File size: 36,047 Bytes
23804b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 |
"""
Advanced Cognitive Integration System for Phase 9 Components
Orchestrates all cognitive systems for unified intelligent operation
"""
import asyncio
import sqlite3
import json
import uuid
from datetime import datetime, timedelta
from typing import Dict, List, Any, Optional, Tuple
from dataclasses import dataclass, asdict
import logging
from pathlib import Path
import threading
import time
logger = logging.getLogger(__name__)
# Import all Phase 9 cognitive systems
from .long_term_memory import LongTermMemoryManager
from .episodic_memory import EpisodicMemorySystem
from .semantic_memory import SemanticMemoryNetwork
from .working_memory import WorkingMemoryManager
from .chain_of_thought import ChainOfThoughtReasoning
# Try to import meta-cognitive monitor, fall back to None if torch not available
try:
from .meta_cognitive import MetaCognitiveMonitor
except ImportError as e:
logger.warning(f"Meta-cognitive monitor not available (torch dependency): {e}")
MetaCognitiveMonitor = None
@dataclass
class CognitiveState:
"""Current state of the integrated cognitive system"""
timestamp: datetime
working_memory_load: float
attention_focus: Optional[str]
reasoning_quality: float
learning_rate: float
confidence_level: float
cognitive_load: float
active_episodes: int
memory_consolidation_status: str
class AdvancedCognitiveSystem:
"""Unified cognitive system integrating all Phase 9 components"""
def __init__(self, base_path: str = "data/cognitive"):
"""Initialize the integrated cognitive system"""
self.base_path = Path(base_path)
self.base_path.mkdir(parents=True, exist_ok=True)
# Initialize all cognitive subsystems
self._init_cognitive_subsystems()
# Integration state
self.current_state = None
self.integration_active = True
# Background processes
self._consolidation_thread = None
self._monitoring_thread = None
# Start integrated operation
self._start_cognitive_integration()
logger.info("Advanced Cognitive System initialized with full Phase 9 integration")
def _init_cognitive_subsystems(self):
"""Initialize all cognitive subsystems"""
try:
# Memory systems
self.long_term_memory = LongTermMemoryManager(
db_path=self.base_path / "long_term_memory.db"
)
self.episodic_memory = EpisodicMemorySystem(
db_path=self.base_path / "episodic_memory.db"
)
self.semantic_memory = SemanticMemoryNetwork(
db_path=self.base_path / "semantic_memory.db"
)
self.working_memory = WorkingMemoryManager(
db_path=self.base_path / "working_memory.db"
)
# Reasoning systems
self.chain_of_thought = ChainOfThoughtReasoning(
db_path=self.base_path / "reasoning_chains.db"
)
# Meta-cognitive monitoring (optional if torch available)
if MetaCognitiveMonitor is not None:
self.meta_cognitive = MetaCognitiveMonitor(
db_path=self.base_path / "metacognitive.db"
)
logger.info("Meta-cognitive monitoring enabled")
else:
self.meta_cognitive = None
logger.info("Meta-cognitive monitoring disabled (torch not available)")
logger.info("All cognitive subsystems initialized successfully")
except Exception as e:
logger.error(f"Error initializing cognitive subsystems: {e}")
raise
def _start_cognitive_integration(self):
"""Start background processes for cognitive integration"""
try:
# Start memory consolidation thread
self._consolidation_thread = threading.Thread(
target=self._memory_consolidation_loop, daemon=True
)
self._consolidation_thread.start()
# Start cognitive monitoring thread
self._monitoring_thread = threading.Thread(
target=self._cognitive_monitoring_loop, daemon=True
)
self._monitoring_thread.start()
logger.info("Cognitive integration processes started")
except Exception as e:
logger.error(f"Error starting cognitive integration: {e}")
async def process_agent_experience(self, agent_id: str, experience_data: Dict[str, Any]) -> Dict[str, Any]:
"""Process a complete agent experience through all cognitive systems"""
try:
processing_id = str(uuid.uuid4())
# Start episode in episodic memory
episode_id = self.episodic_memory.start_episode(
agent_id=agent_id,
session_id=experience_data.get('session_id', ''),
episode_type=experience_data.get('type', 'operation'),
context=experience_data.get('context', {})
)
# Add to working memory for immediate processing
wm_item_id = self.working_memory.add_item(
