File size: 21,158 Bytes
23804b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
"""
Cyber-LLM Agent Orchestrator

Main orchestration engine for coordinating multi-agent red team operations.
Manages workflow execution, safety checks, and human-in-the-loop approvals.

Author: Muzan Sano
Email: [email protected]
"""

import json
import logging
import asyncio
import yaml
from typing import Dict, List, Any, Optional, Type
from dataclasses import dataclass
from datetime import datetime
from pathlib import Path

# Import agents
from .recon_agent import ReconAgent, ReconRequest
from .c2_agent import C2Agent, C2Request
from .post_exploit_agent import PostExploitAgent, PostExploitRequest
from .safety_agent import SafetyAgent, SafetyRequest
from .explainability_agent import ExplainabilityAgent, ExplainabilityRequest

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

@dataclass
class OperationContext:
    """Context for red team operation."""
    operation_id: str
    target: str
    objectives: List[str]
    constraints: Dict[str, Any]
    approval_required: bool = True
    stealth_mode: bool = True
    max_duration: int = 14400  # 4 hours
    
@dataclass
class AgentResult:
    """Result from agent execution."""
    agent_name: str
    success: bool
    data: Dict[str, Any]
    execution_time: float
    risk_score: float
    errors: List[str] = None

class RedTeamOrchestrator:
    """
    Advanced orchestrator for coordinating multi-agent red team operations.
    Implements safety checks, human approval workflows, and operational security.
    """
    
    def __init__(self, config_path: Optional[str] = None):
        self.config = self._load_config(config_path)
        self.agents = self._initialize_agents()
        self.workflows = self._load_workflows()
        self.operation_history = []
        
    def _load_config(self, config_path: Optional[str]) -> Dict[str, Any]:
        """Load orchestrator configuration."""
        if config_path:
            with open(config_path, 'r') as f:
                return yaml.safe_load(f)
        return {
            "max_parallel_agents": 3,
            "safety_threshold": 0.7,
            "require_human_approval": True,
            "log_all_operations": True,
            "auto_cleanup": True
        }
    
    def _initialize_agents(self) -> Dict[str, Any]:
        """Initialize all available agents."""
        return {
            "recon": ReconAgent(),
            "c2": C2Agent(),
            "post_exploit": PostExploitAgent(),
            "safety": SafetyAgent(),
            "explainability": ExplainabilityAgent()
        }
    
    def _load_workflows(self) -> Dict[str, Any]:
        """Load predefined workflow templates."""
        return {
            "standard_red_team": {
                "name": "Standard Red Team Assessment",
                "description": "Full red team engagement workflow",
                "phases": [
                    {
                        "name": "reconnaissance",
                        "agents": ["recon"],
                        "parallel": False,
                        "safety_check": True,
                        "human_approval": True
                    },
                    {
                        "name": "initial_access",
                        "agents": ["c2"],
                        "parallel": False,
                        "safety_check": True,
                        "human_approval": True,
                        "depends_on": ["reconnaissance"]
                    },
                    {
                        "name": "post_exploitation",
                        "agents": ["post_exploit"],
                        "parallel": False,
                        "safety_check": True,
                        "human_approval": True,
                        "depends_on": ["initial_access"]
                    }
                ]
            },
            "stealth_assessment": {
                "name": "Stealth Red Team Assessment",
                "description": "Low-detection red team workflow",
                "phases": [
                    {
                        "name": "passive_recon",
                        "agents": ["recon"],
                        "parallel": False,
                        "safety_check": True,
                        "human_approval": False,
                        "config_overrides": {"scan_type": "passive"}
                    },
                    {
                        "name": "targeted_exploitation",
                        "agents": ["c2", "post_exploit"],
                        "parallel": True,
                        "safety_check": True,
                        "human_approval": True,
                        "depends_on": ["passive_recon"]
                    }
                ]
            },
            "credential_focused": {
                "name": "Credential Harvesting Focus",
                "description": "Credential-focused assessment workflow",
                "phases": [
                    {
                        "name": "initial_recon",
                        "agents": ["recon"],
                        "parallel": False,
                        "safety_check": True,
                        "human_approval": False
                    },
                    {
                        "name": "credential_harvest",
                        "agents": ["post_exploit"],
                        "parallel": False,
                        "safety_check": True,
                        "human_approval": True,
                        "config_overrides": {"objectives": ["credential_harvest"]},
                        "depends_on": ["initial_recon"]
                    }
                ]
            }
        }
    
    async def safety_check(self, agent_name: str, planned_actions: Dict[str, Any]) -> Dict[str, Any]:
        """
        Perform safety and OPSEC compliance check.
        
