File size: 32,698 Bytes
23804b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
"""
Advanced Persistent Memory System for Cyber-LLM
Long-term memory, reasoning chains, and strategic planning capabilities

Author: Muzan Sano <[email protected]>
"""

import asyncio
import json
import logging
from datetime import datetime, timedelta
from typing import Dict, List, Any, Optional, Tuple, Union
from dataclasses import dataclass, field
from enum import Enum
import sqlite3
import pickle
import hashlib
from pathlib import Path
import numpy as np
from collections import defaultdict, deque
import threading
import time

from ..utils.logging_system import CyberLLMLogger, CyberLLMError, ErrorCategory
from ..utils.secrets_manager import get_secrets_manager

class MemoryType(Enum):
    """Types of memory in the system"""
    EPISODIC = "episodic"          # Specific events and experiences
    SEMANTIC = "semantic"          # General knowledge and facts
    PROCEDURAL = "procedural"      # Skills and procedures
    WORKING = "working"            # Temporary active information
    STRATEGIC = "strategic"        # Long-term goals and plans

class ReasoningType(Enum):
    """Types of reasoning chains"""
    DEDUCTIVE = "deductive"        # From general to specific
    INDUCTIVE = "inductive"        # From specific to general
    ABDUCTIVE = "abductive"        # Best explanation inference
    CAUSAL = "causal"             # Cause-effect relationships
    STRATEGIC = "strategic"        # Goal-oriented planning
    COUNTERFACTUAL = "counterfactual"  # What-if scenarios

@dataclass
class MemoryItem:
    """Individual memory item"""
    memory_id: str
    memory_type: MemoryType
    content: Dict[str, Any]
    
    # Temporal information
    created_at: datetime
    last_accessed: datetime
    access_count: int = 0
    
    # Memory strength and importance
    importance_score: float = 0.5  # 0-1 scale
    confidence: float = 1.0
    decay_rate: float = 0.1
    
    # Associations and context
    associated_memories: List[str] = field(default_factory=list)
    context_tags: List[str] = field(default_factory=list)
    agent_id: Optional[str] = None
    
    # Metadata
    source: str = "unknown"
    validated: bool = False
    compressed: bool = False

@dataclass
class ReasoningChain:
    """Multi-step reasoning chain"""
    chain_id: str
    reasoning_type: ReasoningType
    goal: str
    
    # Reasoning steps
    steps: List[Dict[str, Any]] = field(default_factory=list)
    premises: List[str] = field(default_factory=list)
    conclusions: List[str] = field(default_factory=list)
    
    # Chain metadata
    created_at: datetime = field(default_factory=datetime.now)
    completed: bool = False
    confidence: float = 0.0
    agent_id: Optional[str] = None
    
    # Execution tracking
    current_step: int = 0
    execution_time: float = 0.0
    memory_references: List[str] = field(default_factory=list)

@dataclass
class StrategicPlan:
    """Long-term strategic plan"""
    plan_id: str
    objective: str
    timeline: timedelta
    
    # Plan structure
    phases: List[Dict[str, Any]] = field(default_factory=list)
    milestones: List[Dict[str, Any]] = field(default_factory=list)
    dependencies: Dict[str, List[str]] = field(default_factory=dict)
    
    # Execution tracking
    created_at: datetime = field(default_factory=datetime.now)
    status: str = "planning"  # planning, executing, completed, failed
    progress: float = 0.0
    
    # Adaptation and learning
    adaptations: List[Dict[str, Any]] = field(default_factory=list)
    lessons_learned: List[str] = field(default_factory=list)

class PersistentMemoryManager:
    """Advanced persistent memory system with reasoning capabilities"""
    
    def __init__(self, 
                 memory_db_path: str = "data/persistent_memory.db",
                 max_memory_items: int = 100000,
                 memory_consolidation_interval: int = 3600,
                 logger: Optional[CyberLLMLogger] = None):
        
        self.logger = logger or CyberLLMLogger(name="persistent_memory")
        self.memory_db_path = Path(memory_db_path)
        self.max_memory_items = max_memory_items
        self.consolidation_interval = memory_consolidation_interval
        
