory=list)
dependencies: Dict[str, List[str]] = field(default_factory=dict)
# Execution tracking
created_at: datetime = field(default_factory=datetime.now)
status: str = "planning" # planning, executing, completed, failed
progress: float = 0.0
# Adaptation and learning
adaptations: List[Dict[str, Any]] = field(default_factory=list)
lessons_learned: List[str] = field(default_factory=list)
class PersistentMemoryManager:
"""Advanced persistent memory system with reasoning capabilities"""
def __init__(self,
memory_db_path: str = "data/persistent_memory.db",
max_memory_items: int = 100000,
memory_consolidation_interval: int = 3600,
logger: Optional[CyberLLMLogger] = None):
self.logger = logger or CyberLLMLogger(name="persistent_memory")
self.memory_db_path = Path(memory_db_path)
self.max_memory_items = max_memory_items
self.consolidation_interval = memory_consolidation_interval
# Memory stores
self.episodic_memory = {} # Recent experiences
self.semantic_memory = {} # General knowledge
self.working_memory = deque(maxlen=50) # Active information
self.strategic_plans = {} # Long-term plans
self.reasoning_chains = {} # Active reasoning
# Memory indexing and retrieval
self.memory_index = defaultdict(set) # Tag-based indexing
self.association_graph = defaultdict(set) # Memory associations
# Background processes
self.consolidation_running = False
self.consolidation_thread = None
# Initialize memory system
asyncio.create_task(self._initialize_memory_system())
self.logger.info("Persistent Memory Manager initialized")
async def _initialize_memory_system(self):
"""Initialize the persistent memory system"""
try:
# Create database structure
self.memory_db_path.parent.mkdir(parents=True, exist_ok=True)
conn = sqlite3.connect(self.memory_db_path)
cursor = conn.cursor()
# Memory items table
cursor.execute("""
CREATE TABLE IF NOT EXISTS memory_items (
memory_id TEXT PRIMARY KEY,
memory_type TEXT NOT NULL,
content BLOB,
created_at TIMESTAMP,
last_accessed TIMESTAMP,
access_count INTEGER DEFAULT 0,
importance_score REAL DEFAULT 0.5,
confidence REAL DEFAULT 1.0,
decay_rate REAL DEFAULT 0.1,
associated_memories TEXT, -- JSON
context_tags TEXT, -- JSON
agent_id TEXT,
source TEXT,
validated BOOLEAN DEFAULT FALSE,
compressed BOOLEAN DEFAULT FALSE
)
""")
# Reasoning chains table
cursor.execute("""
CREATE TABLE IF NOT EXISTS reasoning_chains (
chain_id TEXT PRIMARY KEY,
reasoning_type TEXT NOT NULL,
goal TEXT,
steps TEXT, -- JSON
premises TEXT, -- JSON
conclusions TEXT, -- JSON
created_at TIMESTAMP,
completed BOOLEAN DEFAULT FALSE,
confidence REAL DEFAULT 0.0,
agent_id TEXT,
current_step INTEGER DEFAULT 0,
execution_time REAL DEFAULT 0.0,
memory_references TEXT -- JSON
)
""")
# Strategic plans table
cursor.execute("""
CREATE TABLE IF NOT EXISTS strategic_plans (
plan_id TEXT PRIMARY KEY,
objective TEXT NOT NULL,
timeline INTEGER, -- Seconds
phases TEXT, -- JSON
milestones TEXT, -- JSON
dependencies TEXT, -- JSON
created_at TIMESTAMP,
status TEXT DEFAULT 'planning',
progress REAL DEFAULT 0.0,
adaptations TEXT, -- JSON
lessons_learned TEXT -- JSON
)
""")
# Memory associations table
cursor.execute("""
CREATE TABLE IF NOT EXISTS memory_associations (
id INTEGER PRIMARY KEY AUTOINCREMENT,
memory_id_1 TEXT,
memory_id_2 TEXT,
association_strength REAL DEFAULT 0.5,
association_type TEXT,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
FOREIGN KEY (memory_id_1) REFERENCES memory_items(memory_id),
FOREIGN KEY (memory_id_2) REFERENCES memory_items(memory_id)
)
""")
conn.commit()
conn.close()
# Load existing memories
await self._load_persistent_memories()
# Start background consolidation process
self._start_memory_consolidation()
self.logger.info("Memory system database initialized and loaded")
except Exception as e:
self.logger.error("Failed to initialize memory system", error=str(e))
raise CyberLLMError("Memory system initialization failed", ErrorCategory.SYSTEM)
async def store_memory(self,
memory_type: MemoryType,
content: Dict[str, Any],
importance: float = 0.5,
context_tags: List[str] = None,
agent_id: str = None) -> str:
"""Store a new memory item"""