        # HUMAN_APPROVAL_REQUIRED: Safety checks require human oversight
        """
        logger.info(f"Performing safety check for {agent_name}")
        
        safety_agent = self.agents["safety"]
        safety_result = await safety_agent.evaluate_actions(planned_actions)
        
        # Check against safety threshold
        if safety_result["risk_score"] > self.config["safety_threshold"]:
            logger.warning(f"High risk detected for {agent_name}: {safety_result['risk_score']}")
            safety_result["approved"] = False
            safety_result["reason"] = "Risk score exceeds safety threshold"
        else:
            safety_result["approved"] = True
            
        return safety_result
    
    async def request_human_approval(self, agent_name: str, planned_actions: Dict[str, Any], 
                                   safety_result: Dict[str, Any]) -> bool:
        """
        Request human approval for high-risk operations.
        
        # HUMAN_APPROVAL_REQUIRED: This function handles human approval workflow
        """
        print(f"\n{'='*60}")
        print(f"HUMAN APPROVAL REQUIRED - {agent_name.upper()}")
        print(f"{'='*60}")
        
        print(f"Risk Score: {safety_result.get('risk_score', 'Unknown')}")
        print(f"Risk Level: {safety_result.get('risk_level', 'Unknown')}")
        
        if safety_result.get('risks'):
            print("\nIdentified Risks:")
            for risk in safety_result['risks']:
                print(f"  - {risk}")
                
        if safety_result.get('mitigations'):
            print("\nRecommended Mitigations:")
            for mitigation in safety_result['mitigations']:
                print(f"  - {mitigation}")
                
        print(f"\nPlanned Actions Summary:")
        print(json.dumps(planned_actions, indent=2))
        
        print(f"\n{'='*60}")
        
        # In a real implementation, this would integrate with a proper approval system
        while True:
            response = input("Approve this operation? [y/N/details]: ").lower().strip()
            
            if response in ['y', 'yes']:
                logger.info(f"Human approval granted for {agent_name}")
                return True
            elif response in ['n', 'no', '']:
                logger.info(f"Human approval denied for {agent_name}")
                return False
            elif response == 'details':
                print("\nDetailed Action Plan:")
                print(json.dumps(planned_actions, indent=2))
            else:
                print("Please enter 'y' for yes, 'n' for no, or 'details' for more information")
    
    async def execute_agent(self, agent_name: str, context: OperationContext, 
                          config_overrides: Optional[Dict[str, Any]] = None) -> AgentResult:
        """Execute a single agent with safety checks and approval workflow."""
        start_time = datetime.now()
        
        try:
            agent = self.agents[agent_name]
            
            # Create agent-specific request
            if agent_name == "recon":
                request = ReconRequest(
                    target=context.target,
                    scan_type=config_overrides.get("scan_type", "stealth") if config_overrides else "stealth",
                    stealth_mode=context.stealth_mode
                )
                planned_actions = {
                    "agent": agent_name,
                    "target": context.target,
                    "scan_type": request.scan_type
                }
                
            elif agent_name == "c2":
                request = C2Request(
                    payload_type="powershell",
                    target_environment="corporate",  # Could be derived from recon
                    network_constraints=context.constraints.get("network", {}),
                    stealth_level="high" if context.stealth_mode else "medium"
                )
                planned_actions = {
                    "agent": agent_name,
                    "payload_type": request.payload_type,
                    "stealth_level": request.stealth_level
                }
                
            elif agent_name == "post_exploit":
                request = PostExploitRequest(
                    target_system=context.target,
                    access_level="user",  # Could be updated based on previous results
                    objectives=config_overrides.get("objectives", context.objectives) if config_overrides else context.objectives,
                    constraints=context.constraints,
                    stealth_mode=context.stealth_mode
                )
                planned_actions = {
                    "agent": agent_name,
                    "target": context.target,
                    "objectives": request.objectives
                }
            
            else:
                raise ValueError(f"Unknown agent: {agent_name}")
            
