File size: 41,990 Bytes
23804b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 |
"""
Code Review and Analysis Suite for Cyber-LLM
Advanced static analysis, security review, and optimization identification
Author: Muzan Sano <[email protected]>
"""
import ast
import re
import os
import json
import asyncio
import logging
from pathlib import Path
from typing import Dict, List, Any, Optional, Set, Tuple
from dataclasses import dataclass, field
from datetime import datetime
import subprocess
from collections import defaultdict, Counter
# Security analysis imports
import bandit
from bandit.core.config import BanditConfig
from bandit.core.manager import BanditManager
# Code quality imports
try:
import pylint.lint
import flake8.api.legacy as flake8
from mypy import api as mypy_api
except ImportError:
print("Install code quality tools: pip install pylint flake8 mypy")
@dataclass
class CodeIssue:
"""Represents a code issue found during analysis"""
file_path: str
line_number: int
severity: str # critical, high, medium, low, info
issue_type: str # security, performance, maintainability, style, bug
description: str
recommendation: str
confidence: float = 1.0
cwe_id: Optional[str] = None # Common Weakness Enumeration ID
@dataclass
class ReviewResults:
"""Complete code review results"""
total_files_analyzed: int
total_lines_analyzed: int
issues: List[CodeIssue] = field(default_factory=list)
metrics: Dict[str, Any] = field(default_factory=dict)
security_score: float = 0.0
maintainability_score: float = 0.0
performance_score: float = 0.0
overall_score: float = 0.0
class SecurityAnalyzer:
"""Advanced security analysis for cybersecurity applications"""
def __init__(self):
self.logger = logging.getLogger("security_analyzer")
# Custom security patterns for cybersecurity tools
self.security_patterns = {
"hardcoded_credentials": [
r"password\s*=\s*['\"][^'\"]{3,}['\"]",
r"api_key\s*=\s*['\"][^'\"]{10,}['\"]",
r"secret\s*=\s*['\"][^'\"]{8,}['\"]",
r"token\s*=\s*['\"][^'\"]{16,}['\"]"
],
"command_injection": [
r"os\.system\s*\(",
r"subprocess\.call\s*\(",
r"subprocess\.run\s*\(",
r"eval\s*\(",
r"exec\s*\("
],
"sql_injection": [
r"execute\s*\(\s*['\"].*%s.*['\"]",
r"cursor\.execute\s*\(\s*[f]?['\"].*\{.*\}.*['\"]"
],
"path_traversal": [
r"open\s*\(\s*.*\+.*\)",
r"file\s*\(\s*.*\+.*\)",
r"\.\./"
],
"insecure_random": [
r"random\.random\(\)",
r"random\.choice\(",
r"random\.randint\("
]
}
async def analyze_security(self, file_paths: List[str]) -> List[CodeIssue]:
"""Comprehensive security analysis"""
security_issues = []
for file_path in file_paths:
if not file_path.endswith('.py'):
continue
self.logger.info(f"Security analysis: {file_path}")
try:
# Read file content
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
# Pattern-based security analysis
pattern_issues = await self._analyze_security_patterns(file_path, content)
security_issues.extend(pattern_issues)
# AST-based security analysis
ast_issues = await self._analyze_ast_security(file_path, content)
security_issues.extend(ast_issues)
# Bandit integration for comprehensive security scanning
bandit_issues = await self._run_bandit_analysis(file_path)
security_issues.extend(bandit_issues)
except Exception as e:
self.logger.error(f"Error analyzing {file_path}: {str(e)}")
security_issues.append(CodeIssue(
file_path=file_path,
line_number=0,
severity="medium",
issue_type="security",
description=f"Analysis error: {str(e)}",
recommendation="Manual review required"
))
return security_issues
async def _analyze_security_patterns(self, file_path: str, content: str) -> List[CodeIssue]:
"""Pattern-based security vulnerability detection"""
issues = []
lines = content.split('\n')
for category, patterns in self.security_patterns.items():
for pattern in patterns:
for line_num, line in enumerate(lines, 1):
if re.search(pattern, line, re.IGNORECASE):
severity, recommendation = self._get_security_severity(category, line)
issues.append(CodeIssue(
file_path=file_path,
line_number=line_num,
severity=severity,
issue_type="security",
description=f"Potential {category.replace('_', ' ')}: {line.strip()}",