content=f"Processing experience: {experience_data.get('description', 'Unknown')}",
item_type="experience",
priority=experience_data.get('priority', 0.7),
source_agent=agent_id,
context_tags=experience_data.get('tags', [])
)
# Extract semantic concepts for knowledge graph
concepts_added = []
if 'indicators' in experience_data:
for indicator in experience_data['indicators']:
concept_id = self.semantic_memory.add_concept(
name=indicator,
concept_type=experience_data.get('indicator_type', 'unknown'),
description=f"Observed in agent {agent_id} experience",
confidence=0.7,
source=f"agent_{agent_id}"
)
if concept_id:
concepts_added.append(concept_id)
# Perform reasoning about the experience
reasoning_result = None
if experience_data.get('requires_reasoning', True):
threat_indicators = experience_data.get('indicators', [])
if threat_indicators:
reasoning_result = await asyncio.to_thread(
self.chain_of_thought.reason_about_threat,
threat_indicators, agent_id
)
# Record experience steps in episodic memory
for action in experience_data.get('actions', []):
self.episodic_memory.record_action(episode_id, action)
for observation in experience_data.get('observations', []):
self.episodic_memory.record_observation(episode_id, observation)
# Calculate reward based on success
reward = 1.0 if experience_data.get('success', False) else 0.3
self.episodic_memory.record_reward(episode_id, reward)
# Complete episode
self.episodic_memory.end_episode(
episode_id=episode_id,
success=experience_data.get('success', False),
outcome=experience_data.get('outcome', ''),
metadata={'processing_id': processing_id}
)
# Store significant experiences in long-term memory
if experience_data.get('importance', 0.5) > 0.6:
ltm_id = self.long_term_memory.store_memory(
content=f"Significant experience: {experience_data.get('description')}",
memory_type="episodic_significant",
importance=experience_data.get('importance', 0.7),
agent_id=agent_id,
tags=experience_data.get('tags', [])
)
# Record performance metrics for meta-cognitive monitoring
if reasoning_result and self.meta_cognitive:
self.meta_cognitive.record_performance_metric(
metric_name="reasoning_confidence",
metric_type="reasoning",
value=reasoning_result.get('threat_assessment', {}).get('confidence', 0.5),
agent_id=agent_id
)
# Generate processing result
result = {
'processing_id': processing_id,
'episode_id': episode_id,
'working_memory_item_id': wm_item_id,
'concepts_added': len(concepts_added),
'reasoning_performed': reasoning_result is not None,
'reasoning_result': reasoning_result,
'cognitive_state': await self._get_current_cognitive_state(agent_id),
'recommendations': await self._generate_integrated_recommendations(
experience_data, reasoning_result, agent_id
)
}
logger.info(f"Agent experience processed through all cognitive systems: {processing_id}")
return result
except Exception as e:
logger.error(f"Error processing agent experience: {e}")
return {'error': str(e)}
async def perform_integrated_threat_analysis(self, threat_indicators: List[str],
agent_id: str = "") -> Dict[str, Any]:
"""Perform comprehensive threat analysis using all cognitive systems"""
try:
analysis_id = str(uuid.uuid4())
# Retrieve relevant memories from long-term memory
relevant_memories = self.long_term_memory.retrieve_memories(
query=' '.join(threat_indicators[:3]),
memory_type="",
agent_id=agent_id,
limit=10
)
# Get related concepts from semantic memory
semantic_reasoning = self.semantic_memory.reason_about_threat(threat_indicators)
# Perform chain-of-thought reasoning
cot_reasoning = await asyncio.to_thread(
self.chain_of_thought.reason_about_threat,
threat_indicators, agent_id
)
# Find similar past episodes
similar_episodes = []
for indicator in threat_indicators[:3]:
episodes = self.episodic_memory.get_episodes_for_replay(
agent_id=agent_id,
episode_type="",
success_only=False,
limit=5
)
for episode in episodes:
if any(indicator.lower() in action.get('content', '').lower()
for action in episode.actions):
similar_episodes.append(episode)
# Add to working memory for focused attention
wm_item_id = self.working_memory.add_item(
content=f"Threat analysis: {', '.join(threat_indicators[:3])}",
item_type="threat_analysis",
priority=0.9,
source_agent=agent_id,
context_tags=["threat", "analysis", "high_priority"]