        # Memory stores
        self.episodic_memory = {}  # Recent experiences
        self.semantic_memory = {}  # General knowledge
        self.working_memory = deque(maxlen=50)  # Active information
        self.strategic_plans = {}  # Long-term plans
        self.reasoning_chains = {}  # Active reasoning
        
        # Memory indexing and retrieval
        self.memory_index = defaultdict(set)  # Tag-based indexing
        self.association_graph = defaultdict(set)  # Memory associations
        
        # Background processes
        self.consolidation_running = False
        self.consolidation_thread = None
        
        # Initialize memory system
        asyncio.create_task(self._initialize_memory_system())
        
        self.logger.info("Persistent Memory Manager initialized")
    
    async def _initialize_memory_system(self):
        """Initialize the persistent memory system"""
        
        try:
            # Create database structure
            self.memory_db_path.parent.mkdir(parents=True, exist_ok=True)
            
            conn = sqlite3.connect(self.memory_db_path)
            cursor = conn.cursor()
            
            # Memory items table
            cursor.execute("""
                CREATE TABLE IF NOT EXISTS memory_items (
                    memory_id TEXT PRIMARY KEY,
                    memory_type TEXT NOT NULL,
                    content BLOB,
                    created_at TIMESTAMP,
                    last_accessed TIMESTAMP,
                    access_count INTEGER DEFAULT 0,
                    importance_score REAL DEFAULT 0.5,
                    confidence REAL DEFAULT 1.0,
                    decay_rate REAL DEFAULT 0.1,
                    associated_memories TEXT,  -- JSON
                    context_tags TEXT,  -- JSON
                    agent_id TEXT,
                    source TEXT,
                    validated BOOLEAN DEFAULT FALSE,
                    compressed BOOLEAN DEFAULT FALSE
                )
            """)
            
            # Reasoning chains table
            cursor.execute("""
                CREATE TABLE IF NOT EXISTS reasoning_chains (
                    chain_id TEXT PRIMARY KEY,
                    reasoning_type TEXT NOT NULL,
                    goal TEXT,
                    steps TEXT,  -- JSON
                    premises TEXT,  -- JSON
                    conclusions TEXT,  -- JSON
                    created_at TIMESTAMP,
                    completed BOOLEAN DEFAULT FALSE,
                    confidence REAL DEFAULT 0.0,
                    agent_id TEXT,
                    current_step INTEGER DEFAULT 0,
                    execution_time REAL DEFAULT 0.0,
                    memory_references TEXT  -- JSON
                )
            """)
            
            # Strategic plans table
            cursor.execute("""
                CREATE TABLE IF NOT EXISTS strategic_plans (
                    plan_id TEXT PRIMARY KEY,
                    objective TEXT NOT NULL,
                    timeline INTEGER,  -- Seconds
                    phases TEXT,  -- JSON
                    milestones TEXT,  -- JSON
                    dependencies TEXT,  -- JSON
                    created_at TIMESTAMP,
                    status TEXT DEFAULT 'planning',
                    progress REAL DEFAULT 0.0,
                    adaptations TEXT,  -- JSON
                    lessons_learned TEXT  -- JSON
                )
            """)
            
            # Memory associations table
            cursor.execute("""
                CREATE TABLE IF NOT EXISTS memory_associations (
                    id INTEGER PRIMARY KEY AUTOINCREMENT,
                    memory_id_1 TEXT,
                    memory_id_2 TEXT,
                    association_strength REAL DEFAULT 0.5,
                    association_type TEXT,
                    created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
                    FOREIGN KEY (memory_id_1) REFERENCES memory_items(memory_id),
                    FOREIGN KEY (memory_id_2) REFERENCES memory_items(memory_id)
                )
            """)
            
            conn.commit()
            conn.close()
            