recommendation=recommendation,
confidence=0.8
))
return issues
async def _analyze_ast_security(self, file_path: str, content: str) -> List[CodeIssue]:
"""AST-based security analysis for complex patterns"""
issues = []
try:
tree = ast.parse(content)
class SecurityVisitor(ast.NodeVisitor):
def __init__(self):
self.issues = []
def visit_Call(self, node):
# Check for dangerous function calls
if isinstance(node.func, ast.Name):
func_name = node.func.id
if func_name in ['eval', 'exec']:
self.issues.append(CodeIssue(
file_path=file_path,
line_number=node.lineno,
severity="critical",
issue_type="security",
description=f"Dangerous function call: {func_name}",
recommendation="Avoid using eval/exec, use safer alternatives",
cwe_id="CWE-94"
))
elif isinstance(node.func, ast.Attribute):
if (isinstance(node.func.value, ast.Name) and
node.func.value.id == 'os' and
node.func.attr == 'system'):
self.issues.append(CodeIssue(
file_path=file_path,
line_number=node.lineno,
severity="high",
issue_type="security",
description="Command injection risk: os.system()",
recommendation="Use subprocess with shell=False",
cwe_id="CWE-78"
))
self.generic_visit(node)
def visit_Import(self, node):
for alias in node.names:
if alias.name in ['pickle', 'cPickle']:
self.issues.append(CodeIssue(
file_path=file_path,
line_number=node.lineno,
severity="medium",
issue_type="security",
description="Insecure deserialization: pickle import",
recommendation="Use json or safer serialization methods",
cwe_id="CWE-502"
))
self.generic_visit(node)
visitor = SecurityVisitor()
visitor.visit(tree)
issues.extend(visitor.issues)
except SyntaxError as e:
issues.append(CodeIssue(
file_path=file_path,
line_number=e.lineno or 0,
severity="high",
issue_type="security",
description=f"Syntax error prevents security analysis: {str(e)}",
recommendation="Fix syntax errors before security analysis"
))
return issues
async def _run_bandit_analysis(self, file_path: str) -> List[CodeIssue]:
"""Run Bandit security scanner"""
issues = []
try:
# Configure Bandit
config = BanditConfig()
manager = BanditManager(config, 'file')
manager.discover_files([file_path])
manager.run_tests()
# Convert Bandit results to CodeIssue format
for result in manager.get_issue_list():
issues.append(CodeIssue(
file_path=result.filename,
line_number=result.lineno,
severity=result.severity,
issue_type="security",
description=result.text,
recommendation=f"Bandit {result.test_id}: {result.text}",
confidence=self._convert_bandit_confidence(result.confidence),
cwe_id=getattr(result, 'cwe_id', None)
))
except Exception as e:
self.logger.warning(f"Bandit analysis failed for {file_path}: {str(e)}")
return issues
def _get_security_severity(self, category: str, line: str) -> Tuple[str, str]:
"""Get severity and recommendation for security issue"""
severity_map = {
"hardcoded_credentials": ("critical", "Use environment variables or secure vaults"),
"command_injection": ("critical", "Use parameterized commands and input validation"),
"sql_injection": ("critical", "Use parameterized queries and prepared statements"),
"path_traversal": ("high", "Validate and sanitize file paths"),
"insecure_random": ("medium", "Use cryptographically secure random functions")
}
return severity_map.get(category, ("medium", "Review for security implications"))
def _convert_bandit_confidence(self, confidence: str) -> float:
"""Convert Bandit confidence to numeric value"""
confidence_map = {
"HIGH": 0.9,
"MEDIUM": 0.7,
"LOW": 0.5
}
return confidence_map.get(confidence, 0.6)
class PerformanceAnalyzer:
"""Performance analysis and optimization identification"""
def __init__(self):
self.logger = logging.getLogger("performance_analyzer")
self.performance_patterns = {
"inefficient_loops": [
r"for.*in.*range\(len\(",
r"while.*len\("
],
"string_concatenation": [
r"\+\s*['\"].*['\"]",
r".*\+=.*['\"]"
],
"global_variables": [
r"^global\s+\w+"
],
"nested_loops": [], # Detected via AST
"database_queries_in_loops": [], # Detected via AST
}
async def analyze_performance(self, file_paths: List[str]) -> List[CodeIssue]:
"""Comprehensive performance analysis"""
performance_issues = []
for file_path in file_paths:
if not file_path.endswith('.py'):
continue
self.logger.info(f"Performance analysis: {file_path}")
try:
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
# Pattern-based analysis
pattern_issues = await self._analyze_performance_patterns(file_path, content)
performance_issues.extend(pattern_issues)
# AST-based analysis for complex patterns
ast_issues = await self._analyze_ast_performance(file_path, content)
performance_issues.extend(ast_issues)
except Exception as e:
self.logger.error(f"Error analyzing {file_path}: {str(e)}")
return performance_issues
async def _analyze_performance_patterns(self, file_path: str, content: str) -> List[CodeIssue]:
"""Pattern-based performance issue detection"""
issues = []
lines = content.split('\n')
for category, patterns in self.performance_patterns.items():
if not patterns: # Skip empty pattern lists
continue
for pattern in patterns:
for line_num, line in enumerate(lines, 1):
if re.search(pattern, line):
severity, recommendation = self._get_performance_severity(category)
issues.append(CodeIssue(
file_path=file_path,
line_number=line_num,
severity=severity,
issue_type="performance",
description=f"Performance issue - {category.replace('_', ' ')}: {line.strip()}",
recommendation=recommendation
))
return issues
async def _analyze_ast_performance(self, file_path: str, content: str) -> List[CodeIssue]:
"""AST-based performance analysis"""
issues = []
try:
tree = ast.parse(content)
class PerformanceVisitor(ast.NodeVisitor):
def __init__(self):
self.issues = []
self.loop_depth = 0
self.in_loop = False
def visit_For(self, node):
self.loop_depth += 1
old_in_loop = self.in_loop
self.in_loop = True
# Check for nested loops
if self.loop_depth > 2:
self.issues.append(CodeIssue(
file_path=file_path,
line_number=node.lineno,
severity="medium",
issue_type="performance",
description="Deeply nested loops detected",
recommendation="Consider algorithm optimization or breaking into functions"
))
self.generic_visit(node)
self.loop_depth -= 1
self.in_loop = old_in_loop
def visit_While(self, node):
self.loop_depth += 1
old_in_loop = self.in_loop
self.in_loop = True
if self.loop_depth > 2:
self.issues.append(CodeIssue(
file_path=file_path,
line_number=node.lineno,
severity="medium",
issue_type="performance",
description="Deeply nested while loops detected",
recommendation="Consider algorithm optimization"
))
self.generic_visit(node)
self.loop_depth -= 1
self.in_loop = old_in_loop
def visit_Call(self, node):
# Check for database calls in loops
if self.in_loop and isinstance(node.func, ast.Attribute):
method_name = node.func.attr
if method_name in ['execute', 'query', 'find', 'get']:
self.issues.append(CodeIssue(
file_path=file_path,
line_number=node.lineno,
severity="high",
issue_type="performance",
description="Potential database query in loop",
recommendation="Move query outside loop or use batch operations"
))
self.generic_visit(node)
visitor = PerformanceVisitor()
visitor.visit(tree)
issues.extend(visitor.issues)
except SyntaxError:
pass # Skip files with syntax errors
return issues
def _get_performance_severity(self, category: str) -> Tuple[str, str]:
"""Get severity and recommendation for performance issue"""
severity_map = {
"inefficient_loops": ("medium", "Use enumerate() or direct iteration"),
"string_concatenation": ("low", "Use string formatting or join() for multiple concatenations"),
"global_variables": ("low", "Consider using class attributes or function parameters"),
"nested_loops": ("medium", "Optimize algorithm complexity"),
"database_queries_in_loops": ("high", "Use batch operations or optimize query placement")
}
return severity_map.get(category, ("low", "Review for performance implications"))
class MaintainabilityAnalyzer:
"""Code maintainability and quality analysis"""
def __init__(self):
self.logger = logging.getLogger("maintainability_analyzer")
async def analyze_maintainability(self, file_paths: List[str]) -> Tuple[List[CodeIssue], Dict[str, Any]]:
"""Comprehensive maintainability analysis"""
maintainability_issues = []
metrics = {
"complexity_metrics": {},
"documentation_coverage": 0.0,
"code_duplication": {},
"naming_conventions": {}
}
for file_path in file_paths:
if not file_path.endswith('.py'):
continue
self.logger.info(f"Maintainability analysis: {file_path}")
try:
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
# Complexity analysis
complexity_issues, complexity_metrics = await self._analyze_complexity(file_path, content)
maintainability_issues.extend(complexity_issues)
metrics["complexity_metrics"][file_path] = complexity_metrics
# Documentation analysis
doc_issues, doc_metrics = await self._analyze_documentation(file_path, content)
maintainability_issues.extend(doc_issues)
# Code duplication detection
duplication_issues = await self._detect_code_duplication(file_path, content)
maintainability_issues.extend(duplication_issues)
except Exception as e:
self.logger.error(f"Error analyzing {file_path}: {str(e)}")
return maintainability_issues, metrics
async def _analyze_complexity(self, file_path: str, content: str) -> Tuple[List[CodeIssue], Dict[str, Any]]:
"""Analyze cyclomatic complexity and other complexity metrics"""
issues = []
metrics = {
"cyclomatic_complexity": 0,
"lines_of_code": 0,
"function_count": 0,
"class_count": 0,
"max_function_complexity": 0
}
try:
tree = ast.parse(content)
class ComplexityVisitor(ast.NodeVisitor):
def __init__(self):
self.complexity = 1 # Base complexity
self.function_complexities = []
self.function_count = 0
self.class_count = 0
self.current_function = None
self.current_complexity = 1
def visit_FunctionDef(self, node):
self.function_count += 1
old_complexity = self.current_complexity
old_function = self.current_function
self.current_function = node.name
self.current_complexity = 1
self.generic_visit(node)
# Check if function complexity is too high
if self.current_complexity > 10:
issues.append(CodeIssue(
file_path=file_path,
line_number=node.lineno,
severity="medium",
issue_type="maintainability",
description=f"High cyclomatic complexity in function '{node.name}': {self.current_complexity}",
recommendation="Consider breaking down function into smaller functions"
))
self.function_complexities.append(self.current_complexity)
self.current_complexity = old_complexity
self.current_function = old_function
def visit_ClassDef(self, node):
self.class_count += 1
self.generic_visit(node)
def visit_If(self, node):
self.current_complexity += 1
self.generic_visit(node)
def visit_For(self, node):
self.current_complexity += 1
self.generic_visit(node)
def visit_While(self, node):
self.current_complexity += 1
self.generic_visit(node)
def visit_Try(self, node):
self.current_complexity += len(node.handlers)
self.generic_visit(node)
visitor = ComplexityVisitor()
visitor.visit(tree)
lines = content.split('\n')
metrics["lines_of_code"] = len([line for line in lines if line.strip() and not line.strip().startswith('#')])
metrics["function_count"] = visitor.function_count
metrics["class_count"] = visitor.class_count
metrics["cyclomatic_complexity"] = sum(visitor.function_complexities) if visitor.function_complexities else 1
metrics["max_function_complexity"] = max(visitor.function_complexities) if visitor.function_complexities else 0
except SyntaxError:
pass # Skip files with syntax errors
return issues, metrics
async def _analyze_documentation(self, file_path: str, content: str) -> Tuple[List[CodeIssue], Dict[str, Any]]:
"""Analyze documentation coverage and quality"""
issues = []
metrics = {"documented_functions": 0, "total_functions": 0}
try:
tree = ast.parse(content)
class DocVisitor(ast.NodeVisitor):
def __init__(self):
self.total_functions = 0
self.documented_functions = 0
def visit_FunctionDef(self, node):
self.total_functions += 1
# Check if function has docstring
if (node.body and
isinstance(node.body[0], ast.Expr) and
isinstance(node.body[0].value, ast.Str)):
self.documented_functions += 1
else:
# Only report missing docstrings for non-private functions
if not node.name.startswith('_'):
