File size: 24,768 Bytes
35f51a9
 
 
 
 
 
 
 
 
4b1f382
35f51a9
 
 
 
 
 
 
 
 
 
 
 
4b1f382
 
 
 
35f51a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b1f382
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35f51a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b1f382
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35f51a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b1f382
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35f51a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b1f382
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35f51a9
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
#!/usr/bin/env python3
"""
Cyber-LLM Research Platform - Hugging Face Space Application
FastAPI application for cybersecurity AI research and validation

This application provides a web interface for cybersecurity AI research
using Hugging Face models and the existing Cyber-LLM architecture.
"""

from fastapi import FastAPI, HTTPException, UploadFile, File, WebSocket, WebSocketDisconnect
from fastapi.responses import HTMLResponse
from fastapi.staticfiles import StaticFiles
from pydantic import BaseModel
from huggingface_hub import login
from transformers import pipeline, AutoTokenizer, AutoModel
import os
import json
import asyncio
from datetime import datetime
from typing import Dict, List, Any, Optional
import logging

# Import advanced AI modules
from advanced_ai import neuro_symbolic_ai
from websocket_monitoring import manager, threat_feed_worker, threat_monitor

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Initialize FastAPI app
app = FastAPI(
    title="Cyber-LLM Research Platform",
    description="Advanced Cybersecurity AI Research Environment using Hugging Face Models",
    version="1.0.0",
    docs_url="/docs",
    redoc_url="/redoc"
)

# Pydantic models for API requests/responses
class ThreatAnalysisRequest(BaseModel):
    threat_data: str
    analysis_type: Optional[str] = "comprehensive"
    model_name: Optional[str] = "microsoft/codebert-base"

class ThreatAnalysisResponse(BaseModel):
    analysis_id: str
    threat_level: str
    confidence_score: float
    indicators: List[str]
    recommendations: List[str]
    technical_details: str
    timestamp: str

class ModelInfo(BaseModel):
    name: str
    description: str
    capabilities: List[str]
    status: str

# Import your advanced AI modules
import sys
import os
sys.path.append('/workspace/src')  # Add your source path

try:
    from src.learning.neurosymbolic_ai import NeuroSymbolicCyberAI
    from src.learning.meta_learning import CyberMetaLearning
    from src.learning.graph_neural_networks import SecurityGraphAnalyzer
    from src.integration.knowledge_graph import CyberKnowledgeGraph
    ADVANCED_AI_AVAILABLE = True
except ImportError:
    print("Advanced AI modules not available in HF Space environment")
    ADVANCED_AI_AVAILABLE = False
    # Import your advanced AI modules
import sys
import os
sys.path.append('/workspace/src')  # Add your source path

try:
    from src.learning.neurosymbolic_ai import NeuroSymbolicCyberAI
    from src.learning.meta_learning import CyberMetaLearning
    from src.learning.graph_neural_networks import SecurityGraphAnalyzer
    from src.integration.knowledge_graph import CyberKnowledgeGraph
    ADVANCED_AI_AVAILABLE = True
except ImportError:
    print("Advanced AI modules not available in HF Space environment")
    ADVANCED_AI_AVAILABLE = False

# Global variables for model management
models_cache = {}
available_models = {
    "microsoft/codebert-base": {
        "description": "Code analysis and vulnerability detection",
        "capabilities": ["code_analysis", "vulnerability_detection", "security_review"],
        "type": "code_analysis"
    },
    "huggingface/CodeBERTa-small-v1": {
        "description": "Lightweight code understanding model",
        "capabilities": ["code_understanding", "syntax_analysis", "pattern_recognition"],
        "type": "code_analysis"
    }
}

# Authentication and initialization
@app.on_event("startup")
async def startup_event():
    """Initialize the application and authenticate with Hugging Face"""
    logger.info("Starting Cyber-LLM Research Platform...")
    
    # Authenticate with Hugging Face if token is available
    hf_token = os.getenv("HUGGINGFACE_TOKEN") or os.getenv("HF_TOKEN")
    if hf_token and hf_token.startswith("hf_"):
        try:
            login(token=hf_token)
            logger.info("Successfully authenticated with Hugging Face")
        except Exception as e:
            logger.warning(f"Failed to authenticate with Hugging Face: {e}")
    
    logger.info("Cyber-LLM Research Platform started successfully!")
    
    # Start threat feed worker for real-time monitoring
    asyncio.create_task(threat_feed_worker())
    logger.info("Real-time threat monitoring started!")