            # Load existing memories
            await self._load_persistent_memories()
            
            # Start background consolidation process
            self._start_memory_consolidation()
            
            self.logger.info("Memory system database initialized and loaded")
            
        except Exception as e:
            self.logger.error("Failed to initialize memory system", error=str(e))
            raise CyberLLMError("Memory system initialization failed", ErrorCategory.SYSTEM)
    
    async def store_memory(self, 
                          memory_type: MemoryType,
                          content: Dict[str, Any],
                          importance: float = 0.5,
                          context_tags: List[str] = None,
                          agent_id: str = None) -> str:
        """Store a new memory item"""
        
        memory_id = f"{memory_type.value}_{hashlib.md5(str(content).encode()).hexdigest()[:8]}"
        
        memory_item = MemoryItem(
            memory_id=memory_id,
            memory_type=memory_type,
            content=content,
            created_at=datetime.now(),
            last_accessed=datetime.now(),
            importance_score=importance,
            context_tags=context_tags or [],
            agent_id=agent_id,
            source="direct_storage"
        )
        
        # Store in appropriate memory system
        if memory_type == MemoryType.EPISODIC:
            self.episodic_memory[memory_id] = memory_item
        elif memory_type == MemoryType.SEMANTIC:
            self.semantic_memory[memory_id] = memory_item
        elif memory_type == MemoryType.WORKING:
            self.working_memory.append(memory_item)
        
        # Update indexes
        for tag in context_tags or []:
            self.memory_index[tag].add(memory_id)
        
        # Persist to database
        await self._persist_memory_item(memory_item)
        
        self.logger.debug(f"Stored memory: {memory_id}", memory_type=memory_type.value)
        return memory_id
    
    async def retrieve_memories(self, 
                              query: str,
                              memory_types: List[MemoryType] = None,
                              limit: int = 10,
                              min_relevance: float = 0.3) -> List[MemoryItem]:
        """Retrieve memories based on query"""
        
        if not memory_types:
            memory_types = [MemoryType.EPISODIC, MemoryType.SEMANTIC]
        
        relevant_memories = []
        
        # Search through different memory types
        for memory_type in memory_types:
            if memory_type == MemoryType.EPISODIC:
                memories = self.episodic_memory.values()
            elif memory_type == MemoryType.SEMANTIC:
                memories = self.semantic_memory.values()
            elif memory_type == MemoryType.WORKING:
                memories = list(self.working_memory)
            else:
                continue
            
            for memory in memories:
                relevance = await self._calculate_relevance(query, memory)
                if relevance >= min_relevance:
                    relevant_memories.append((memory, relevance))
                    # Update access information
                    memory.last_accessed = datetime.now()
                    memory.access_count += 1
        
        # Sort by relevance and return top results
        relevant_memories.sort(key=lambda x: x[1], reverse=True)
        return [memory for memory, _ in relevant_memories[:limit]]
    
    async def create_reasoning_chain(self, 
                                   reasoning_type: ReasoningType,
                                   goal: str,
                                   premises: List[str],
                                   agent_id: str = None) -> str:
        """Create a new reasoning chain"""
        
        chain_id = f"reasoning_{reasoning_type.value}_{int(time.time())}"
        
        reasoning_chain = ReasoningChain(
            chain_id=chain_id,
            reasoning_type=reasoning_type,
            goal=goal,
            premises=premises,
            agent_id=agent_id
        )
        
        self.reasoning_chains[chain_id] = reasoning_chain
        
        # Persist to database
        await self._persist_reasoning_chain(reasoning_chain)
        
        self.logger.info(f"Created reasoning chain: {chain_id}", 
                        reasoning_type=reasoning_type.value,
                        goal=goal)
        
        return chain_id
    
    async def execute_reasoning_step(self, 
                                   chain_id: str,
                                   step_content: Dict[str, Any]) -> bool:
        """Execute a single reasoning step"""
        
        if chain_id not in self.reasoning_chains:
            raise CyberLLMError(f"Reasoning chain not found: {chain_id}", ErrorCategory.VALIDATION)
        
        chain = self.reasoning_chains[chain_id]
        
        try:
            start_time = time.time()
            