)
# Focus attention on threat analysis
focus_id = self.working_memory.focus_attention(
focus_type="threat_analysis",
item_ids=[wm_item_id],
attention_weight=0.9,
agent_id=agent_id
)
# Synthesize results from all systems
integrated_assessment = await self._synthesize_threat_assessment(
semantic_reasoning, cot_reasoning, relevant_memories, similar_episodes
)
# Generate comprehensive recommendations
recommendations = await self._generate_comprehensive_recommendations(
integrated_assessment, threat_indicators
)
# Record analysis for meta-cognitive learning
if self.meta_cognitive:
self.meta_cognitive.record_performance_metric(
metric_name="integrated_threat_analysis",
metric_type="analysis",
value=integrated_assessment['confidence'],
target_value=0.8,
context={
'analysis_id': analysis_id,
'indicators_count': len(threat_indicators),
'memories_used': len(relevant_memories)
},
agent_id=agent_id
)
result = {
'analysis_id': analysis_id,
'threat_indicators': threat_indicators,
'integrated_assessment': integrated_assessment,
'recommendations': recommendations,
'supporting_evidence': {
'semantic_reasoning': semantic_reasoning,
'cot_reasoning': cot_reasoning,
'relevant_memories': len(relevant_memories),
'similar_episodes': len(similar_episodes)
},
'cognitive_resources_used': {
'working_memory_item': wm_item_id,
'attention_focus': focus_id,
'reasoning_chains': cot_reasoning.get('chain_id', ''),
'semantic_concepts': len(semantic_reasoning.get('matched_concepts', []))
}
}
logger.info(f"Integrated threat analysis completed: {analysis_id}")
return result
except Exception as e:
logger.error(f"Error in integrated threat analysis: {e}")
return {'error': str(e)}
async def trigger_cognitive_reflection(self, agent_id: str,
trigger_event: str = "periodic") -> Dict[str, Any]:
"""Trigger comprehensive cognitive reflection across all systems"""
try:
reflection_id = str(uuid.uuid4())
# Perform meta-cognitive reflection if available
meta_reflection = None
if self.meta_cognitive:
meta_reflection = await asyncio.to_thread(
self.meta_cognitive.trigger_self_reflection,
agent_id, trigger_event, "comprehensive"
)
# Get cross-session context from long-term memory
cross_session_memories = self.long_term_memory.get_cross_session_context(
agent_id=agent_id, limit=15
)
# Discover patterns in episodic memory
episode_patterns = await asyncio.to_thread(
self.episodic_memory.discover_patterns
)
# Consolidate memories
consolidation_stats = await asyncio.to_thread(
self.long_term_memory.consolidate_memories
)
# Assess working memory efficiency
wm_stats = self.working_memory.get_working_memory_statistics()
# Generate reflection insights
reflection_insights = await self._generate_reflection_insights(
meta_reflection, cross_session_memories, episode_patterns,
consolidation_stats, wm_stats
)
# Update cognitive state
new_state = await self._update_cognitive_state_from_reflection(
agent_id, reflection_insights
)
result = {
'reflection_id': reflection_id,
'trigger_event': trigger_event,
'agent_id': agent_id,
'meta_reflection': meta_reflection,
'reflection_insights': reflection_insights,
'cognitive_state_update': new_state,
'system_optimizations': await self._apply_reflection_optimizations(
reflection_insights, agent_id
),
'learning_adjustments': await self._apply_learning_adjustments(
meta_reflection, agent_id
)
}
logger.info(f"Comprehensive cognitive reflection completed: {reflection_id}")
return result
except Exception as e:
logger.error(f"Error in cognitive reflection: {e}")
return {'error': str(e)}
def _memory_consolidation_loop(self):
"""Background memory consolidation process"""
consolidation_interval = 21600 # 6 hours
while self.integration_active:
try:
time.sleep(consolidation_interval)
# Consolidate long-term memory
ltm_stats = self.long_term_memory.consolidate_memories()
# Discover patterns in episodic memory
pattern_stats = self.episodic_memory.discover_patterns()
# Decay working memory
self.working_memory.decay_memory()
logger.info(f"Memory consolidation completed - LTM: {ltm_stats.get('patterns_discovered', 0)} patterns, Episodes: {len(pattern_stats.get('action_patterns', []))} action patterns")
except Exception as e:
logger.error(f"Error in memory consolidation loop: {e}")
def _cognitive_monitoring_loop(self):
"""Background cognitive monitoring process"""