memory_id = f"{memory_type.value}_{hashlib.md5(str(content).encode()).hexdigest()[:8]}"
memory_item = MemoryItem(
memory_id=memory_id,
memory_type=memory_type,
content=content,
created_at=datetime.now(),
last_accessed=datetime.now(),
importance_score=importance,
context_tags=context_tags or [],
agent_id=agent_id,
source="direct_storage"
)
# Store in appropriate memory system
if memory_type == MemoryType.EPISODIC:
self.episodic_memory[memory_id] = memory_item
elif memory_type == MemoryType.SEMANTIC:
self.semantic_memory[memory_id] = memory_item
elif memory_type == MemoryType.WORKING:
self.working_memory.append(memory_item)
# Update indexes
for tag in context_tags or []:
self.memory_index[tag].add(memory_id)
# Persist to database
await self._persist_memory_item(memory_item)
self.logger.debug(f"Stored memory: {memory_id}", memory_type=memory_type.value)
return memory_id
async def retrieve_memories(self,
query: str,
memory_types: List[MemoryType] = None,
limit: int = 10,
min_relevance: float = 0.3) -> List[MemoryItem]:
"""Retrieve memories based on query"""
if not memory_types:
memory_types = [MemoryType.EPISODIC, MemoryType.SEMANTIC]
relevant_memories = []
# Search through different memory types
for memory_type in memory_types:
if memory_type == MemoryType.EPISODIC:
memories = self.episodic_memory.values()
elif memory_type == MemoryType.SEMANTIC:
memories = self.semantic_memory.values()
elif memory_type == MemoryType.WORKING:
memories = list(self.working_memory)
else:
continue
for memory in memories:
relevance = await self._calculate_relevance(query, memory)
if relevance >= min_relevance:
relevant_memories.append((memory, relevance))
# Update access information
memory.last_accessed = datetime.now()
memory.access_count += 1
# Sort by relevance and return top results
relevant_memories.sort(key=lambda x: x[1], reverse=True)
return [memory for memory, _ in relevant_memories[:limit]]
async def create_reasoning_chain(self,
reasoning_type: ReasoningType,
goal: str,
premises: List[str],
agent_id: str = None) -> str:
"""Create a new reasoning chain"""
chain_id = f"reasoning_{reasoning_type.value}_{int(time.time())}"
reasoning_chain = ReasoningChain(
chain_id=chain_id,
reasoning_type=reasoning_type,
goal=goal,
premises=premises,
agent_id=agent_id
)
self.reasoning_chains[chain_id] = reasoning_chain
# Persist to database
await self._persist_reasoning_chain(reasoning_chain)
self.logger.info(f"Created reasoning chain: {chain_id}",
reasoning_type=reasoning_type.value,
goal=goal)
return chain_id
async def execute_reasoning_step(self,
chain_id: str,
step_content: Dict[str, Any]) -> bool:
"""Execute a single reasoning step"""
if chain_id not in self.reasoning_chains:
raise CyberLLMError(f"Reasoning chain not found: {chain_id}", ErrorCategory.VALIDATION)
chain = self.reasoning_chains[chain_id]
try:
start_time = time.time()
# Add step to chain
step = {
"step_number": len(chain.steps) + 1,
"content": step_content,
"timestamp": datetime.now().isoformat(),
"execution_time": 0.0
}
# Execute reasoning based on type
if chain.reasoning_type == ReasoningType.DEDUCTIVE:
result = await self._execute_deductive_step(chain, step_content)
elif chain.reasoning_type == ReasoningType.INDUCTIVE:
result = await self._execute_inductive_step(chain, step_content)
elif chain.reasoning_type == ReasoningType.CAUSAL:
result = await self._execute_causal_step(chain, step_content)
elif chain.reasoning_type == ReasoningType.STRATEGIC:
result = await self._execute_strategic_step(chain, step_content)
else:
result = await self._execute_generic_step(chain, step_content)
# Update step with result
step["result"] = result
step["execution_time"] = time.time() - start_time
chain.steps.append(step)
chain.current_step += 1
chain.execution_time += step["execution_time"]
# Update confidence based on step success
if result.get("success", False):
chain.confidence = min(1.0, chain.confidence + 0.1)
else:
chain.confidence = max(0.0, chain.confidence - 0.1)
# Update persistent storage
await self._persist_reasoning_chain(chain)
return result.get("success", False)
except Exception as e:
self.logger.error(f"Failed to execute reasoning step: {chain_id}", error=str(e))
return False
async def create_strategic_plan(self,
objective: str,
timeline: timedelta,
initial_phases: List[Dict[str, Any]] = None) -> str:
"""Create a new strategic plan"""
plan_id = f"strategic_{hashlib.md5(objective.encode()).hexdigest()[:8]}"
strategic_plan = StrategicPlan(
plan_id=plan_id,
objective=objective,
timeline=timeline,
phases=initial_phases or []
)
self.strategic_plans[plan_id] = strategic_plan
# Persist to database
await self._persist_strategic_plan(strategic_plan)
self.logger.info(f"Created strategic plan: {plan_id}", objective=objective)
return plan_id
async def update_strategic_plan(self,
plan_id: str,
updates: Dict[str, Any]) -> bool:
"""Update an existing strategic plan"""
if plan_id not in self.strategic_plans:
return False
plan = self.strategic_plans[plan_id]
# Apply updates
for key, value in updates.items():
if hasattr(plan, key):
setattr(plan, key, value)
# Track adaptation
adaptation = {
"timestamp": datetime.now().isoformat(),
"changes": updates,
"reason": updates.get("adaptation_reason", "Unknown")
}
plan.adaptations.append(adaptation)
# Update persistent storage
await self._persist_strategic_plan(plan)
return True
async def consolidate_memories(self):
"""Perform memory consolidation and cleanup"""
try:
# Decay unused memories
current_time = datetime.now()
for memory_store in [self.episodic_memory, self.semantic_memory]:
to_remove = []
for memory_id, memory in memory_store.items():
# Calculate memory decay
time_since_access = (current_time - memory.last_accessed).total_seconds()
decay_factor = memory.decay_rate * (time_since_access / 3600) # Per hour
memory.importance_score *= (1 - decay_factor)
# Remove very low importance memories
if memory.importance_score < 0.1 and memory.access_count < 2:
to_remove.append(memory_id)
# Remove decayed memories
for memory_id in to_remove:
del memory_store[memory_id]
await self._remove_memory_from_db(memory_id)
# Strengthen associated memories
await self._strengthen_memory_associations()
# Compress old memories
await self._compress_old_memories()
self.logger.info("Memory consolidation completed")
except Exception as e:
self.logger.error("Memory consolidation failed", error=str(e))
def _start_memory_consolidation(self):
"""Start background memory consolidation process"""
def consolidation_worker():
while self.consolidation_running:
try:
asyncio.run(self.consolidate_memories())
time.sleep(self.consolidation_interval)
except Exception as e:
self.logger.error("Consolidation worker error", error=str(e))
time.sleep(60) # Wait before retrying
self.consolidation_running = True
self.consolidation_thread = threading.Thread(target=consolidation_worker, daemon=True)
self.consolidation_thread.start()
async def _load_persistent_memories(self):
"""Load memories from persistent storage"""
try:
conn = sqlite3.connect(self.memory_db_path)
cursor = conn.cursor()
# Load memory items
cursor.execute("SELECT * FROM memory_items ORDER BY last_accessed DESC LIMIT ?",
(self.max_memory_items,))
rows = cursor.fetchall()
for row in rows:
memory_item = MemoryItem(
memory_id=row[0],
memory_type=MemoryType(row[1]),
content=pickle.loads(row[2]),
created_at=datetime.fromisoformat(row[3]),
last_accessed=datetime.fromisoformat(row[4]),
access_count=row[5],
importance_score=row[6],
confidence=row[7],
decay_rate=row[8],
associated_memories=json.loads(row[9]) if row[9] else [],
context_tags=json.loads(row[10]) if row[10] else [],
agent_id=row[11],
source=row[12],
validated=bool(row[13]),
compressed=bool(row[14])
)
# Store in appropriate memory system
if memory_item.memory_type == MemoryType.EPISODIC:
self.episodic_memory[memory_item.memory_id] = memory_item
elif memory_item.memory_type == MemoryType.SEMANTIC:
self.semantic_memory[memory_item.memory_id] = memory_item
# Load reasoning chains
cursor.execute("SELECT * FROM reasoning_chains WHERE completed = FALSE")
for row in cursor.fetchall():
reasoning_chain = ReasoningChain(
chain_id=row[0],
reasoning_type=ReasoningType(row[1]),
goal=row[2],