            # Add step to chain
            step = {
                "step_number": len(chain.steps) + 1,
                "content": step_content,
                "timestamp": datetime.now().isoformat(),
                "execution_time": 0.0
            }
            
            # Execute reasoning based on type
            if chain.reasoning_type == ReasoningType.DEDUCTIVE:
                result = await self._execute_deductive_step(chain, step_content)
            elif chain.reasoning_type == ReasoningType.INDUCTIVE:
                result = await self._execute_inductive_step(chain, step_content)
            elif chain.reasoning_type == ReasoningType.CAUSAL:
                result = await self._execute_causal_step(chain, step_content)
            elif chain.reasoning_type == ReasoningType.STRATEGIC:
                result = await self._execute_strategic_step(chain, step_content)
            else:
                result = await self._execute_generic_step(chain, step_content)
            
            # Update step with result
            step["result"] = result
            step["execution_time"] = time.time() - start_time
            
            chain.steps.append(step)
            chain.current_step += 1
            chain.execution_time += step["execution_time"]
            
            # Update confidence based on step success
            if result.get("success", False):
                chain.confidence = min(1.0, chain.confidence + 0.1)
            else:
                chain.confidence = max(0.0, chain.confidence - 0.1)
            
            # Update persistent storage
            await self._persist_reasoning_chain(chain)
            
            return result.get("success", False)
            
        except Exception as e:
            self.logger.error(f"Failed to execute reasoning step: {chain_id}", error=str(e))
            return False
    
    async def create_strategic_plan(self, 
                                  objective: str,
                                  timeline: timedelta,
                                  initial_phases: List[Dict[str, Any]] = None) -> str:
        """Create a new strategic plan"""
        
        plan_id = f"strategic_{hashlib.md5(objective.encode()).hexdigest()[:8]}"
        
        strategic_plan = StrategicPlan(
            plan_id=plan_id,
            objective=objective,
            timeline=timeline,
            phases=initial_phases or []
        )
        
        self.strategic_plans[plan_id] = strategic_plan
        
        # Persist to database
        await self._persist_strategic_plan(strategic_plan)
        
        self.logger.info(f"Created strategic plan: {plan_id}", objective=objective)
        return plan_id
    
    async def update_strategic_plan(self, 
                                  plan_id: str,
                                  updates: Dict[str, Any]) -> bool:
        """Update an existing strategic plan"""
        
        if plan_id not in self.strategic_plans:
            return False
        
        plan = self.strategic_plans[plan_id]
        
        # Apply updates
        for key, value in updates.items():
            if hasattr(plan, key):
                setattr(plan, key, value)
        
        # Track adaptation
        adaptation = {
            "timestamp": datetime.now().isoformat(),
            "changes": updates,
            "reason": updates.get("adaptation_reason", "Unknown")
        }
        plan.adaptations.append(adaptation)
        
        # Update persistent storage
        await self._persist_strategic_plan(plan)
        
        return True
    
    async def consolidate_memories(self):
        """Perform memory consolidation and cleanup"""
        
        try:
            # Decay unused memories
            current_time = datetime.now()
            
            for memory_store in [self.episodic_memory, self.semantic_memory]:
                to_remove = []
                
                for memory_id, memory in memory_store.items():
                    # Calculate memory decay
                    time_since_access = (current_time - memory.last_accessed).total_seconds()
                    decay_factor = memory.decay_rate * (time_since_access / 3600)  # Per hour
                    
                    memory.importance_score *= (1 - decay_factor)
                    
                    # Remove very low importance memories
                    if memory.importance_score < 0.1 and memory.access_count < 2:
                        to_remove.append(memory_id)
                
                # Remove decayed memories
                for memory_id in to_remove:
                    del memory_store[memory_id]
                    await self._remove_memory_from_db(memory_id)
            