            # Safety check
            if context.approval_required:
                safety_result = await self.safety_check(agent_name, planned_actions)
                
                if not safety_result["approved"]:
                    return AgentResult(
                        agent_name=agent_name,
                        success=False,
                        data={"error": "Failed safety check", "safety_result": safety_result},
                        execution_time=0,
                        risk_score=safety_result.get("risk_score", 1.0),
                        errors=["Safety check failed"]
                    )
                
                # Request human approval if required
                if self.config["require_human_approval"]:
                    approved = await self.request_human_approval(agent_name, planned_actions, safety_result)
                    if not approved:
                        return AgentResult(
                            agent_name=agent_name,
                            success=False,
                            data={"error": "Human approval denied"},
                            execution_time=0,
                            risk_score=safety_result.get("risk_score", 1.0),
                            errors=["Human approval denied"]
                        )
            
            # Execute agent
            logger.info(f"Executing {agent_name} agent")
            
            if agent_name == "recon":
                result = agent.execute_reconnaissance(request)
            elif agent_name == "c2":
                result = agent.execute_c2_setup(request)
            elif agent_name == "post_exploit":
                result = agent.execute_post_exploitation(request)
            
            execution_time = (datetime.now() - start_time).total_seconds()
            
            # Extract risk score from result
            risk_score = 0.0
            if hasattr(result, 'risk_assessment') and result.risk_assessment:
                risk_score = result.risk_assessment.get('risk_score', 0.0)
            
            return AgentResult(
                agent_name=agent_name,
                success=True,
                data=result.dict() if hasattr(result, 'dict') else result,
                execution_time=execution_time,
                risk_score=risk_score
            )
            
        except Exception as e:
            execution_time = (datetime.now() - start_time).total_seconds()
            logger.error(f"Error executing {agent_name}: {str(e)}")
            
            return AgentResult(
                agent_name=agent_name,
                success=False,
                data={"error": str(e)},
                execution_time=execution_time,
                risk_score=1.0,
                errors=[str(e)]
            )
    
    async def execute_workflow(self, workflow_name: str, context: OperationContext) -> Dict[str, Any]:
        """
        Execute a complete red team workflow.
        
        # HUMAN_APPROVAL_REQUIRED: Workflow execution requires oversight
        """
        if workflow_name not in self.workflows:
            raise ValueError(f"Unknown workflow: {workflow_name}")
        
        workflow = self.workflows[workflow_name]
        logger.info(f"Starting workflow: {workflow['name']}")
        
        operation_start = datetime.now()
        results = {}
        phase_results = {}
        
        try:
            for phase in workflow["phases"]:
                phase_name = phase["name"]
                logger.info(f"Executing phase: {phase_name}")
                
                # Check dependencies
                if "depends_on" in phase:
                    for dependency in phase["depends_on"]:
                        if dependency not in phase_results or not phase_results[dependency]["success"]:
                            logger.error(f"Phase {phase_name} dependency {dependency} not satisfied")
                            phase_results[phase_name] = {
                                "success": False,
                                "error": f"Dependency {dependency} not satisfied"
                            }
                            continue
                
                # Execute agents in phase
                if phase.get("parallel", False):
                    # Execute agents in parallel
                    tasks = []
                    for agent_name in phase["agents"]:
                        config_overrides = phase.get("config_overrides")
                        task = self.execute_agent(agent_name, context, config_overrides)
                        tasks.append(task)
                    
                    agent_results = await asyncio.gather(*tasks)
                else:
                    # Execute agents sequentially
                    agent_results = []
                    for agent_name in phase["agents"]:
                        config_overrides = phase.get("config_overrides")
                        result = await self.execute_agent(agent_name, context, config_overrides)
                        agent_results.append(result)
                