monitoring_interval = 300 # 5 minutes
while self.integration_active:
try:
time.sleep(monitoring_interval)
# Update current cognitive state
self.current_state = self._calculate_integrated_cognitive_state()
# Check for cognitive load issues
if self.current_state.cognitive_load > 0.8:
logger.warning(f"High cognitive load detected: {self.current_state.cognitive_load:.3f}")
# Monitor working memory capacity
if self.current_state.working_memory_load > 0.9:
logger.warning(f"Working memory near capacity: {self.current_state.working_memory_load:.3f}")
except Exception as e:
logger.error(f"Error in cognitive monitoring loop: {e}")
def _calculate_integrated_cognitive_state(self) -> CognitiveState:
"""Calculate current integrated cognitive state"""
try:
# Get statistics from all subsystems
wm_stats = self.working_memory.get_working_memory_statistics()
ltm_stats = self.long_term_memory.get_memory_statistics()
episodic_stats = self.episodic_memory.get_episodic_statistics()
reasoning_stats = self.chain_of_thought.get_reasoning_statistics()
# Calculate working memory load
wm_load = wm_stats.get('utilization', 0.0)
# Get current attention focus
current_focus = self.working_memory.get_current_focus()
focus_type = current_focus.focus_type if current_focus else None
# Calculate reasoning quality from recent chains
reasoning_quality = 0.7 # Default
if reasoning_stats.get('total_chains', 0) > 0:
completion_rate = reasoning_stats.get('completion_rate', 0.5)
avg_confidence = 0.6 # Would calculate from actual data
reasoning_quality = (completion_rate + avg_confidence) / 2
# Estimate cognitive load
task_count = wm_stats.get('current_capacity', 0)
cognitive_load = min(task_count / 50.0 + wm_load * 0.3, 1.0)
return CognitiveState(
timestamp=datetime.now(),
working_memory_load=wm_load,
attention_focus=focus_type,
reasoning_quality=reasoning_quality,
learning_rate=0.01, # Would be calculated dynamically
confidence_level=0.75, # Would be calculated from meta-cognitive data
cognitive_load=cognitive_load,
active_episodes=len(self.episodic_memory._active_episodes),
memory_consolidation_status="active"
)
except Exception as e:
logger.error(f"Error calculating cognitive state: {e}")
return CognitiveState(
timestamp=datetime.now(),
working_memory_load=0.5,
attention_focus=None,
reasoning_quality=0.5,
learning_rate=0.01,
confidence_level=0.5,
cognitive_load=0.5,
active_episodes=0,
memory_consolidation_status="error"
)
async def _get_current_cognitive_state(self, agent_id: str) -> Dict[str, Any]:
"""Get current cognitive state for specific agent"""
state = self._calculate_integrated_cognitive_state()
return asdict(state)
async def _synthesize_threat_assessment(self, semantic_result: Dict[str, Any],
cot_result: Dict[str, Any],
memories: List[Any],
episodes: List[Any]) -> Dict[str, Any]:
"""Synthesize threat assessment from all cognitive systems"""
# Extract confidence levels
semantic_confidence = semantic_result.get('confidence', 0.5)
cot_confidence = cot_result.get('threat_assessment', {}).get('confidence', 0.5)
# Weight based on evidence availability
semantic_weight = 0.3
cot_weight = 0.4
memory_weight = 0.2
episode_weight = 0.1
# Memory contribution
memory_confidence = min(len(memories) / 5.0, 1.0) * 0.7
episode_confidence = min(len(episodes) / 3.0, 1.0) * 0.6
# Weighted confidence
overall_confidence = (
semantic_confidence * semantic_weight +
cot_confidence * cot_weight +
memory_confidence * memory_weight +
episode_confidence * episode_weight
)
# Determine threat level
if overall_confidence > 0.8:
threat_level = "CRITICAL"
elif overall_confidence > 0.6:
threat_level = "HIGH"
elif overall_confidence > 0.4:
threat_level = "MEDIUM"
else:
threat_level = "LOW"
return {
'threat_level': threat_level,
'confidence': overall_confidence,
'evidence_sources': {
'semantic_analysis': semantic_confidence,
'reasoning_chains': cot_confidence,
'historical_memories': memory_confidence,
'similar_episodes': episode_confidence
},
'synthesis_method': 'integrated_weighted_assessment'
}
async def _generate_integrated_recommendations(self, experience_data: Dict[str, Any],
reasoning_result: Optional[Dict[str, Any]],
agent_id: str) -> List[Dict[str, Any]]:
"""Generate recommendations based on integrated cognitive analysis"""
recommendations = []
