File size: 13,786 Bytes
23804b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
"""
Explainability Agent for Cyber-LLM
Provides rationale and explanation for agent decisions
"""

import json
import logging
from typing import Dict, List, Any, Optional
from datetime import datetime
import yaml

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

class ExplainabilityAgent:
    """
    Agent responsible for providing explainable rationales for decisions
    made by other agents in the Cyber-LLM system.
    """
    
    def __init__(self, config_path: Optional[str] = None):
        """Initialize the ExplainabilityAgent"""
        self.config = self._load_config(config_path)
        self.explanation_templates = self._load_explanation_templates()
        
    def _load_config(self, config_path: Optional[str]) -> Dict[str, Any]:
        """Load configuration for the explainability agent"""
        default_config = {
            "explanation_depth": "detailed",  # basic, detailed, comprehensive
            "include_risks": True,
            "include_mitigations": True,
            "include_alternatives": True,
            "format": "json"  # json, markdown, yaml
        }
        
        if config_path:
            try:
                with open(config_path, 'r') as f:
                    user_config = yaml.safe_load(f)
                default_config.update(user_config)
            except Exception as e:
                logger.warning(f"Could not load config from {config_path}: {e}")
                
        return default_config
    
    def _load_explanation_templates(self) -> Dict[str, str]:
        """Load explanation templates for different agent types"""
        return {
            "recon": """
            RECONNAISSANCE DECISION EXPLANATION:
            Action: {action}
            Target: {target}
            
            Justification:
            - {justification}
            
            Risk Assessment:
            - Detection Risk: {detection_risk}
            - Network Impact: {network_impact}
            - Time Investment: {time_investment}
            
            OPSEC Considerations:
            - {opsec_considerations}
            
            Alternative Approaches:
            - {alternatives}
            """,
            
            "c2": """
            C2 CHANNEL DECISION EXPLANATION:
            Channel Type: {channel_type}
            Configuration: {configuration}
            
            Justification:
            - {justification}
            
            Risk Assessment:
            - Stealth Level: {stealth_level}
            - Reliability: {reliability}
            - Bandwidth: {bandwidth}
            
            OPSEC Considerations:
            - {opsec_considerations}
            
            Backup Options:
            - {backup_options}
            """,
            
            "post_exploit": """
            POST-EXPLOITATION DECISION EXPLANATION:
            Action: {action}
            Method: {method}
            
            Justification:
            - {justification}
            
            Risk Assessment:
            - Detection Probability: {detection_probability}
            - System Impact: {system_impact}
            - Evidence Left: {evidence_left}
            
            OPSEC Considerations:
            - {opsec_considerations}
            
            Cleanup Required:
            - {cleanup_required}
            """
        }
    
    def explain_decision(self, agent_type: str, decision_data: Dict[str, Any]) -> Dict[str, Any]:
        """
        Generate explanation for an agent's decision
        
        Args:
            agent_type: Type of agent (recon, c2, post_exploit, etc.)
            decision_data: Data about the decision made
            
        Returns:
            Dictionary containing detailed explanation
        """
        try:
            explanation = {
                "timestamp": datetime.now().isoformat(),
                "agent_type": agent_type,
                "decision_id": decision_data.get("id", "unknown"),
                "explanation": self._generate_explanation(agent_type, decision_data),
                "risk_assessment": self._assess_risks(agent_type, decision_data),
                "alternatives": self._suggest_alternatives(agent_type, decision_data),
                "confidence_score": self._calculate_confidence(decision_data)
            }
            
            if self.config.get("include_mitigations", True):
                explanation["mitigations"] = self._suggest_mitigations(agent_type, decision_data)
                
            logger.info(f"Generated explanation for {agent_type} decision: {decision_data.get('id', 'unknown')}")
            return explanation
            
        except Exception as e:
            logger.error(f"Error generating explanation: {e}")
            return {
                "error": f"Failed to generate explanation: {str(e)}",
                "timestamp": datetime.now().isoformat(),
                "agent_type": agent_type
            }
    
    def _generate_explanation(self, agent_type: str, decision_data: Dict[str, Any]) -> str:
        """Generate the core explanation for the decision"""
        if agent_type == "recon":
            return self._explain_recon_decision(decision_data)
        elif agent_type == "c2":
            return self._explain_c2_decision(decision_data)
        elif agent_type == "post_exploit":
            return self._explain_post_exploit_decision(decision_data)
        else:
            return f"Decision made by {agent_type} agent based on available information."
    
    def _explain_recon_decision(self, decision_data: Dict[str, Any]) -> str:
        """Explain reconnaissance decisions"""
        action = decision_data.get("action", "unknown")
        target = decision_data.get("target", "unknown")
        
        explanations = {
            "nmap_scan": f"Initiated Nmap scan against {target} to identify open ports and services. This is a standard reconnaissance technique that provides essential information for attack planning.",
            "shodan_search": f"Performed Shodan search for {target} to gather passive intelligence about exposed services without direct interaction with the target.",
            "dns_enum": f"Conducted DNS enumeration for {target} to map the network infrastructure and identify potential attack vectors."
        }
        
        return explanations.get(action, f"Performed {action} against {target} as part of reconnaissance phase.")
    
    def _explain_c2_decision(self, decision_data: Dict[str, Any]) -> str:
        """Explain C2 channel decisions"""
        channel = decision_data.get("channel_type", "unknown")
        
        explanations = {
            "http": "Selected HTTP channel for C2 communication due to its ability to blend with normal web traffic and bypass many network filters.",
            "https": "Chose HTTPS channel for encrypted C2 communication, providing both stealth and security for command transmission.",
            "dns": "Implemented DNS tunneling for C2 to leverage a protocol that is rarely blocked and often unmonitored."
        }
        
        return explanations.get(channel, f"Established {channel} C2 channel based on network constraints and stealth requirements.")
    
