File size: 12,115 Bytes
03839fe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 |
"""
Simplified Neural-Symbolic AI for Hugging Face Space
Based on src/learning/neurosymbolic_ai.py
"""
import numpy as np
import json
from datetime import datetime
from typing import Dict, List, Any, Optional
import logging
class SimplifiedNeuroSymbolicAI:
"""Simplified neural-symbolic AI for cybersecurity analysis in HF Space"""
def __init__(self):
self.logger = logging.getLogger(__name__)
# Cybersecurity knowledge rules (simplified)
self.security_rules = {
"malware_indicators": [
"suspicious_process_execution",
"network_communication_anomaly",
"file_modification_pattern",
"registry_manipulation"
],
"network_threats": [
"port_scanning",
"brute_force_attack",
"ddos_pattern",
"lateral_movement"
],
"data_exfiltration": [
"large_data_transfer",
"encrypted_communication",
"unusual_access_pattern",
"external_connection"
]
}
# Threat severity mapping
self.threat_severity = {
"critical": {"score": 0.9, "action": "immediate_response"},
"high": {"score": 0.7, "action": "urgent_investigation"},
"medium": {"score": 0.5, "action": "monitor_closely"},
"low": {"score": 0.3, "action": "routine_check"}
}
def analyze_threat_neural_symbolic(self, threat_data: str,
context: Optional[Dict] = None) -> Dict[str, Any]:
"""Perform neural-symbolic threat analysis"""
analysis_id = f"ns_analysis_{datetime.now().strftime('%Y%m%d_%H%M%S')}"
# Neural processing (simplified)
neural_features = self._extract_neural_features(threat_data)
# Symbolic reasoning
symbolic_analysis = self._symbolic_reasoning(threat_data, neural_features)
# Integration
integrated_result = self._integrate_analysis(neural_features, symbolic_analysis)
return {
"analysis_id": analysis_id,
"timestamp": datetime.now().isoformat(),
"threat_data": threat_data,
"neural_analysis": {
"feature_extraction": neural_features,
"confidence": neural_features.get("confidence", 0.8)
},
"symbolic_analysis": symbolic_analysis,
"integrated_result": integrated_result,
"recommendations": self._generate_recommendations(integrated_result)
}
def _extract_neural_features(self, threat_data: str) -> Dict[str, Any]:
"""Extract neural features from threat data"""
# Simulate neural network feature extraction
features = {
"anomaly_score": min(0.9, len(threat_data) / 100.0 + 0.3),
"semantic_features": [],
"behavioral_patterns": [],
"confidence": 0.8
}
# Pattern recognition
threat_lower = threat_data.lower()
if any(term in threat_lower for term in ["malware", "virus", "trojan", "backdoor"]):
features["semantic_features"].append("malware_related")
features["anomaly_score"] += 0.2
if any(term in threat_lower for term in ["network", "scan", "port", "connection"]):
features["semantic_features"].append("network_activity")
features["anomaly_score"] += 0.1
if any(term in threat_lower for term in ["data", "exfiltration", "transfer", "leak"]):
features["semantic_features"].append("data_movement")
features["anomaly_score"] += 0.3
# Behavioral pattern analysis
if "suspicious" in threat_lower:
features["behavioral_patterns"].append("suspicious_behavior")
if "anomal" in threat_lower:
features["behavioral_patterns"].append("anomalous_activity")
if "attack" in threat_lower:
features["behavioral_patterns"].append("attack_pattern")
features["anomaly_score"] = min(0.95, features["anomaly_score"])
return features
def _symbolic_reasoning(self, threat_data: str, neural_features: Dict) -> Dict[str, Any]:
"""Apply symbolic reasoning rules"""
conclusions = []
applied_rules = []
confidence_scores = []
threat_lower = threat_data.lower()
# Rule 1: Malware detection
if any(indicator in neural_features.get("semantic_features", []) for indicator in ["malware_related"]):
conclusions.append({
"rule": "malware_detection_rule",
"conclusion": "Potential malware activity detected",
"confidence": 0.85,
"evidence": neural_features["semantic_features"]
})
applied_rules.append("malware_detection_rule")
confidence_scores.append(0.85)
# Rule 2: Network threat assessment
if "network_activity" in neural_features.get("semantic_features", []):
network_confidence = 0.7
if any(term in threat_lower for term in ["scan", "brute", "ddos"]):
network_confidence = 0.9
conclusions.append({
"rule": "network_threat_rule",
"conclusion": "Network-based threat activity identified",
"confidence": network_confidence,
"evidence": ["network_activity_patterns"]
})
applied_rules.append("network_threat_rule")
confidence_scores.append(network_confidence)
# Rule 3: Data exfiltration risk
if "data_movement" in neural_features.get("semantic_features", []):