            # Strengthen associated memories
            await self._strengthen_memory_associations()
            
            # Compress old memories
            await self._compress_old_memories()
            
            self.logger.info("Memory consolidation completed")
            
        except Exception as e:
            self.logger.error("Memory consolidation failed", error=str(e))
    
    def _start_memory_consolidation(self):
        """Start background memory consolidation process"""
        
        def consolidation_worker():
            while self.consolidation_running:
                try:
                    asyncio.run(self.consolidate_memories())
                    time.sleep(self.consolidation_interval)
                except Exception as e:
                    self.logger.error("Consolidation worker error", error=str(e))
                    time.sleep(60)  # Wait before retrying
        
        self.consolidation_running = True
        self.consolidation_thread = threading.Thread(target=consolidation_worker, daemon=True)
        self.consolidation_thread.start()
    
    async def _load_persistent_memories(self):
        """Load memories from persistent storage"""
        
        try:
            conn = sqlite3.connect(self.memory_db_path)
            cursor = conn.cursor()
            
            # Load memory items
            cursor.execute("SELECT * FROM memory_items ORDER BY last_accessed DESC LIMIT ?", 
                         (self.max_memory_items,))
            
            rows = cursor.fetchall()
            
            for row in rows:
                memory_item = MemoryItem(
                    memory_id=row[0],
                    memory_type=MemoryType(row[1]),
                    content=pickle.loads(row[2]),
                    created_at=datetime.fromisoformat(row[3]),
                    last_accessed=datetime.fromisoformat(row[4]),
                    access_count=row[5],
                    importance_score=row[6],
                    confidence=row[7],
                    decay_rate=row[8],
                    associated_memories=json.loads(row[9]) if row[9] else [],
                    context_tags=json.loads(row[10]) if row[10] else [],
                    agent_id=row[11],
                    source=row[12],
                    validated=bool(row[13]),
                    compressed=bool(row[14])
                )
                
                # Store in appropriate memory system
                if memory_item.memory_type == MemoryType.EPISODIC:
                    self.episodic_memory[memory_item.memory_id] = memory_item
                elif memory_item.memory_type == MemoryType.SEMANTIC:
                    self.semantic_memory[memory_item.memory_id] = memory_item
            
            # Load reasoning chains
            cursor.execute("SELECT * FROM reasoning_chains WHERE completed = FALSE")
            
            for row in cursor.fetchall():
                reasoning_chain = ReasoningChain(
                    chain_id=row[0],
                    reasoning_type=ReasoningType(row[1]),
                    goal=row[2],
                    steps=json.loads(row[3]) if row[3] else [],
                    premises=json.loads(row[4]) if row[4] else [],
                    conclusions=json.loads(row[5]) if row[5] else [],
                    created_at=datetime.fromisoformat(row[6]),
                    completed=bool(row[7]),
                    confidence=row[8],
                    agent_id=row[9],
                    current_step=row[10],
                    execution_time=row[11],
                    memory_references=json.loads(row[12]) if row[12] else []
                )
                
                self.reasoning_chains[reasoning_chain.chain_id] = reasoning_chain
            
            # Load strategic plans
            cursor.execute("SELECT * FROM strategic_plans WHERE status != 'completed'")
            
            for row in cursor.fetchall():
                strategic_plan = StrategicPlan(
                    plan_id=row[0],
                    objective=row[1],
                    timeline=timedelta(seconds=row[2]),
                    phases=json.loads(row[3]) if row[3] else [],
                    milestones=json.loads(row[4]) if row[4] else [],
                    dependencies=json.loads(row[5]) if row[5] else {},
                    created_at=datetime.fromisoformat(row[6]),
                    status=row[7],
                    progress=row[8],
                    adaptations=json.loads(row[9]) if row[9] else [],
                    lessons_learned=json.loads(row[10]) if row[10] else []
                )
                
                self.strategic_plans[strategic_plan.plan_id] = strategic_plan
            
            conn.close()
            
            self.logger.info(f"Loaded persistent memories: {len(self.episodic_memory + self.semantic_memory)} items")
            
        except Exception as e:
            self.logger.error("Failed to load persistent memories", error=str(e))
    
    async def _calculate_relevance(self, query: str, memory: MemoryItem) -> float:
        """Calculate relevance score between query and memory"""
        