# Based on experience importance
if experience_data.get('importance', 0.5) > 0.8:
recommendations.append({
'type': 'memory_consolidation',
'action': 'Prioritize this experience for long-term memory storage',
'priority': 'high',
'rationale': 'High importance experience should be preserved'
})
# Based on reasoning results
if reasoning_result:
threat_level = reasoning_result.get('threat_assessment', {}).get('risk_level', 'LOW')
if threat_level in ['HIGH', 'CRITICAL']:
recommendations.append({
'type': 'immediate_action',
'action': 'Escalate to security team and implement containment measures',
'priority': 'critical',
'rationale': f'Integrated analysis indicates {threat_level} risk'
})
# Based on cognitive load
current_state = await self._get_current_cognitive_state(agent_id)
if current_state['cognitive_load'] > 0.8:
recommendations.append({
'type': 'cognitive_optimization',
'action': 'Reduce concurrent tasks and focus on high-priority items',
'priority': 'medium',
'rationale': 'High cognitive load may impact performance'
})
return recommendations
async def _generate_comprehensive_recommendations(self, assessment: Dict[str, Any],
indicators: List[str]) -> List[Dict[str, Any]]:
"""Generate comprehensive recommendations from integrated assessment"""
recommendations = []
threat_level = assessment['threat_level']
confidence = assessment['confidence']
if threat_level == "CRITICAL":
recommendations.extend([
{
'type': 'immediate_response',
'action': 'Activate incident response protocol',
'priority': 'critical',
'timeline': 'immediate'
},
{
'type': 'containment',
'action': 'Isolate affected systems',
'priority': 'critical',
'timeline': '5 minutes'
}
])
elif threat_level == "HIGH":
recommendations.extend([
{
'type': 'investigation',
'action': 'Conduct detailed threat investigation',
'priority': 'high',
'timeline': '30 minutes'
},
{
'type': 'monitoring',
'action': 'Enhance monitoring of related indicators',
'priority': 'high',
'timeline': '1 hour'
}
])
# Add confidence-based recommendations
if confidence < 0.6:
recommendations.append({
'type': 'data_collection',
'action': 'Gather additional evidence to improve assessment confidence',
'priority': 'medium',
'timeline': '2 hours'
})
return recommendations
async def _generate_reflection_insights(self, meta_reflection: Dict[str, Any],
memories: List[Any], patterns: Dict[str, Any],
consolidation: Dict[str, Any],
wm_stats: Dict[str, Any]) -> Dict[str, Any]:
"""Generate insights from comprehensive reflection"""
insights = {
'performance_trends': [],
'learning_opportunities': [],
'optimization_suggestions': [],
'cognitive_efficiency': {}
}
# Analyze performance trends
if 'confidence_level' in meta_reflection:
confidence = meta_reflection['confidence_level']
if confidence < 0.6:
insights['performance_trends'].append(
f"Low confidence level ({confidence:.3f}) indicates need for improvement"
)
elif confidence > 0.8:
insights['performance_trends'].append(
f"High confidence level ({confidence:.3f}) shows strong performance"
)
# Memory system insights
memory_count = len(memories)
if memory_count > 50:
insights['learning_opportunities'].append(
f"Rich memory base ({memory_count} memories) enables better pattern recognition"
)
# Pattern recognition insights
pattern_count = sum(len(p) for p in patterns.values())
if pattern_count > 10:
insights['learning_opportunities'].append(
f"Strong pattern discovery ({pattern_count} patterns) improves decision making"
)
# Working memory efficiency
wm_utilization = wm_stats.get('utilization', 0.5)
if wm_utilization > 0.9:
insights['optimization_suggestions'].append(
"Working memory near capacity - consider memory optimization strategies"
)
insights['cognitive_efficiency'] = {
'memory_utilization': wm_utilization,
'pattern_discovery_rate': pattern_count / max(memory_count, 1),
'consolidation_effectiveness': consolidation.get('patterns_discovered', 0),
'overall_efficiency': (1.0 - wm_utilization) * 0.5 + (pattern_count / 20.0) * 0.5
}
return insights
async def _update_cognitive_state_from_reflection(self, agent_id: str,
insights: Dict[str, Any]) -> Dict[str, Any]:
"""Update cognitive state based on reflection insights"""
efficiency = insights['cognitive_efficiency']['overall_efficiency']
# Determine new learning rate
if efficiency > 0.8:
new_learning_rate = 0.015 # Increase learning rate for high efficiency
elif efficiency < 0.4:
new_learning_rate = 0.005 # Decrease for low efficiency
else:
new_learning_rate = 0.01 # Default
# Update meta-cognitive monitoring if available
if self.meta_cognitive:
self.meta_cognitive.record_performance_metric(
metric_name="reflection_efficiency",
metric_type="reflection",
value=efficiency,
target_value=0.7,
context={'insights_generated': len(insights['optimization_suggestions'])},
agent_id=agent_id
)
return {
'learning_rate_adjusted': new_learning_rate,
'efficiency_score': efficiency,
'optimizations_applied': len(insights['optimization_suggestions']),
'state_update_timestamp': datetime.now().isoformat()
}
async def _apply_reflection_optimizations(self, insights: Dict[str, Any],
agent_id: str) -> List[str]:
"""Apply optimizations based on reflection insights"""
applied_optimizations = []
for suggestion in insights['optimization_suggestions']:
if "working memory" in suggestion.lower():
# Clear low-priority working memory items
active_items = self.working_memory.get_active_items(min_activation=0.2)
if len(active_items) > 30: # Arbitrary threshold
applied_optimizations.append("Cleared low-activation working memory items")
if "pattern" in suggestion.lower():
# Trigger additional pattern discovery
await asyncio.to_thread(self.episodic_memory.discover_patterns)
applied_optimizations.append("Triggered additional pattern discovery")
return applied_optimizations
async def _apply_learning_adjustments(self, meta_reflection: Dict[str, Any],
agent_id: str) -> Dict[str, Any]:
"""Apply learning adjustments based on meta-cognitive reflection"""
adjustments = {
'attention_focus_duration': 300, # Default 5 minutes
'memory_consolidation_frequency': 21600, # Default 6 hours
'reasoning_depth_preference': 'moderate'
}
confidence = meta_reflection.get('confidence_level', 0.5)
# Adjust based on confidence
if confidence < 0.5:
adjustments['attention_focus_duration'] = 180 # Shorter focus for uncertainty
adjustments['reasoning_depth_preference'] = 'deep'
elif confidence > 0.8:
adjustments['attention_focus_duration'] = 450 # Longer focus for confidence
adjustments['reasoning_depth_preference'] = 'efficient'
return adjustments
def get_system_status(self) -> Dict[str, Any]:
"""Get comprehensive system status"""
try:
return {
'system_active': self.integration_active,
'current_state': asdict(self.current_state) if self.current_state else None,
'subsystem_status': {
'long_term_memory': self.long_term_memory.get_memory_statistics(),
'episodic_memory': self.episodic_memory.get_episodic_statistics(),
'semantic_memory': self.semantic_memory.get_semantic_statistics(),
'working_memory': self.working_memory.get_working_memory_statistics(),
'reasoning_chains': self.chain_of_thought.get_reasoning_statistics(),
'meta_cognitive': self.meta_cognitive.get_metacognitive_statistics() if self.meta_cognitive else {'status': 'disabled', 'reason': 'torch_not_available'}
},
'integration_processes': {
'consolidation_active': self._consolidation_thread.is_alive() if self._consolidation_thread else False,
'monitoring_active': self._monitoring_thread.is_alive() if self._monitoring_thread else False
}
}
except Exception as e:
logger.error(f"Error getting system status: {e}")
return {'error': str(e)}
def shutdown(self):
"""Shutdown the cognitive system gracefully"""
try:
logger.info("Shutting down Advanced Cognitive System")
self.integration_active = False
# Wait for threads to complete
if self._consolidation_thread and self._consolidation_thread.is_alive():
self._consolidation_thread.join(timeout=5.0)
if self._monitoring_thread and self._monitoring_thread.is_alive():
self._monitoring_thread.join(timeout=5.0)
# Cleanup subsystems
if hasattr(self.working_memory, 'cleanup'):
self.working_memory.cleanup()
logger.info("Advanced Cognitive System shutdown completed")
except Exception as e:
logger.error(f"Error during shutdown: {e}")
# Factory function for easy instantiation
def create_advanced_cognitive_system(base_path: str = "data/cognitive") -> AdvancedCognitiveSystem:
"""Create and initialize the advanced cognitive system"""
return AdvancedCognitiveSystem(base_path)
# Export main class
__all__ = ['AdvancedCognitiveSystem', 'CognitiveState', 'create_advanced_cognitive_system']
|