issues.append(CodeIssue(
file_path=file_path,
line_number=node.lineno,
severity="low",
issue_type="maintainability",
description=f"Missing docstring for function '{node.name}'",
recommendation="Add descriptive docstring"
))
self.generic_visit(node)
def visit_ClassDef(self, node):
# Check if class has docstring
if not (node.body and
isinstance(node.body[0], ast.Expr) and
isinstance(node.body[0].value, ast.Str)):
issues.append(CodeIssue(
file_path=file_path,
line_number=node.lineno,
severity="low",
issue_type="maintainability",
description=f"Missing docstring for class '{node.name}'",
recommendation="Add descriptive class docstring"
))
self.generic_visit(node)
visitor = DocVisitor()
visitor.visit(tree)
metrics["documented_functions"] = visitor.documented_functions
metrics["total_functions"] = visitor.total_functions
except SyntaxError:
pass
return issues, metrics
async def _detect_code_duplication(self, file_path: str, content: str) -> List[CodeIssue]:
"""Detect code duplication patterns"""
issues = []
lines = content.split('\n')
# Simple line-based duplication detection
line_counts = Counter()
for line_num, line in enumerate(lines, 1):
stripped = line.strip()
if len(stripped) > 20 and not stripped.startswith('#'): # Ignore short lines and comments
line_counts[stripped] += 1
if line_counts[stripped] == 3: # Report after 3 occurrences
issues.append(CodeIssue(
file_path=file_path,
line_number=line_num,
severity="low",
issue_type="maintainability",
description=f"Potential code duplication: {stripped[:50]}...",
recommendation="Consider extracting common code into functions"
))
return issues
class ComprehensiveCodeReviewer:
"""Main code review orchestrator"""
def __init__(self):
self.logger = logging.getLogger("code_reviewer")
self.security_analyzer = SecurityAnalyzer()
self.performance_analyzer = PerformanceAnalyzer()
self.maintainability_analyzer = MaintainabilityAnalyzer()
async def conduct_comprehensive_review(self, project_path: str,
include_patterns: Optional[List[str]] = None,
exclude_patterns: Optional[List[str]] = None) -> ReviewResults:
"""Conduct comprehensive code review"""
self.logger.info(f"Starting comprehensive code review of {project_path}")
start_time = datetime.now()
# Discover files to analyze
file_paths = await self._discover_files(project_path, include_patterns, exclude_patterns)
if not file_paths:
self.logger.warning("No files found for analysis")
return ReviewResults(0, 0)
self.logger.info(f"Analyzing {len(file_paths)} files")
# Calculate total lines
total_lines = 0
for file_path in file_paths:
try:
with open(file_path, 'r', encoding='utf-8') as f:
total_lines += len(f.readlines())
except:
pass
# Run all analyzers concurrently
security_task = asyncio.create_task(self.security_analyzer.analyze_security(file_paths))
performance_task = asyncio.create_task(self.performance_analyzer.analyze_performance(file_paths))
maintainability_task = asyncio.create_task(self.maintainability_analyzer.analyze_maintainability(file_paths))
# Wait for all analyses to complete
security_issues = await security_task
performance_issues = await performance_task
maintainability_issues, maintainability_metrics = await maintainability_task
# Combine all issues
all_issues = security_issues + performance_issues + maintainability_issues
# Calculate scores
security_score = await self._calculate_security_score(security_issues)
maintainability_score = await self._calculate_maintainability_score(maintainability_issues)
performance_score = await self._calculate_performance_score(performance_issues)
overall_score = (security_score + maintainability_score + performance_score) / 3
# Create comprehensive results
results = ReviewResults(
total_files_analyzed=len(file_paths),
total_lines_analyzed=total_lines,
issues=all_issues,
metrics=maintainability_metrics,
security_score=security_score,
maintainability_score=maintainability_score,
performance_score=performance_score,
overall_score=overall_score
)
# Generate review report
await self._generate_review_report(results, project_path)
duration = datetime.now() - start_time