        # Simple relevance calculation (would use embeddings in production)
        query_words = set(query.lower().split())
        memory_text = str(memory.content).lower()
        memory_words = set(memory_text.split())
        
        # Jaccard similarity
        intersection = len(query_words.intersection(memory_words))
        union = len(query_words.union(memory_words))
        
        if union == 0:
            return 0.0
        
        base_similarity = intersection / union
        
        # Boost based on importance and recency
        importance_boost = memory.importance_score * 0.3
        recency_boost = min(0.2, 1.0 / ((datetime.now() - memory.last_accessed).days + 1))
        
        return min(1.0, base_similarity + importance_boost + recency_boost)
    
    async def _execute_deductive_step(self, chain: ReasoningChain, step_content: Dict[str, Any]) -> Dict[str, Any]:
        """Execute deductive reasoning step"""
        
        # Deductive reasoning: apply general rules to specific cases
        rule = step_content.get("rule")
        case = step_content.get("case")
        
        if not rule or not case:
            return {"success": False, "error": "Missing rule or case for deductive reasoning"}
        
        # Simple rule application (would be more sophisticated in production)
        conclusion = f"If {rule} and {case}, then conclusion follows"
        
        return {
            "success": True,
            "conclusion": conclusion,
            "reasoning": f"Applied rule '{rule}' to case '{case}'"
        }
    
    async def _execute_inductive_step(self, chain: ReasoningChain, step_content: Dict[str, Any]) -> Dict[str, Any]:
        """Execute inductive reasoning step"""
        
        # Inductive reasoning: generalize from specific examples
        examples = step_content.get("examples", [])
        
        if len(examples) < 2:
            return {"success": False, "error": "Need at least 2 examples for inductive reasoning"}
        
        # Simple pattern detection
        pattern = f"Pattern derived from {len(examples)} examples"
        
        return {
            "success": True,
            "pattern": pattern,
            "reasoning": f"Generalized from {len(examples)} specific examples"
        }
    
    async def _execute_causal_step(self, chain: ReasoningChain, step_content: Dict[str, Any]) -> Dict[str, Any]:
        """Execute causal reasoning step"""
        
        # Causal reasoning: identify cause-effect relationships
        cause = step_content.get("cause")
        effect = step_content.get("effect")
        
        if not cause or not effect:
            return {"success": False, "error": "Missing cause or effect for causal reasoning"}
        
        # Simple causal analysis
        causal_link = f"'{cause}' causes '{effect}'"
        
        return {
            "success": True,
            "causal_link": causal_link,
            "reasoning": f"Established causal relationship between cause and effect"
        }
    
    async def _execute_strategic_step(self, chain: ReasoningChain, step_content: Dict[str, Any]) -> Dict[str, Any]:
        """Execute strategic reasoning step"""
        
        # Strategic reasoning: goal decomposition and planning
        goal = step_content.get("goal")
        constraints = step_content.get("constraints", [])
        resources = step_content.get("resources", [])
        
        if not goal:
            return {"success": False, "error": "Missing goal for strategic reasoning"}
        
        # Simple strategic analysis
        strategy = f"Strategy for achieving '{goal}' given constraints and resources"
        
        return {
            "success": True,
            "strategy": strategy,
            "reasoning": f"Developed strategy considering {len(constraints)} constraints and {len(resources)} resources"
        }
    
    async def _execute_generic_step(self, chain: ReasoningChain, step_content: Dict[str, Any]) -> Dict[str, Any]:
        """Execute generic reasoning step"""
        
        return {
            "success": True,
            "result": "Generic reasoning step completed",
            "reasoning": "Applied general reasoning principles"
        }
    