conclusions.append({
"rule": "data_exfiltration_rule",
"conclusion": "Potential data exfiltration attempt detected",
"confidence": 0.8,
"evidence": ["unusual_data_transfer_patterns"]
})
applied_rules.append("data_exfiltration_rule")
confidence_scores.append(0.8)
# Rule 4: Behavioral anomaly
if neural_features["anomaly_score"] > 0.7:
conclusions.append({
"rule": "behavioral_anomaly_rule",
"conclusion": "High behavioral anomaly detected",
"confidence": neural_features["anomaly_score"],
"evidence": neural_features["behavioral_patterns"]
})
applied_rules.append("behavioral_anomaly_rule")
confidence_scores.append(neural_features["anomaly_score"])
return {
"conclusions": conclusions,
"applied_rules": applied_rules,
"overall_confidence": np.mean(confidence_scores) if confidence_scores else 0.5,
"reasoning_steps": len(conclusions)
}
def _integrate_analysis(self, neural_features: Dict, symbolic_analysis: Dict) -> Dict[str, Any]:
"""Integrate neural and symbolic analysis results"""
# Calculate overall threat level
neural_score = neural_features["anomaly_score"]
symbolic_score = symbolic_analysis["overall_confidence"]
integrated_score = (neural_score + symbolic_score) / 2
# Determine threat level
if integrated_score >= 0.8:
threat_level = "CRITICAL"
severity = "critical"
elif integrated_score >= 0.6:
threat_level = "HIGH"
severity = "high"
elif integrated_score >= 0.4:
threat_level = "MEDIUM"
severity = "medium"
else:
threat_level = "LOW"
severity = "low"
return {
"threat_level": threat_level,
"severity": severity,
"integrated_score": round(integrated_score, 3),
"neural_contribution": round(neural_score, 3),
"symbolic_contribution": round(symbolic_score, 3),
"confidence": min(0.95, integrated_score),
"explanation": self._generate_explanation(neural_features, symbolic_analysis, threat_level)
}
def _generate_explanation(self, neural_features: Dict, symbolic_analysis: Dict, threat_level: str) -> str:
"""Generate human-readable explanation"""
explanation_parts = [
f"π Analysis indicates {threat_level} threat level based on:",
"",
"π§ Neural Analysis:",
f" β’ Anomaly Score: {neural_features['anomaly_score']:.2f}",
f" β’ Detected Features: {', '.join(neural_features.get('semantic_features', ['none']))}",
f" β’ Behavioral Patterns: {', '.join(neural_features.get('behavioral_patterns', ['none']))}",
"",
"π Symbolic Reasoning:",
f" β’ Rules Applied: {len(symbolic_analysis['applied_rules'])}",
f" β’ Conclusions: {len(symbolic_analysis['conclusions'])}",
f" β’ Confidence: {symbolic_analysis['overall_confidence']:.2f}",
]
if symbolic_analysis["conclusions"]:
explanation_parts.append(" β’ Key Findings:")
for conclusion in symbolic_analysis["conclusions"][:3]:
explanation_parts.append(f" - {conclusion['conclusion']} (confidence: {conclusion['confidence']:.2f})")
return "\n".join(explanation_parts)
def _generate_recommendations(self, integrated_result: Dict) -> List[str]:
"""Generate actionable security recommendations"""
severity = integrated_result["severity"]
threat_level = integrated_result["threat_level"]
recommendations = []
# Base recommendations by severity
severity_info = self.threat_severity.get(severity, self.threat_severity["medium"])
if severity == "critical":
recommendations.extend([
"π¨ IMMEDIATE ACTION REQUIRED",
"β’ Initiate incident response procedures",
"β’ Isolate affected systems immediately",
"β’ Contact security team and management",
"β’ Begin forensic data collection"
])
elif severity == "high":
recommendations.extend([
"β οΈ URGENT INVESTIGATION NEEDED",
"β’ Deploy additional monitoring on affected systems",
"β’ Implement network segmentation if possible",
"β’ Escalate to security analysts",
"β’ Review related security logs"
])
elif severity == "medium":
recommendations.extend([
"π CLOSE MONITORING RECOMMENDED",
"β’ Increase logging and monitoring",
"β’ Schedule security review within 24 hours",
"β’ Implement additional access controls",
"β’ Update threat intelligence feeds"
])
else:
recommendations.extend([
"β
ROUTINE SECURITY MEASURES",
"β’ Continue normal monitoring",
"β’ Document findings for future reference",
"β’ Regular security updates recommended"
])
# Add specific recommendations based on analysis
recommendations.append("\nπ‘οΈ SPECIFIC SECURITY MEASURES:")
recommendations.extend([
"β’ Update antivirus and security signatures",
"β’ Review network access controls",
"β’ Validate backup and recovery procedures",
"β’ Consider threat hunting activities"
])
return recommendations
# Initialize global instance for the Space
neuro_symbolic_ai = SimplifiedNeuroSymbolicAI()
|