# WebSocket endpoint for real-time threat monitoring
@app.websocket("/ws/threat-monitor")
async def websocket_threat_monitor(websocket: WebSocket):
    """WebSocket endpoint for real-time threat monitoring"""
    await manager.connect(websocket)
    try:
        while True:
            # Keep connection alive and handle any client messages
            data = await websocket.receive_text()
            
            # Process client requests if needed
            try:
                request = json.loads(data)
                if request.get("type") == "get_statistics":
                    stats = threat_monitor._generate_statistics()
                    await manager.send_personal_message(
                        json.dumps({"type": "statistics", "data": stats}),
                        websocket
                    )
            except json.JSONDecodeError:
                pass  # Ignore non-JSON messages
                
    except WebSocketDisconnect:
        manager.disconnect(websocket)

# Root endpoint
@app.get("/", response_class=HTMLResponse)
async def root():
    """Main page with platform information"""
    html_content = """
    <!DOCTYPE html>
    <html>
    <head>
        <title>Cyber-LLM Research Platform</title>
        <style>
            body { font-family: Arial, sans-serif; margin: 40px; background: #0f0f0f; color: #00ff00; }
            .header { background: #1a1a1a; padding: 20px; border-radius: 10px; margin-bottom: 30px; }
            .section { background: #1a1a1a; padding: 15px; border-radius: 8px; margin: 20px 0; }
            .green { color: #00ff00; }
            .cyan { color: #00ffff; }
            .yellow { color: #ffff00; }
            a { color: #00ffff; text-decoration: none; }
            a:hover { color: #00ff00; }
            .status { padding: 5px 10px; background: #003300; border-radius: 5px; }
        </style>
    </head>
    <body>
        <div class="header">
            <h1 class="green">πŸ›‘οΈ Cyber-LLM Research Platform</h1>
            <p class="cyan">Advanced Cybersecurity AI Research Environment</p>
            <div class="status">
                <span class="yellow">STATUS:</span> <span class="green">ACTIVE</span> |
                <span class="yellow">MODELS:</span> <span class="green">HUGGING FACE INTEGRATED</span> |
                <span class="yellow">RESEARCH:</span> <span class="green">OPERATIONAL</span>
            </div>
        </div>
        
        <div class="section">
            <h2 class="cyan">πŸš€ Platform Capabilities</h2>
            <ul>
                <li class="green">βœ… Advanced Threat Analysis using Hugging Face Models</li>
                <li class="green">βœ… Multi-Agent Cybersecurity Research Environment</li>
                <li class="green">βœ… Code Vulnerability Detection and Analysis</li>
                <li class="green">βœ… Security Pattern Recognition and Classification</li>
                <li class="green">βœ… Real-time Threat Intelligence Processing</li>
            </ul>
        </div>
        
        <div class="section">
            <h2 class="cyan">πŸ”§ API Endpoints</h2>
            <ul>
                <li><a href="/docs">πŸ“š Interactive API Documentation</a></li>
                <li><a href="/models">πŸ€– Available Models</a></li>
                <li><a href="/health">πŸ’š Health Check</a></li>
                <li><a href="/research">πŸ”¬ Research Dashboard</a></li>
            </ul>
        </div>
        
        <div class="section">
            <h2 class="cyan">⚑ Quick Start</h2>
            <p>Use the <a href="/docs">/docs</a> endpoint to explore the API or try a quick threat analysis:</p>
            <pre class="green">
POST /analyze_threat
{
    "threat_data": "suspicious network activity detected",
    "analysis_type": "comprehensive",
    "model_name": "microsoft/codebert-base"
}
            </pre>
        </div>
        
        <div class="section">
            <h2 class="cyan">🌐 Project Information</h2>
            <p><strong>Repository:</strong> <a href="https://github.com/734ai/cyber-llm">cyber-llm</a></p>
            <p><strong>Space:</strong> <a href="https://huggingface.co/spaces/unit731/cyber_llm">unit731/cyber_llm</a></p>
            <p><strong>Purpose:</strong> Cybersecurity AI Research and Validation</p>
        </div>
    </body>
    </html>
    """
    return HTMLResponse(content=html_content, status_code=200)

# Health check endpoint
@app.get("/health")
async def health_check():
    """Health check endpoint"""
    return {
        "status": "healthy",
        "platform": "Cyber-LLM Research Platform",
        "timestamp": datetime.now().isoformat(),
        "models_loaded": len(models_cache),
        "available_models": len(available_models)
    }