    async def _persist_memory_item(self, memory_item: MemoryItem):
        """Persist memory item to database"""
        
        try:
            conn = sqlite3.connect(self.memory_db_path)
            cursor = conn.cursor()
            
            cursor.execute("""
                INSERT OR REPLACE INTO memory_items
                (memory_id, memory_type, content, created_at, last_accessed, access_count,
                 importance_score, confidence, decay_rate, associated_memories, context_tags,
                 agent_id, source, validated, compressed)
                VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)
            """, (
                memory_item.memory_id,
                memory_item.memory_type.value,
                pickle.dumps(memory_item.content),
                memory_item.created_at.isoformat(),
                memory_item.last_accessed.isoformat(),
                memory_item.access_count,
                memory_item.importance_score,
                memory_item.confidence,
                memory_item.decay_rate,
                json.dumps(memory_item.associated_memories),
                json.dumps(memory_item.context_tags),
                memory_item.agent_id,
                memory_item.source,
                memory_item.validated,
                memory_item.compressed
            ))
            
            conn.commit()
            conn.close()
            
        except Exception as e:
            self.logger.error(f"Failed to persist memory item: {memory_item.memory_id}", error=str(e))
    
    async def _persist_reasoning_chain(self, chain: ReasoningChain):
        """Persist reasoning chain to database"""
        
        try:
            conn = sqlite3.connect(self.memory_db_path)
            cursor = conn.cursor()
            
            cursor.execute("""
                INSERT OR REPLACE INTO reasoning_chains
                (chain_id, reasoning_type, goal, steps, premises, conclusions,
                 created_at, completed, confidence, agent_id, current_step,
                 execution_time, memory_references)
                VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)
            """, (
                chain.chain_id,
                chain.reasoning_type.value,
                chain.goal,
                json.dumps(chain.steps),
                json.dumps(chain.premises),
                json.dumps(chain.conclusions),
                chain.created_at.isoformat(),
                chain.completed,
                chain.confidence,
                chain.agent_id,
                chain.current_step,
                chain.execution_time,
                json.dumps(chain.memory_references)
            ))
            
            conn.commit()
            conn.close()
            
        except Exception as e:
            self.logger.error(f"Failed to persist reasoning chain: {chain.chain_id}", error=str(e))
    
    async def _persist_strategic_plan(self, plan: StrategicPlan):
        """Persist strategic plan to database"""
        
        try:
            conn = sqlite3.connect(self.memory_db_path)
            cursor = conn.cursor()
            
            cursor.execute("""
                INSERT OR REPLACE INTO strategic_plans
                (plan_id, objective, timeline, phases, milestones, dependencies,
                 created_at, status, progress, adaptations, lessons_learned)
                VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)
            """, (
                plan.plan_id,
                plan.objective,
                int(plan.timeline.total_seconds()),
                json.dumps(plan.phases),
                json.dumps(plan.milestones),
                json.dumps(plan.dependencies),
                plan.created_at.isoformat(),
                plan.status,
                plan.progress,
                json.dumps(plan.adaptations),
                json.dumps(plan.lessons_learned)
            ))
            
            conn.commit()
            conn.close()
            
        except Exception as e:
            self.logger.error(f"Failed to persist strategic plan: {plan.plan_id}", error=str(e))
    
    def get_memory_stats(self) -> Dict[str, Any]:
        """Get memory system statistics"""
        
        return {
            "episodic_memories": len(self.episodic_memory),
            "semantic_memories": len(self.semantic_memory),
            "working_memory_items": len(self.working_memory),
            "active_reasoning_chains": len([c for c in self.reasoning_chains.values() if not c.completed]),
            "strategic_plans": len(self.strategic_plans),
            "memory_associations": len(self.association_graph),
            "consolidation_running": self.consolidation_running
        }

# Factory function
def create_persistent_memory_manager(**kwargs) -> PersistentMemoryManager:
    """Create persistent memory manager with configuration"""
    return PersistentMemoryManager(**kwargs)