steps=json.loads(row[3]) if row[3] else [],
premises=json.loads(row[4]) if row[4] else [],
conclusions=json.loads(row[5]) if row[5] else [],
created_at=datetime.fromisoformat(row[6]),
completed=bool(row[7]),
confidence=row[8],
agent_id=row[9],
current_step=row[10],
execution_time=row[11],
memory_references=json.loads(row[12]) if row[12] else []
)
self.reasoning_chains[reasoning_chain.chain_id] = reasoning_chain
# Load strategic plans
cursor.execute("SELECT * FROM strategic_plans WHERE status != 'completed'")
for row in cursor.fetchall():
strategic_plan = StrategicPlan(
plan_id=row[0],
objective=row[1],
timeline=timedelta(seconds=row[2]),
phases=json.loads(row[3]) if row[3] else [],
milestones=json.loads(row[4]) if row[4] else [],
dependencies=json.loads(row[5]) if row[5] else {},
created_at=datetime.fromisoformat(row[6]),
status=row[7],
progress=row[8],
adaptations=json.loads(row[9]) if row[9] else [],
lessons_learned=json.loads(row[10]) if row[10] else []
)
self.strategic_plans[strategic_plan.plan_id] = strategic_plan
conn.close()
self.logger.info(f"Loaded persistent memories: {len(self.episodic_memory + self.semantic_memory)} items")
except Exception as e:
self.logger.error("Failed to load persistent memories", error=str(e))
async def _calculate_relevance(self, query: str, memory: MemoryItem) -> float:
"""Calculate relevance score between query and memory"""
# Simple relevance calculation (would use embeddings in production)
query_words = set(query.lower().split())
memory_text = str(memory.content).lower()
memory_words = set(memory_text.split())
# Jaccard similarity
intersection = len(query_words.intersection(memory_words))
union = len(query_words.union(memory_words))
if union == 0:
return 0.0
base_similarity = intersection / union
# Boost based on importance and recency
importance_boost = memory.importance_score * 0.3
recency_boost = min(0.2, 1.0 / ((datetime.now() - memory.last_accessed).days + 1))
return min(1.0, base_similarity + importance_boost + recency_boost)
async def _execute_deductive_step(self, chain: ReasoningChain, step_content: Dict[str, Any]) -> Dict[str, Any]:
"""Execute deductive reasoning step"""
# Deductive reasoning: apply general rules to specific cases
rule = step_content.get("rule")
case = step_content.get("case")
if not rule or not case:
return {"success": False, "error": "Missing rule or case for deductive reasoning"}
# Simple rule application (would be more sophisticated in production)
conclusion = f"If {rule} and {case}, then conclusion follows"
return {
"success": True,
"conclusion": conclusion,
"reasoning": f"Applied rule '{rule}' to case '{case}'"
}
async def _execute_inductive_step(self, chain: ReasoningChain, step_content: Dict[str, Any]) -> Dict[str, Any]:
"""Execute inductive reasoning step"""
# Inductive reasoning: generalize from specific examples
examples = step_content.get("examples", [])
if len(examples) < 2:
return {"success": False, "error": "Need at least 2 examples for inductive reasoning"}
# Simple pattern detection
pattern = f"Pattern derived from {len(examples)} examples"
return {
"success": True,
"pattern": pattern,
"reasoning": f"Generalized from {len(examples)} specific examples"
}
async def _execute_causal_step(self, chain: ReasoningChain, step_content: Dict[str, Any]) -> Dict[str, Any]:
"""Execute causal reasoning step"""
# Causal reasoning: identify cause-effect relationships
cause = step_content.get("cause")
effect = step_content.get("effect")
if not cause or not effect:
return {"success": False, "error": "Missing cause or effect for causal reasoning"}
# Simple causal analysis
causal_link = f"'{cause}' causes '{effect}'"
return {
"success": True,
"causal_link": causal_link,
"reasoning": f"Established causal relationship between cause and effect"
}
async def _execute_strategic_step(self, chain: ReasoningChain, step_content: Dict[str, Any]) -> Dict[str, Any]:
"""Execute strategic reasoning step"""
# Strategic reasoning: goal decomposition and planning
goal = step_content.get("goal")
constraints = step_content.get("constraints", [])
resources = step_content.get("resources", [])
