File size: 26,636 Bytes
23804b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
"""
Chain-of-Thought Reasoning System for Multi-step Logical Inference
Implements advanced reasoning chains with step-by-step logical progression
"""
import sqlite3
import json
import uuid
from datetime import datetime
from typing import Dict, List, Any, Optional, Tuple
from dataclasses import dataclass, asdict
import logging
from pathlib import Path
from enum import Enum

logger = logging.getLogger(__name__)

class ReasoningType(Enum):
    """Types of reasoning supported"""
    DEDUCTIVE = "deductive"           # General to specific
    INDUCTIVE = "inductive"           # Specific to general
    ABDUCTIVE = "abductive"           # Best explanation
    ANALOGICAL = "analogical"         # Pattern matching
    CAUSAL = "causal"                # Cause and effect
    COUNTERFACTUAL = "counterfactual" # What-if scenarios
    STRATEGIC = "strategic"           # Goal-oriented planning
    DIAGNOSTIC = "diagnostic"         # Problem identification

@dataclass
class ReasoningStep:
    """Individual step in a reasoning chain"""
    step_id: str
    step_number: int
    reasoning_type: ReasoningType
    premise: str
    inference_rule: str
    conclusion: str
    confidence: float
    evidence: List[str]
    assumptions: List[str]
    created_at: datetime

@dataclass
class ReasoningChain:
    """Complete chain of reasoning steps"""
    chain_id: str
    agent_id: str
    problem_statement: str
    reasoning_goal: str
    steps: List[ReasoningStep]
    final_conclusion: str
    overall_confidence: float
    created_at: datetime
    completed_at: Optional[datetime]
    metadata: Dict[str, Any]

class ChainOfThoughtReasoning:
    """Advanced chain-of-thought reasoning system"""
    
    def __init__(self, db_path: str = "data/cognitive/reasoning_chains.db"):
        """Initialize reasoning system"""
        self.db_path = Path(db_path)
        self.db_path.parent.mkdir(parents=True, exist_ok=True)
        self._init_database()
        
        # Reasoning rules and patterns
        self._inference_rules = self._load_inference_rules()
        self._reasoning_patterns = self._load_reasoning_patterns()
    
    def _init_database(self):
        """Initialize database schemas"""
        with sqlite3.connect(self.db_path) as conn:
            conn.execute("""
                CREATE TABLE IF NOT EXISTS reasoning_chains (
                    chain_id TEXT PRIMARY KEY,
                    agent_id TEXT NOT NULL,
                    problem_statement TEXT NOT NULL,
                    reasoning_goal TEXT NOT NULL,
                    final_conclusion TEXT,
                    overall_confidence REAL,
                    created_at TEXT NOT NULL,
                    completed_at TEXT,
                    metadata TEXT,
                    status TEXT DEFAULT 'active'
                )
            """)
            
            conn.execute("""
                CREATE TABLE IF NOT EXISTS reasoning_steps (
                    step_id TEXT PRIMARY KEY,
                    chain_id TEXT NOT NULL,
                    step_number INTEGER NOT NULL,
                    reasoning_type TEXT NOT NULL,
                    premise TEXT NOT NULL,
                    inference_rule TEXT NOT NULL,
                    conclusion TEXT NOT NULL,
                    confidence REAL NOT NULL,
                    evidence TEXT,
                    assumptions TEXT,
                    created_at TEXT NOT NULL,
                    FOREIGN KEY (chain_id) REFERENCES reasoning_chains(chain_id)
                )
            """)
            
            conn.execute("""
                CREATE TABLE IF NOT EXISTS inference_rules (
                    rule_id TEXT PRIMARY KEY,
                    rule_name TEXT NOT NULL,
                    rule_type TEXT NOT NULL,
                    rule_pattern TEXT NOT NULL,
                    confidence_modifier REAL DEFAULT 1.0,
                    usage_count INTEGER DEFAULT 0,
                    success_rate REAL DEFAULT 0.5,
                    created_at TEXT DEFAULT CURRENT_TIMESTAMP
                )
            """)
            
            conn.execute("""
                CREATE TABLE IF NOT EXISTS reasoning_evaluations (
                    evaluation_id TEXT PRIMARY KEY,
                    chain_id TEXT NOT NULL,
                    evaluation_type TEXT,
                    correctness_score REAL,
                    logical_validity REAL,
                    completeness_score REAL,
                    evaluator TEXT,
                    feedback TEXT,
                    timestamp TEXT DEFAULT CURRENT_TIMESTAMP,
                    FOREIGN KEY (chain_id) REFERENCES reasoning_chains(chain_id)
                )
            """)
            