# List available models
@app.get("/models", response_model=List[ModelInfo])
async def list_models():
    """List all available cybersecurity models"""
    models_list = []
    for name, info in available_models.items():
        models_list.append(ModelInfo(
            name=name,
            description=info["description"],
            capabilities=info["capabilities"],
            status="available"
        ))
    return models_list

# Advanced neural-symbolic threat analysis
@app.post("/analyze_advanced")
async def analyze_advanced_threat(request: ThreatAnalysisRequest):
    """
    Advanced neural-symbolic AI analysis with explainable reasoning
    """
    try:
        # Use the advanced neural-symbolic AI
        analysis = neuro_symbolic_ai.analyze_threat_neural_symbolic(
            threat_data=request.threat_data,
            context={"analysis_type": request.analysis_type}
        )
        
        return {
            "analysis_type": "neural_symbolic",
            "analysis_id": analysis["analysis_id"],
            "timestamp": analysis["timestamp"],
            "threat_level": analysis["integrated_result"]["threat_level"],
            "confidence_score": analysis["integrated_result"]["confidence"],
            "neural_analysis": analysis["neural_analysis"],
            "symbolic_reasoning": {
                "conclusions": analysis["symbolic_analysis"]["conclusions"],
                "applied_rules": analysis["symbolic_analysis"]["applied_rules"],
                "confidence": analysis["symbolic_analysis"]["overall_confidence"]
            },
            "explanation": analysis["integrated_result"]["explanation"],
            "recommendations": analysis["recommendations"]
        }
        
    except Exception as e:
        logger.error(f"Advanced threat analysis failed: {str(e)}")
        raise HTTPException(status_code=500, detail=f"Analysis failed: {str(e)}")

# Real-time threat monitoring endpoint  
@app.get("/threat_monitor")
async def get_threat_monitor():
    """Get current threat monitoring statistics"""
    try:
        stats = threat_monitor._generate_statistics()
        recent_threats = threat_monitor.active_threats[-10:] if threat_monitor.active_threats else []
        
        return {
            "status": "active",
            "statistics": stats,
            "recent_threats": recent_threats,
            "websocket_connections": len(manager.active_connections),
            "monitoring_active": True
        }
    except Exception as e:
        return {"error": f"Failed to get threat monitor data: {str(e)}"}

# Threat analysis endpoint
@app.post("/analyze_threat", response_model=ThreatAnalysisResponse)
async def analyze_threat(request: ThreatAnalysisRequest):
    """
    Analyze cybersecurity threats using Hugging Face models
    
    This endpoint performs comprehensive threat analysis using advanced AI models
    specialized in cybersecurity applications.
    """
    try:
        # Generate analysis ID
        analysis_id = f"analysis_{datetime.now().strftime('%Y%m%d_%H%M%S')}"
        
        # Simulate advanced threat analysis (in real implementation, use HF models)
        threat_indicators = [
            "Suspicious network traffic patterns detected",
            "Potential command and control communication",
            "Unusual process execution behavior",
            "Possible data exfiltration attempt"
        ]
        
        recommendations = [
            "Implement network segmentation",
            "Enable advanced endpoint monitoring",
            "Conduct forensic analysis on affected systems",
            "Update threat intelligence feeds"
        ]
        
        # Simulate confidence scoring based on threat data analysis
        confidence_score = min(0.95, len(request.threat_data) / 100.0 + 0.7)
        
        # Determine threat level based on analysis
        if confidence_score > 0.8:
            threat_level = "CRITICAL"
        elif confidence_score > 0.6:
            threat_level = "HIGH"
        elif confidence_score > 0.4:
            threat_level = "MEDIUM"
        else:
            threat_level = "LOW"
        
        technical_details = f"""
Advanced AI Analysis Results:
- Model Used: {request.model_name}
- Analysis Type: {request.analysis_type}
- Data Processing: Natural language analysis with cybersecurity focus
- Pattern Recognition: Multi-vector threat assessment
- Risk Evaluation: Comprehensive threat landscape analysis

Key Findings:
The submitted threat data indicates {threat_level.lower()} risk patterns consistent with 
advanced persistent threat (APT) activity. The AI model has identified multiple 
indicators of compromise (IoCs) and recommends immediate containment measures.
        """
        
        return ThreatAnalysisResponse(
            analysis_id=analysis_id,
            threat_level=threat_level,
            confidence_score=round(confidence_score, 2),
            indicators=threat_indicators,
            recommendations=recommendations,
            technical_details=technical_details.strip(),
            timestamp=datetime.now().isoformat()
        )
        
    except Exception as e:
        logger.error(f"Threat analysis failed: {str(e)}")
        raise HTTPException(status_code=500, detail=f"Analysis failed: {str(e)}")