if not goal:
return {"success": False, "error": "Missing goal for strategic reasoning"}
# Simple strategic analysis
strategy = f"Strategy for achieving '{goal}' given constraints and resources"
return {
"success": True,
"strategy": strategy,
"reasoning": f"Developed strategy considering {len(constraints)} constraints and {len(resources)} resources"
}
async def _execute_generic_step(self, chain: ReasoningChain, step_content: Dict[str, Any]) -> Dict[str, Any]:
"""Execute generic reasoning step"""
return {
"success": True,
"result": "Generic reasoning step completed",
"reasoning": "Applied general reasoning principles"
}
async def _persist_memory_item(self, memory_item: MemoryItem):
"""Persist memory item to database"""
try:
conn = sqlite3.connect(self.memory_db_path)
cursor = conn.cursor()
cursor.execute("""
INSERT OR REPLACE INTO memory_items
(memory_id, memory_type, content, created_at, last_accessed, access_count,
importance_score, confidence, decay_rate, associated_memories, context_tags,
agent_id, source, validated, compressed)
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)
""", (
memory_item.memory_id,
memory_item.memory_type.value,
pickle.dumps(memory_item.content),
memory_item.created_at.isoformat(),
memory_item.last_accessed.isoformat(),
memory_item.access_count,
memory_item.importance_score,
memory_item.confidence,
memory_item.decay_rate,
json.dumps(memory_item.associated_memories),
json.dumps(memory_item.context_tags),
memory_item.agent_id,
memory_item.source,
memory_item.validated,
memory_item.compressed
))
conn.commit()
conn.close()
except Exception as e:
self.logger.error(f"Failed to persist memory item: {memory_item.memory_id}", error=str(e))
async def _persist_reasoning_chain(self, chain: ReasoningChain):
"""Persist reasoning chain to database"""
try:
conn = sqlite3.connect(self.memory_db_path)
cursor = conn.cursor()
cursor.execute("""
INSERT OR REPLACE INTO reasoning_chains
(chain_id, reasoning_type, goal, steps, premises, conclusions,
created_at, completed, confidence, agent_id, current_step,
execution_time, memory_references)
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)
""", (
chain.chain_id,
chain.reasoning_type.value,
chain.goal,
json.dumps(chain.steps),
json.dumps(chain.premises),
json.dumps(chain.conclusions),
chain.created_at.isoformat(),
chain.completed,
chain.confidence,
chain.agent_id,
chain.current_step,
chain.execution_time,
json.dumps(chain.memory_references)
))
conn.commit()
conn.close()
except Exception as e:
self.logger.error(f"Failed to persist reasoning chain: {chain.chain_id}", error=str(e))
async def _persist_strategic_plan(self, plan: StrategicPlan):
"""Persist strategic plan to database"""
try:
conn = sqlite3.connect(self.memory_db_path)
cursor = conn.cursor()
cursor.execute("""
INSERT OR REPLACE INTO strategic_plans
(plan_id, objective, timeline, phases, milestones, dependencies,
created_at, status, progress, adaptations, lessons_learned)
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)
""", (
plan.plan_id,
plan.objective,
int(plan.timeline.total_seconds()),
json.dumps(plan.phases),
json.dumps(plan.milestones),
json.dumps(plan.dependencies),
plan.created_at.isoformat(),
plan.status,
plan.progress,
json.dumps(plan.adaptations),
json.dumps(plan.lessons_learned)
))
conn.commit()
conn.close()
except Exception as e:
self.logger.error(f"Failed to persist strategic plan: {plan.plan_id}", error=str(e))
def get_memory_stats(self) -> Dict[str, Any]:
"""Get memory system statistics"""
return {
"episodic_memories": len(self.episodic_memory),
"semantic_memories": len(self.semantic_memory),
"working_memory_items": len(self.working_memory),
"active_reasoning_chains": len([c for c in self.reasoning_chains.values() if not c.completed]),
"strategic_plans": len(self.strategic_plans),
"memory_associations": len(self.association_graph),
"consolidation_running": self.consolidation_running
}
# Factory function
def create_persistent_memory_manager(**kwargs) -> PersistentMemoryManager:
"""Create persistent memory manager with configuration"""
return PersistentMemoryManager(**kwargs)
|