    def _explain_post_exploit_decision(self, decision_data: Dict[str, Any]) -> str:
        """Explain post-exploitation decisions"""
        action = decision_data.get("action", "unknown")
        
        explanations = {
            "credential_dump": "Initiated credential dumping to harvest authentication materials for lateral movement and privilege escalation.",
            "lateral_movement": "Attempting lateral movement to expand access within the target network and reach high-value assets.",
            "persistence": "Establishing persistence mechanisms to maintain access even after system reboots or security updates."
        }
        
        return explanations.get(action, f"Executed {action} to advance the attack chain and achieve mission objectives.")
    
    def _assess_risks(self, agent_type: str, decision_data: Dict[str, Any]) -> Dict[str, str]:
        """Assess risks associated with the decision"""
        risk_factors = {
            "detection_risk": "medium",
            "system_impact": "low",
            "evidence_trail": "minimal",
            "network_noise": "low"
        }
        
        # Adjust risk factors based on agent type and action
        if agent_type == "recon":
            action = decision_data.get("action", "")
            if "aggressive" in action.lower() or "fast" in action.lower():
                risk_factors["detection_risk"] = "high"
                risk_factors["network_noise"] = "high"
                
        elif agent_type == "post_exploit":
            action = decision_data.get("action", "")
            if "dump" in action.lower() or "extract" in action.lower():
                risk_factors["detection_risk"] = "high"
                risk_factors["system_impact"] = "medium"
                risk_factors["evidence_trail"] = "significant"
        
        return risk_factors
    
    def _suggest_alternatives(self, agent_type: str, decision_data: Dict[str, Any]) -> List[str]:
        """Suggest alternative approaches"""
        alternatives = []
        
        if agent_type == "recon":
            alternatives = [
                "Use passive reconnaissance techniques instead of active scanning",
                "Employ slower scan rates to reduce detection probability",
                "Utilize third-party intelligence sources for initial reconnaissance"
            ]
        elif agent_type == "c2":
            alternatives = [
                "Consider domain fronting techniques for additional stealth",
                "Implement multiple fallback C2 channels",
                "Use legitimate cloud services as C2 infrastructure"
            ]
        elif agent_type == "post_exploit":
            alternatives = [
                "Use living-off-the-land techniques instead of custom tools",
                "Implement time delays between actions to avoid pattern detection",
                "Utilize legitimate administrative tools for post-exploitation activities"
            ]
            
        return alternatives
    
    def _suggest_mitigations(self, agent_type: str, decision_data: Dict[str, Any]) -> List[str]:
        """Suggest risk mitigation strategies"""
        mitigations = [
            "Monitor network traffic for anomalous patterns",
            "Implement rate limiting to slow down automated attacks",
            "Deploy behavioral analysis tools to detect suspicious activities",
            "Maintain updated incident response procedures"
        ]
        
        return mitigations
    
    def _calculate_confidence(self, decision_data: Dict[str, Any]) -> float:
        """Calculate confidence score for the decision"""
        # Simple confidence calculation based on available data
        factors = []
        
        if decision_data.get("target"):
            factors.append(0.2)
        if decision_data.get("action"):
            factors.append(0.3)
        if decision_data.get("parameters"):
            factors.append(0.2)
        if decision_data.get("context"):
            factors.append(0.3)
            
        return min(sum(factors), 1.0)
    
    def format_explanation(self, explanation: Dict[str, Any], format_type: str = "json") -> str:
        """Format explanation in the specified format"""
        if format_type == "json":
            return json.dumps(explanation, indent=2)
        elif format_type == "yaml":
            return yaml.dump(explanation, default_flow_style=False)
        elif format_type == "markdown":
            return self._format_as_markdown(explanation)
        else:
            return str(explanation)
    
    def _format_as_markdown(self, explanation: Dict[str, Any]) -> str:
        """Format explanation as markdown"""
        md = f"""
# Decision Explanation Report

**Agent Type**: {explanation.get('agent_type', 'Unknown')}  
**Decision ID**: {explanation.get('decision_id', 'Unknown')}  
**Timestamp**: {explanation.get('timestamp', 'Unknown')}  
**Confidence Score**: {explanation.get('confidence_score', 0.0):.2f}

## Explanation
{explanation.get('explanation', 'No explanation available')}

## Risk Assessment
"""
        
        risks = explanation.get('risk_assessment', {})
        for risk, level in risks.items():
            md += f"- **{risk.replace('_', ' ').title()}**: {level}\n"
        
        if explanation.get('alternatives'):
            md += "\n## Alternative Approaches\n"
            for alt in explanation['alternatives']:
                md += f"- {alt}\n"
        
        if explanation.get('mitigations'):
            md += "\n## Suggested Mitigations\n"
            for mit in explanation['mitigations']:
                md += f"- {mit}\n"
        
        return md

# Example usage and testing
if __name__ == "__main__":
    # Initialize the explainability agent
    explainer = ExplainabilityAgent()
    
    # Example recon decision
    recon_decision = {
        "id": "recon_001",
        "action": "nmap_scan",
        "target": "192.168.1.1-100",
        "parameters": {
            "scan_type": "TCP SYN",
            "ports": "1-1000",
            "timing": "T3"
        },
        "context": "Initial network reconnaissance"
    }
    
    # Generate explanation
    explanation = explainer.explain_decision("recon", recon_decision)
    
    # Format and display
    print("JSON Format:")
    print(explainer.format_explanation(explanation, "json"))
    
    print("\nMarkdown Format:")
    print(explainer.format_explanation(explanation, "markdown"))