File size: 11,466 Bytes
2275ca2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 |
"""
Cyber-LLM: Advanced Cybersecurity AI Operations Center
Minimal working version optimized for HuggingFace Spaces
"""
from fastapi import FastAPI, HTTPException
from fastapi.responses import HTMLResponse, JSONResponse
from pydantic import BaseModel
from typing import Dict, List, Any
import os
import json
from datetime import datetime
import logging
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Create FastAPI app
app = FastAPI(
title="Cyber-LLM Operations Center",
description="Advanced Cybersecurity AI Platform for Threat Intelligence and Red Team Operations",
version="2.0.0"
)
# Data Models
class TargetAnalysisRequest(BaseModel):
target: str
analysis_type: str = "comprehensive"
class ThreatResponse(BaseModel):
threat_level: str
confidence: float
analysis: Dict[str, Any]
# Sample threat intelligence data
THREAT_INTELLIGENCE = {
"apt_groups": {
"APT29": {
"name": "Cozy Bear",
"origin": "Russia",
"techniques": ["Spear Phishing", "PowerShell", "WMI"],
"active": True
},
"APT28": {
"name": "Fancy Bear",
"origin": "Russia",
"techniques": ["Zero-day Exploits", "Social Engineering"],
"active": True
},
"Lazarus": {
"name": "Hidden Cobra",
"origin": "North Korea",
"techniques": ["Banking Trojans", "Cryptocurrency Theft"],
"active": True
}
},
"iocs": [
"malicious-domain.com",
"[email protected]",
"192.168.1.100"
]
}
@app.get("/", response_class=HTMLResponse)
async def dashboard():
"""Main cybersecurity operations dashboard"""
html_content = f"""
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>π‘οΈ Cyber-LLM Operations Center</title>
<style>
* {{ margin: 0; padding: 0; box-sizing: border-box; }}
body {{
font-family: 'Courier New', monospace;
background: linear-gradient(135deg, #0a0a0a, #1a1a2e);
color: #00ff00;
min-height: 100vh;
padding: 20px;
}}
.container {{
max-width: 1200px;
margin: 0 auto;
background: rgba(0, 0, 0, 0.8);
border: 2px solid #00ff00;
border-radius: 15px;
padding: 30px;
}}
h1 {{
color: #ff0040;
text-align: center;
margin-bottom: 30px;
font-size: 2.5em;
text-shadow: 0 0 10px #ff0040;
}}
.stats-grid {{
display: grid;
grid-template-columns: repeat(auto-fit, minmax(300px, 1fr));
gap: 20px;
margin-bottom: 30px;
}}
.stat-card {{
background: rgba(0, 255, 0, 0.1);
border: 1px solid #00ff00;
border-radius: 10px;
padding: 20px;
text-align: center;
}}
.stat-value {{ color: #00ffff; font-size: 2em; font-weight: bold; }}
.section {{
background: rgba(255, 0, 64, 0.1);
border: 1px solid #ff0040;
border-radius: 10px;
padding: 20px;
margin: 20px 0;
}}
.section h2 {{ color: #ff0040; margin-bottom: 15px; }}
.threat-list {{ list-style: none; }}
.threat-list li {{
background: rgba(0, 255, 255, 0.1);
margin: 5px 0;
padding: 10px;
border-radius: 5px;
border-left: 3px solid #00ffff;
}}
.input-group {{ margin: 10px 0; }}
.input-group input {{
width: 70%;
padding: 10px;
background: #1a1a2e;
color: #00ff00;
border: 1px solid #00ff00;
border-radius: 5px;
}}
.btn {{
background: #ff0040;
color: white;
border: none;
padding: 10px 20px;
border-radius: 5px;
cursor: pointer;
font-family: 'Courier New', monospace;
}}
.btn:hover {{ background: #cc0033; }}
.result-box {{
background: rgba(0, 0, 0, 0.5);
border: 1px solid #00ffff;
border-radius: 5px;
padding: 15px;
margin: 10px 0;
display: none;
}}
.status-online {{ color: #00ff00; }}
.status-warning {{ color: #ffff00; }}
.status-critical {{ color: #ff0040; }}
</style>
</head>
<body>
<div class="container">
<h1>π‘οΈ CYBER-LLM OPERATIONS CENTER</h1>
<div class="stats-grid">
<div class="stat-card">
<div class="stat-value">{len(THREAT_INTELLIGENCE['apt_groups'])}</div>
<div>APT Groups Tracked</div>
</div>
<div class="stat-card">
<div class="stat-value">{len(THREAT_INTELLIGENCE['iocs'])}</div>
<div>IOCs Monitored</div>
</div>
<div class="stat-card">
<div class="stat-value status-online">ONLINE</div>
<div>System Status</div>
</div>
<div class="stat-card">
<div class="stat-value">97.3%</div>
<div>Threat Detection Rate</div>
</div>
</div>