self.logger.info(f"Code review completed in {duration.total_seconds():.2f}s")
self.logger.info(f"Overall score: {overall_score:.1f}/100")
return results
async def _discover_files(self, project_path: str,
include_patterns: Optional[List[str]] = None,
exclude_patterns: Optional[List[str]] = None) -> List[str]:
"""Discover files to analyze"""
file_paths = []
project_path = Path(project_path)
include_patterns = include_patterns or ['*.py']
exclude_patterns = exclude_patterns or [
'*/venv/*', '*/env/*', '*/__pycache__/*',
'*/node_modules/*', '*/.*/*', '*/.git/*'
]
def should_include(file_path: Path) -> bool:
path_str = str(file_path)
# Check exclude patterns
for exclude in exclude_patterns:
if exclude.replace('*', '.*') in path_str:
return False
# Check include patterns
for include in include_patterns:
if file_path.match(include):
return True
return False
# Walk through project directory
for root, dirs, files in os.walk(project_path):
# Skip hidden and excluded directories
dirs[:] = [d for d in dirs if not d.startswith('.') and d not in ['__pycache__', 'venv', 'env']]
for file in files:
file_path = Path(root) / file
if should_include(file_path):
file_paths.append(str(file_path))
return file_paths
async def _calculate_security_score(self, security_issues: List[CodeIssue]) -> float:
"""Calculate security score based on issues found"""
if not security_issues:
return 100.0
severity_weights = {
"critical": -20,
"high": -10,
"medium": -5,
"low": -2,
"info": -1
}
total_deduction = sum(severity_weights.get(issue.severity, -1) for issue in security_issues)
return max(0, 100 + total_deduction)
async def _calculate_maintainability_score(self, maintainability_issues: List[CodeIssue]) -> float:
"""Calculate maintainability score"""
base_score = 100.0
for issue in maintainability_issues:
if issue.severity == "high":
base_score -= 5
elif issue.severity == "medium":
base_score -= 3
else:
base_score -= 1
return max(0, base_score)
async def _calculate_performance_score(self, performance_issues: List[CodeIssue]) -> float:
"""Calculate performance score"""
base_score = 100.0
for issue in performance_issues:
if issue.severity == "high":
base_score -= 8
elif issue.severity == "medium":
base_score -= 4
else:
base_score -= 2
return max(0, base_score)
async def _generate_review_report(self, results: ReviewResults, project_path: str):
"""Generate comprehensive review report"""
report = {
"review_summary": {
"project_path": project_path,
"review_date": datetime.now().isoformat(),
"files_analyzed": results.total_files_analyzed,
"lines_analyzed": results.total_lines_analyzed,
"total_issues": len(results.issues),
"scores": {
"security": results.security_score,
"maintainability": results.maintainability_score,
"performance": results.performance_score,
"overall": results.overall_score
}
},
"issue_breakdown": {
"by_severity": {},
"by_type": {},
"by_file": {}
},
"recommendations": [],
"detailed_issues": []
}
# Analyze issue breakdown
severity_counts = Counter(issue.severity for issue in results.issues)
type_counts = Counter(issue.issue_type for issue in results.issues)
file_counts = Counter(issue.file_path for issue in results.issues)
report["issue_breakdown"]["by_severity"] = dict(severity_counts)
report["issue_breakdown"]["by_type"] = dict(type_counts)
report["issue_breakdown"]["by_file"] = dict(file_counts.most_common(10)) # Top 10 files
# Generate high-level recommendations
if severity_counts.get("critical", 0) > 0:
report["recommendations"].append("Address critical security vulnerabilities immediately")
if severity_counts.get("high", 0) > 5:
report["recommendations"].append("Focus on high-severity issues for immediate improvement")
if results.security_score < 70:
report["recommendations"].append("Conduct security training and implement secure coding practices")
if results.maintainability_score < 70:
report["recommendations"].append("Improve code documentation and reduce complexity")
if results.performance_score < 70:
report["recommendations"].append("Optimize performance bottlenecks and algorithmic efficiency")