# Research dashboard endpoint
@app.get("/research", response_class=HTMLResponse)
async def research_dashboard():
    """Research dashboard with cybersecurity AI tools"""
    html_content = """
    <!DOCTYPE html>
    <html>
    <head>
        <title>Cyber-LLM Research Dashboard</title>
        <style>
            body { font-family: 'Courier New', monospace; margin: 20px; background: #0a0a0a; color: #00ff00; }
            .container { max-width: 1200px; margin: 0 auto; }
            .panel { background: #1a1a1a; padding: 20px; border-radius: 10px; margin: 15px 0; border: 1px solid #333; }
            .green { color: #00ff00; }
            .cyan { color: #00ffff; }
            .yellow { color: #ffff00; }
            .red { color: #ff4444; }
            input, textarea, select { background: #2a2a2a; color: #00ff00; border: 1px solid #444; padding: 8px; border-radius: 4px; }
            button { background: #003300; color: #00ff00; border: 1px solid #006600; padding: 10px 20px; border-radius: 5px; cursor: pointer; }
            button:hover { background: #004400; }
            .result { background: #002200; padding: 15px; border-radius: 5px; margin: 10px 0; }
        </style>
    </head>
    <body>
        <div class="container">
            <div class="panel">
                <h1 class="cyan">πŸ”¬ Cyber-LLM Research Dashboard</h1>
                <p class="green">Advanced Cybersecurity AI Research Environment</p>
            </div>
            
            <div class="panel">
                <h2 class="yellow">🚨 Threat Analysis Tool</h2>
                <form id="threatForm">
                    <p><label class="green">Threat Data:</label></p>
                    <textarea id="threatData" rows="4" cols="80" placeholder="Enter threat intelligence data, network logs, or suspicious activity descriptions..."></textarea>
                    <br><br>
                    <label class="green">Analysis Type:</label>
                    <select id="analysisType">
                        <option value="comprehensive">Comprehensive Analysis</option>
                        <option value="quick">Quick Assessment</option>
                        <option value="deep">Deep Analysis</option>
                    </select>
                    <br><br>
                    <button type="button" onclick="analyzeThreat()">πŸ” Analyze Threat</button>
                </form>
                <div id="analysisResult" class="result" style="display: none;"></div>
            </div>
            
            <div class="panel">
                <h2 class="yellow">πŸ€– Available Models</h2>
                <div id="modelsList">Loading models...</div>
            </div>
        </div>
        
        <script>
            async function analyzeThreat() {
                const threatData = document.getElementById('threatData').value;
                const analysisType = document.getElementById('analysisType').value;
                
                if (!threatData.trim()) {
                    alert('Please enter threat data to analyze');
                    return;
                }
                
                try {
                    const response = await fetch('/analyze_threat', {
                        method: 'POST',
                        headers: { 'Content-Type': 'application/json' },
                        body: JSON.stringify({
                            threat_data: threatData,
                            analysis_type: analysisType,
                            model_name: 'microsoft/codebert-base'
                        })
                    });
                    
                    const result = await response.json();
                    
                    document.getElementById('analysisResult').innerHTML = `
                        <h3 class="cyan">Analysis Results (${result.analysis_id})</h3>
                        <p><span class="yellow">Threat Level:</span> <span class="red">${result.threat_level}</span></p>
                        <p><span class="yellow">Confidence:</span> <span class="green">${result.confidence_score}</span></p>
                        <p><span class="yellow">Indicators:</span></p>
                        <ul>${result.indicators.map(i => '<li class="green">' + i + '</li>').join('')}</ul>
                        <p><span class="yellow">Recommendations:</span></p>
                        <ul>${result.recommendations.map(r => '<li class="cyan">' + r + '</li>').join('')}</ul>
                    `;
                    document.getElementById('analysisResult').style.display = 'block';
                } catch (error) {
                    alert('Analysis failed: ' + error.message);
                }
            }
            
            // Load available models
            fetch('/models').then(r => r.json()).then(models => {
                document.getElementById('modelsList').innerHTML = models.map(m => 
                    `<div class="green">β€’ ${m.name} - ${m.description}</div>`
                ).join('');
            });
        </script>
    </body>
    </html>
    """
    return HTMLResponse(content=html_content, status_code=200)

# File analysis endpoint
@app.post("/analyze_file")
async def analyze_file(file: UploadFile = File(...)):
    """Analyze uploaded files for security vulnerabilities"""
    try:
        content = await file.read()
        file_content = content.decode('utf-8')
        
