File size: 12,115 Bytes
03839fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
"""
Simplified Neural-Symbolic AI for Hugging Face Space
Based on src/learning/neurosymbolic_ai.py
"""

import numpy as np
import json
from datetime import datetime
from typing import Dict, List, Any, Optional
import logging

class SimplifiedNeuroSymbolicAI:
    """Simplified neural-symbolic AI for cybersecurity analysis in HF Space"""
    
    def __init__(self):
        self.logger = logging.getLogger(__name__)
        
        # Cybersecurity knowledge rules (simplified)
        self.security_rules = {
            "malware_indicators": [
                "suspicious_process_execution",
                "network_communication_anomaly", 
                "file_modification_pattern",
                "registry_manipulation"
            ],
            "network_threats": [
                "port_scanning",
                "brute_force_attack",
                "ddos_pattern",
                "lateral_movement"
            ],
            "data_exfiltration": [
                "large_data_transfer",
                "encrypted_communication",
                "unusual_access_pattern",
                "external_connection"
            ]
        }
        
        # Threat severity mapping
        self.threat_severity = {
            "critical": {"score": 0.9, "action": "immediate_response"},
            "high": {"score": 0.7, "action": "urgent_investigation"},
            "medium": {"score": 0.5, "action": "monitor_closely"},
            "low": {"score": 0.3, "action": "routine_check"}
        }
    
    def analyze_threat_neural_symbolic(self, threat_data: str, 
                                     context: Optional[Dict] = None) -> Dict[str, Any]:
        """Perform neural-symbolic threat analysis"""
        
        analysis_id = f"ns_analysis_{datetime.now().strftime('%Y%m%d_%H%M%S')}"
        
        # Neural processing (simplified)
        neural_features = self._extract_neural_features(threat_data)
        
        # Symbolic reasoning
        symbolic_analysis = self._symbolic_reasoning(threat_data, neural_features)
        
        # Integration
        integrated_result = self._integrate_analysis(neural_features, symbolic_analysis)
        
        return {
            "analysis_id": analysis_id,
            "timestamp": datetime.now().isoformat(),
            "threat_data": threat_data,
            "neural_analysis": {
                "feature_extraction": neural_features,
                "confidence": neural_features.get("confidence", 0.8)
            },
            "symbolic_analysis": symbolic_analysis,
            "integrated_result": integrated_result,
            "recommendations": self._generate_recommendations(integrated_result)
        }
    
    def _extract_neural_features(self, threat_data: str) -> Dict[str, Any]:
        """Extract neural features from threat data"""
        
        # Simulate neural network feature extraction
        features = {
            "anomaly_score": min(0.9, len(threat_data) / 100.0 + 0.3),
            "semantic_features": [],
            "behavioral_patterns": [],
            "confidence": 0.8
        }
        
        # Pattern recognition
        threat_lower = threat_data.lower()
        
        if any(term in threat_lower for term in ["malware", "virus", "trojan", "backdoor"]):
            features["semantic_features"].append("malware_related")
            features["anomaly_score"] += 0.2
            
        if any(term in threat_lower for term in ["network", "scan", "port", "connection"]):
            features["semantic_features"].append("network_activity")
            features["anomaly_score"] += 0.1
            
        if any(term in threat_lower for term in ["data", "exfiltration", "transfer", "leak"]):
            features["semantic_features"].append("data_movement")
            features["anomaly_score"] += 0.3
        
        # Behavioral pattern analysis
        if "suspicious" in threat_lower:
            features["behavioral_patterns"].append("suspicious_behavior")
        if "anomal" in threat_lower:
            features["behavioral_patterns"].append("anomalous_activity")
        if "attack" in threat_lower:
            features["behavioral_patterns"].append("attack_pattern")
            
        features["anomaly_score"] = min(0.95, features["anomaly_score"])
        
        return features
    
    def _symbolic_reasoning(self, threat_data: str, neural_features: Dict) -> Dict[str, Any]:
        """Apply symbolic reasoning rules"""
        
        conclusions = []
        applied_rules = []
        confidence_scores = []
        
        threat_lower = threat_data.lower()
        
        # Rule 1: Malware detection
        if any(indicator in neural_features.get("semantic_features", []) for indicator in ["malware_related"]):
            conclusions.append({
                "rule": "malware_detection_rule",
                "conclusion": "Potential malware activity detected",
                "confidence": 0.85,
                "evidence": neural_features["semantic_features"]
            })
            applied_rules.append("malware_detection_rule")
            confidence_scores.append(0.85)
        
        # Rule 2: Network threat assessment
        if "network_activity" in neural_features.get("semantic_features", []):
            network_confidence = 0.7
            if any(term in threat_lower for term in ["scan", "brute", "ddos"]):
                network_confidence = 0.9
                
            conclusions.append({
                "rule": "network_threat_rule", 
                "conclusion": "Network-based threat activity identified",
                "confidence": network_confidence,
                "evidence": ["network_activity_patterns"]
            })
            applied_rules.append("network_threat_rule")
            confidence_scores.append(network_confidence)
        
        # Rule 3: Data exfiltration risk
        if "data_movement" in neural_features.get("semantic_features", []):
            conclusions.append({
                "rule": "data_exfiltration_rule",
                "conclusion": "Potential data exfiltration attempt detected",
                "confidence": 0.8,
                "evidence": ["unusual_data_transfer_patterns"]
            })
            applied_rules.append("data_exfiltration_rule")
            confidence_scores.append(0.8)
        