                # Process phase results
                phase_success = all(result.success for result in agent_results)
                phase_results[phase_name] = {
                    "success": phase_success,
                    "agents": {result.agent_name: result for result in agent_results},
                    "execution_time": sum(result.execution_time for result in agent_results),
                    "max_risk_score": max(result.risk_score for result in agent_results) if agent_results else 0.0
                }
                
                # Update context with results for next phase
                for result in agent_results:
                    if result.success and result.agent_name == "recon":
                        # Update context with reconnaissance findings
                        if "nmap" in result.data:
                            context.constraints["discovered_services"] = result.data.get("nmap", [])
                
                logger.info(f"Phase {phase_name} completed: {'SUCCESS' if phase_success else 'FAILED'}")
        
        except Exception as e:
            logger.error(f"Workflow execution failed: {str(e)}")
            phase_results["error"] = str(e)
        
        # Generate final results
        operation_time = (datetime.now() - operation_start).total_seconds()
        overall_success = all(phase["success"] for phase in phase_results.values() if isinstance(phase, dict) and "success" in phase)
        
        results = {
            "operation_id": context.operation_id,
            "workflow": workflow_name,
            "target": context.target,
            "success": overall_success,
            "execution_time": operation_time,
            "phases": phase_results,
            "timestamp": operation_start.isoformat(),
            "context": {
                "objectives": context.objectives,
                "stealth_mode": context.stealth_mode,
                "approval_required": context.approval_required
            }
        }
        
        # Store in operation history
        self.operation_history.append(results)
        
        logger.info(f"Workflow {workflow_name} completed: {'SUCCESS' if overall_success else 'FAILED'}")
        return results
    
    def generate_operation_report(self, operation_results: Dict[str, Any]) -> str:
        """Generate comprehensive operation report."""
        explainability_agent = self.agents["explainability"]
        return explainability_agent.generate_operation_report(operation_results)
    
    async def cleanup_operation(self, operation_id: str):
        """Cleanup resources and artifacts from operation."""
        logger.info(f"Cleaning up operation: {operation_id}")
        
        # In a real implementation, this would:
        # - Remove temporary files
        # - Close network connections
        # - Remove persistence mechanisms
        # - Clear logs if required
        
        logger.info(f"Cleanup completed for operation: {operation_id}")

def main():
    """CLI interface for Red Team Orchestrator."""
    import argparse
    import uuid
    
    parser = argparse.ArgumentParser(description="Cyber-LLM Red Team Orchestrator")
    parser.add_argument("--workflow", required=True, help="Workflow to execute")
    parser.add_argument("--target", required=True, help="Target for assessment")
    parser.add_argument("--objectives", nargs="+", default=["reconnaissance", "initial_access"],
                       help="Operation objectives")
    parser.add_argument("--stealth", action="store_true", help="Enable stealth mode")
    parser.add_argument("--no-approval", action="store_true", help="Skip human approval")
    parser.add_argument("--config", help="Path to configuration file")
    parser.add_argument("--output", help="Output file for results")
    
    args = parser.parse_args()
    
    async def run_operation():
        # Initialize orchestrator
        orchestrator = RedTeamOrchestrator(config_path=args.config)
        
        # Create operation context
        context = OperationContext(
            operation_id=str(uuid.uuid4()),
            target=args.target,
            objectives=args.objectives,
            constraints={},
            approval_required=not args.no_approval,
            stealth_mode=args.stealth
        )
        
        # Execute workflow
        results = await orchestrator.execute_workflow(args.workflow, context)
        
        # Generate report
        report = orchestrator.generate_operation_report(results)
        
        # Output results
        output_data = {
            "results": results,
            "report": report
        }
        
        if args.output:
            with open(args.output, 'w') as f:
                json.dump(output_data, f, indent=2)
            print(f"Operation results saved to {args.output}")
        else:
            print(json.dumps(output_data, indent=2))
        
        # Cleanup
        await orchestrator.cleanup_operation(context.operation_id)
    
    # Run the async operation
    asyncio.run(run_operation())

if __name__ == "__main__":
    main()