# Add detailed issues (top 50 most severe)
sorted_issues = sorted(results.issues,
key=lambda x: {"critical": 4, "high": 3, "medium": 2, "low": 1, "info": 0}.get(x.severity, 0),
reverse=True)
for issue in sorted_issues[:50]:
report["detailed_issues"].append({
"file": issue.file_path,
"line": issue.line_number,
"severity": issue.severity,
"type": issue.issue_type,
"description": issue.description,
"recommendation": issue.recommendation,
"confidence": issue.confidence,
"cwe_id": issue.cwe_id
})
# Save report
report_path = Path(project_path) / "code_review_report.json"
with open(report_path, 'w', encoding='utf-8') as f:
json.dump(report, f, indent=2, ensure_ascii=False)
self.logger.info(f"Review report saved to {report_path}")
# Also create a summary markdown report
await self._generate_markdown_summary(report, project_path)
async def _generate_markdown_summary(self, report: Dict[str, Any], project_path: str):
"""Generate markdown summary report"""
summary_path = Path(project_path) / "CODE_REVIEW_SUMMARY.md"
with open(summary_path, 'w', encoding='utf-8') as f:
f.write("# Code Review Summary\n\n")
# Overview
f.write("## Overview\n\n")
f.write(f"- **Files Analyzed**: {report['review_summary']['files_analyzed']}\n")
f.write(f"- **Lines Analyzed**: {report['review_summary']['lines_analyzed']}\n")
f.write(f"- **Total Issues**: {report['review_summary']['total_issues']}\n\n")
# Scores
f.write("## Scores\n\n")
scores = report['review_summary']['scores']
f.write(f"- **Overall Score**: {scores['overall']:.1f}/100\n")
f.write(f"- **Security Score**: {scores['security']:.1f}/100\n")
f.write(f"- **Maintainability Score**: {scores['maintainability']:.1f}/100\n")
f.write(f"- **Performance Score**: {scores['performance']:.1f}/100\n\n")
# Issue breakdown
f.write("## Issue Breakdown\n\n")
f.write("### By Severity\n\n")
for severity, count in report['issue_breakdown']['by_severity'].items():
f.write(f"- **{severity.title()}**: {count}\n")
f.write("\n")
f.write("### By Type\n\n")
for issue_type, count in report['issue_breakdown']['by_type'].items():
f.write(f"- **{issue_type.title()}**: {count}\n")
f.write("\n")
# Recommendations
f.write("## Recommendations\n\n")
for i, recommendation in enumerate(report['recommendations'], 1):
f.write(f"{i}. {recommendation}\n")
f.write("\n")
# Top issues
f.write("## Top Critical Issues\n\n")
critical_issues = [issue for issue in report['detailed_issues']
if issue['severity'] == 'critical'][:10]
for issue in critical_issues:
f.write(f"### {issue['file']}:{issue['line']}\n\n")
f.write(f"**Type**: {issue['type']}\n\n")
f.write(f"**Description**: {issue['description']}\n\n")
f.write(f"**Recommendation**: {issue['recommendation']}\n\n")
f.write("---\n\n")
self.logger.info(f"Markdown summary saved to {summary_path}")
# Main execution interface
async def run_code_review(project_path: str, config: Optional[Dict[str, Any]] = None) -> ReviewResults:
"""Run comprehensive code review"""
config = config or {}
reviewer = ComprehensiveCodeReviewer()
return await reviewer.conduct_comprehensive_review(
project_path=project_path,
include_patterns=config.get('include_patterns'),
exclude_patterns=config.get('exclude_patterns')
)
# CLI interface
if __name__ == "__main__":
import sys
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
if len(sys.argv) < 2:
print("Usage: python code_reviewer.py <project_path> [config.json]")
sys.exit(1)
project_path = sys.argv[1]
config = {}
if len(sys.argv) > 2:
with open(sys.argv[2], 'r') as f:
config = json.load(f)
# Run code review
async def main():
results = await run_code_review(project_path, config)
print(f"\nCode review completed!")
print(f"Overall score: {results.overall_score:.1f}/100")
print(f"Total issues found: {len(results.issues)}")
# Show issue breakdown
severity_counts = Counter(issue.severity for issue in results.issues)
print("\nIssue breakdown:")
for severity in ["critical", "high", "medium", "low", "info"]:
count = severity_counts.get(severity, 0)
if count > 0:
print(f" {severity.title()}: {count}")
asyncio.run(main())
|