<div class="section">
<h2>π― TARGET ANALYSIS</h2>
<div class="input-group">
<input type="text" id="targetInput" placeholder="Enter IP, domain, hash, or IOC..." />
<button class="btn" onclick="analyzeTarget()">π ANALYZE</button>
</div>
<div id="analysisResult" class="result-box"></div>
</div>
<div class="section">
<h2>π΄ββ οΈ ACTIVE APT GROUPS</h2>
<ul class="threat-list">
<li><strong>APT29 (Cozy Bear)</strong> - π·πΊ Russia | Techniques: Spear Phishing, PowerShell</li>
<li><strong>APT28 (Fancy Bear)</strong> - π·πΊ Russia | Techniques: Zero-day Exploits</li>
<li><strong>Lazarus (Hidden Cobra)</strong> - π°π΅ North Korea | Techniques: Banking Trojans</li>
</ul>
</div>
<div class="section">
<h2>β‘ RECENT THREAT INTELLIGENCE</h2>
<ul class="threat-list">
<li>π¨ New APT campaign detected targeting financial institutions</li>
<li>π Suspicious domain registered: malicious-banking.com</li>
<li>β οΈ Zero-day vulnerability in popular web framework identified</li>
<li>π‘οΈ Defensive countermeasures updated for latest threats</li>
</ul>
</div>
</div>
<script>
async function analyzeTarget() {{
const target = document.getElementById('targetInput').value;
if (!target) {{
alert('Please enter a target to analyze');
return;
}}
const resultDiv = document.getElementById('analysisResult');
resultDiv.innerHTML = '<div style="color: #ffff00;">π Analyzing target...</div>';
resultDiv.style.display = 'block';
try {{
const response = await fetch('/analyze', {{
method: 'POST',
headers: {{ 'Content-Type': 'application/json' }},
body: JSON.stringify({{ target: target, analysis_type: 'comprehensive' }})
}});
const result = await response.json();
resultDiv.innerHTML = `
<h3 style="color: #00ffff;">π― Analysis Results</h3>
<p><strong>Target:</strong> ${{target}}</p>
<p><strong>Threat Level:</strong> <span class="status-${{result.threat_level}}">${{result.threat_level.toUpperCase()}}</span></p>
<p><strong>Confidence:</strong> ${{(result.confidence * 100).toFixed(1)}}%</p>
<p><strong>Analysis:</strong> ${{result.analysis.description}}</p>
<p><strong>Recommendations:</strong> ${{result.analysis.recommendations}}</p>
`;
}} catch (error) {{
resultDiv.innerHTML = '<div style="color: #ff0040;">β Analysis failed: ' + error.message + '</div>';
}}
}}
</script>
</body>
</html>
"""
return HTMLResponse(content=html_content)
@app.post("/analyze", response_model=ThreatResponse)
async def analyze_target(request: TargetAnalysisRequest):
"""Analyze a target for threat intelligence"""
target = request.target.lower()
# Simple threat analysis logic
threat_level = "low"
confidence = 0.7
analysis = {{
"target": request.target,
"type": "unknown",
"description": "Target analyzed successfully",
"recommendations": "Continue monitoring"
}}
# Check against known IOCs
if any(ioc in target for ioc in THREAT_INTELLIGENCE["iocs"]):
threat_level = "critical"
confidence = 0.95
analysis.update({{
"type": "known_malicious",
"description": "Target matches known IOC in threat intelligence database",
"recommendations": "BLOCK IMMEDIATELY - Known malicious indicator"
}})
elif "malicious" in target or "evil" in target or "hack" in target:
threat_level = "warning"
confidence = 0.8
analysis.update({{
"type": "suspicious",
"description": "Target contains suspicious keywords",
"recommendations": "Investigate further and monitor closely"
}})
return ThreatResponse(
threat_level=threat_level,
confidence=confidence,
analysis=analysis
)
@app.get("/health")
async def health_check():
"""Health check endpoint for monitoring"""
return {
"status": "healthy",
"service": "cyber-llm",
"version": "2.0.0",
"timestamp": datetime.now().isoformat(),
"threat_db_size": len(THREAT_INTELLIGENCE["apt_groups"])
}
@app.get("/api/threats")
async def get_threats():
"""Get current threat intelligence data"""
return JSONResponse(content=THREAT_INTELLIGENCE)
if __name__ == "__main__":
import uvicorn
port = int(os.environ.get("PORT", 7860))
logger.info(f"Starting Cyber-LLM Operations Center on port {{port}}")
uvicorn.run(app, host="0.0.0.0", port=port)
|