        # Rule 4: Behavioral anomaly
        if neural_features["anomaly_score"] > 0.7:
            conclusions.append({
                "rule": "behavioral_anomaly_rule",
                "conclusion": "High behavioral anomaly detected",
                "confidence": neural_features["anomaly_score"],
                "evidence": neural_features["behavioral_patterns"]
            })
            applied_rules.append("behavioral_anomaly_rule")
            confidence_scores.append(neural_features["anomaly_score"])
        
        return {
            "conclusions": conclusions,
            "applied_rules": applied_rules,
            "overall_confidence": np.mean(confidence_scores) if confidence_scores else 0.5,
            "reasoning_steps": len(conclusions)
        }
    
    def _integrate_analysis(self, neural_features: Dict, symbolic_analysis: Dict) -> Dict[str, Any]:
        """Integrate neural and symbolic analysis results"""
        
        # Calculate overall threat level
        neural_score = neural_features["anomaly_score"]
        symbolic_score = symbolic_analysis["overall_confidence"]
        
        integrated_score = (neural_score + symbolic_score) / 2
        
        # Determine threat level
        if integrated_score >= 0.8:
            threat_level = "CRITICAL"
            severity = "critical"
        elif integrated_score >= 0.6:
            threat_level = "HIGH" 
            severity = "high"
        elif integrated_score >= 0.4:
            threat_level = "MEDIUM"
            severity = "medium"
        else:
            threat_level = "LOW"
            severity = "low"
        
        return {
            "threat_level": threat_level,
            "severity": severity,
            "integrated_score": round(integrated_score, 3),
            "neural_contribution": round(neural_score, 3),
            "symbolic_contribution": round(symbolic_score, 3),
            "confidence": min(0.95, integrated_score),
            "explanation": self._generate_explanation(neural_features, symbolic_analysis, threat_level)
        }
    
    def _generate_explanation(self, neural_features: Dict, symbolic_analysis: Dict, threat_level: str) -> str:
        """Generate human-readable explanation"""
        
        explanation_parts = [
            f"πŸ” Analysis indicates {threat_level} threat level based on:",
            "",
            "🧠 Neural Analysis:",
            f"  β€’ Anomaly Score: {neural_features['anomaly_score']:.2f}",
            f"  β€’ Detected Features: {', '.join(neural_features.get('semantic_features', ['none']))}", 
            f"  β€’ Behavioral Patterns: {', '.join(neural_features.get('behavioral_patterns', ['none']))}",
            "",
            "πŸ”— Symbolic Reasoning:",
            f"  β€’ Rules Applied: {len(symbolic_analysis['applied_rules'])}",
            f"  β€’ Conclusions: {len(symbolic_analysis['conclusions'])}",
            f"  β€’ Confidence: {symbolic_analysis['overall_confidence']:.2f}",
        ]
        
        if symbolic_analysis["conclusions"]:
            explanation_parts.append("  β€’ Key Findings:")
            for conclusion in symbolic_analysis["conclusions"][:3]:
                explanation_parts.append(f"    - {conclusion['conclusion']} (confidence: {conclusion['confidence']:.2f})")
        
        return "\n".join(explanation_parts)
    
    def _generate_recommendations(self, integrated_result: Dict) -> List[str]:
        """Generate actionable security recommendations"""
        
        severity = integrated_result["severity"]
        threat_level = integrated_result["threat_level"]
        
        recommendations = []
        
        # Base recommendations by severity
        severity_info = self.threat_severity.get(severity, self.threat_severity["medium"])
        
        if severity == "critical":
            recommendations.extend([
                "🚨 IMMEDIATE ACTION REQUIRED",
                "β€’ Initiate incident response procedures",
                "β€’ Isolate affected systems immediately",
                "β€’ Contact security team and management",
                "β€’ Begin forensic data collection"
            ])
        elif severity == "high":
            recommendations.extend([
                "⚠️  URGENT INVESTIGATION NEEDED", 
                "β€’ Deploy additional monitoring on affected systems",
                "β€’ Implement network segmentation if possible",
                "β€’ Escalate to security analysts",
                "β€’ Review related security logs"
            ])
        elif severity == "medium":
            recommendations.extend([
                "πŸ” CLOSE MONITORING RECOMMENDED",
                "β€’ Increase logging and monitoring",
                "β€’ Schedule security review within 24 hours", 
                "β€’ Implement additional access controls",
                "β€’ Update threat intelligence feeds"
            ])
        else:
            recommendations.extend([
                "βœ… ROUTINE SECURITY MEASURES",
                "β€’ Continue normal monitoring", 
                "β€’ Document findings for future reference",
                "β€’ Regular security updates recommended"
            ])
        
        # Add specific recommendations based on analysis
        recommendations.append("\nπŸ›‘οΈ  SPECIFIC SECURITY MEASURES:")
        recommendations.extend([
            "β€’ Update antivirus and security signatures",
            "β€’ Review network access controls", 
            "β€’ Validate backup and recovery procedures",
            "β€’ Consider threat hunting activities"
        ])
        
        return recommendations

# Initialize global instance for the Space
neuro_symbolic_ai = SimplifiedNeuroSymbolicAI()