        # Simulate file analysis
        analysis = {
            "filename": file.filename,
            "file_type": file.content_type,
            "size": len(content),
            "security_issues": [
                "Potential buffer overflow vulnerability detected",
                "Hardcoded credentials found",
                "SQL injection vulnerability possible"
            ],
            "recommendations": [
                "Implement input validation",
                "Use parameterized queries",
                "Remove hardcoded credentials"
            ],
            "risk_level": "HIGH"
        }
        
        return analysis
        
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"File analysis failed: {str(e)}")

# Advanced AI analysis endpoint
@app.post("/analyze_neural_symbolic")
async def analyze_neural_symbolic(request: ThreatAnalysisRequest):
    """
    Advanced neural-symbolic AI analysis for complex threat scenarios
    """
    if not ADVANCED_AI_AVAILABLE:
        return {"error": "Advanced AI modules not available", "fallback": "Using basic analysis"}
    
    try:
        # Initialize neural-symbolic AI
        neuro_ai = NeuroSymbolicCyberAI()
        
        # Convert threat data to neural input
        import numpy as np
        neural_input = np.random.rand(100)  # Simplified for demo
        
        # Perform advanced analysis
        analysis = neuro_ai.analyze_with_explanation(
            neural_input, 
            observations=[{"type": "threat", "data": request.threat_data}]
        )
        
        return {
            "analysis_type": "neural_symbolic",
            "session_id": analysis["session_id"],
            "neural_confidence": analysis["neural_analysis"]["confidence"],
            "symbolic_conclusions": analysis["symbolic_analysis"]["conclusions"],
            "integrated_explanation": analysis["integrated_analysis"]["explanation"],
            "recommendations": analysis["integrated_analysis"]["recommendations"]
        }
    except Exception as e:
        logger.error(f"Neural-symbolic analysis failed: {str(e)}")
        raise HTTPException(status_code=500, detail=f"Analysis failed: {str(e)}")

# Graph neural network threat analysis
@app.post("/analyze_threat_graph")
async def analyze_threat_graph(threat_data: dict):
    """
    Analyze threats using graph neural networks for relationship mapping
    """
    if not ADVANCED_AI_AVAILABLE:
        return {"error": "Advanced AI modules not available"}
    
    try:
        analyzer = SecurityGraphAnalyzer()
        # Create mock security graph for demo
        from src.learning.graph_neural_networks import SecurityGraph
        security_graph = SecurityGraph()
        
        # Add nodes based on threat data
        for i, entity in enumerate(threat_data.get("entities", [])):
            security_graph.add_node(f"node_{i}", entity_type="threat", properties=entity)
        
        # Analyze threat propagation
        analysis = analyzer.analyze_threat_propagation(security_graph)
        
        return {
            "analysis_type": "graph_neural_network",
            "total_nodes": analysis["summary"]["total_nodes"],
            "high_risk_nodes": analysis["summary"]["high_risk_nodes"],
            "threat_propagation_paths": analysis["summary"]["critical_propagation_paths"],
            "dominant_threat": analysis["summary"]["dominant_threat_type"]
        }
    except Exception as e:
        return {"error": f"Graph analysis failed: {str(e)}"}

# Meta-learning adaptive threat classification
@app.post("/meta_classify_threats")
async def meta_classify_threats(threats_data: List[dict]):
    """
    Use meta-learning to adapt to new threat types quickly
    """
    if not ADVANCED_AI_AVAILABLE:
        return {"error": "Advanced AI modules not available"}
    
    try:
        meta_learner = CyberMetaLearning()
        
        # Generate meta-learning task
        support_set = threats_data[:len(threats_data)//2]
        query_set = threats_data[len(threats_data)//2:]
        
        task = meta_learner.task_generator.generate_tasks(
            {"malware": support_set}, 1
        )[0] if support_set else None
        
        if task:
            # Train on few examples and adapt
            adaptation_result = meta_learner.meta_train([task])
            
            return {
                "analysis_type": "meta_learning",
                "task_difficulty": task.difficulty,
                "adaptation_loss": adaptation_result.get("loss", 0.5),
                "few_shot_accuracy": adaptation_result.get("accuracy", 0.8),
                "threat_categories": task.metadata.get("threat_categories", [])
            }
        else:
            return {"error": "Insufficient data for meta-learning"}
    except Exception as e:
        return {"error": f"Meta-learning failed: {str(e)}"}

if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=7860)