            # Create indices
            conn.execute("CREATE INDEX IF NOT EXISTS idx_chains_agent ON reasoning_chains(agent_id)")
            conn.execute("CREATE INDEX IF NOT EXISTS idx_steps_chain ON reasoning_steps(chain_id)")
            conn.execute("CREATE INDEX IF NOT EXISTS idx_steps_type ON reasoning_steps(reasoning_type)")
    
    def start_reasoning_chain(self, agent_id: str, problem_statement: str,
                             reasoning_goal: str, initial_facts: List[str] = None) -> str:
        """Start a new chain of reasoning"""
        try:
            chain_id = str(uuid.uuid4())
            
            chain = ReasoningChain(
                chain_id=chain_id,
                agent_id=agent_id,
                problem_statement=problem_statement,
                reasoning_goal=reasoning_goal,
                steps=[],
                final_conclusion="",
                overall_confidence=0.0,
                created_at=datetime.now(),
                completed_at=None,
                metadata={
                    'initial_facts': initial_facts or [],
                    'reasoning_depth': 0,
                    'branch_count': 0
                }
            )
            
            # Store in database
            with sqlite3.connect(self.db_path) as conn:
                conn.execute("""
                    INSERT INTO reasoning_chains (
                        chain_id, agent_id, problem_statement, reasoning_goal,
                        created_at, metadata
                    ) VALUES (?, ?, ?, ?, ?, ?)
                """, (
                    chain.chain_id, chain.agent_id, chain.problem_statement,
                    chain.reasoning_goal, chain.created_at.isoformat(),
                    json.dumps(chain.metadata)
                ))
            
            logger.info(f"Started reasoning chain {chain_id} for problem: {problem_statement[:50]}...")
            return chain_id
            
        except Exception as e:
            logger.error(f"Error starting reasoning chain: {e}")
            return ""
    
    def add_reasoning_step(self, chain_id: str, reasoning_type: ReasoningType,
                          premise: str, inference_rule: str = "",
                          evidence: List[str] = None,
                          assumptions: List[str] = None) -> str:
        """Add a step to an existing reasoning chain"""
        try:
            step_id = str(uuid.uuid4())
            
            # Get current step count for this chain
            with sqlite3.connect(self.db_path) as conn:
                cursor = conn.execute("""
                    SELECT COUNT(*) FROM reasoning_steps WHERE chain_id = ?
                """, (chain_id,))
                step_number = cursor.fetchone()[0] + 1
            
            # Apply reasoning to generate conclusion
            conclusion, confidence = self._apply_reasoning(
                reasoning_type, premise, inference_rule, evidence or []
            )
            
            step = ReasoningStep(
                step_id=step_id,
                step_number=step_number,
                reasoning_type=reasoning_type,
                premise=premise,
                inference_rule=inference_rule or self._select_inference_rule(reasoning_type),
                conclusion=conclusion,
                confidence=confidence,
                evidence=evidence or [],
                assumptions=assumptions or [],
                created_at=datetime.now()
            )
            
            # Store step in database
            with sqlite3.connect(self.db_path) as conn:
                conn.execute("""
                    INSERT INTO reasoning_steps (
                        step_id, chain_id, step_number, reasoning_type,
                        premise, inference_rule, conclusion, confidence,
                        evidence, assumptions, created_at
                    ) VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)
                """, (
                    step.step_id, chain_id, step.step_number,
                    step.reasoning_type.value, step.premise,
                    step.inference_rule, step.conclusion,
                    step.confidence, json.dumps(step.evidence),
                    json.dumps(step.assumptions),
                    step.created_at.isoformat()
                ))
            
            logger.info(f"Added reasoning step {step_number} to chain {chain_id}")
            return step_id
            
        except Exception as e:
            logger.error(f"Error adding reasoning step: {e}")
            return ""
    
    def complete_reasoning_chain(self, chain_id: str) -> Dict[str, Any]:
        """Complete reasoning chain and generate final conclusion"""
        try:
            # Get all steps for this chain
            steps = self._get_chain_steps(chain_id)
            
            if not steps:
                return {'error': 'No reasoning steps found'}
            
            # Generate final conclusion by combining all steps
            final_conclusion, overall_confidence = self._synthesize_conclusion(steps)
            
            # Update chain in database
            with sqlite3.connect(self.db_path) as conn:
                conn.execute("""
                    UPDATE reasoning_chains SET
                        final_conclusion = ?,
                        overall_confidence = ?,
                        completed_at = ?,
                        status = 'completed'
                    WHERE chain_id = ?
                """, (
                    final_conclusion, overall_confidence,
                    datetime.now().isoformat(), chain_id
                ))
            
            result = {
                'chain_id': chain_id,
                'final_conclusion': final_conclusion,
                'overall_confidence': overall_confidence,
                'step_count': len(steps),
                'reasoning_quality': self._assess_reasoning_quality(steps)
            }
            
            logger.info(f"Completed reasoning chain {chain_id}: {final_conclusion[:50]}...")
            return result
            
        except Exception as e:
            logger.error(f"Error completing reasoning chain: {e}")
            return {'error': str(e)}
    
    def reason_about_threat(self, threat_indicators: List[str], 
                           agent_id: str = "") -> Dict[str, Any]:
        """Perform comprehensive threat reasoning using multiple reasoning types"""
        try:
            problem = f"Analyze threat indicators: {', '.join(threat_indicators[:3])}..."
            
            # Start reasoning chain
            chain_id = self.start_reasoning_chain(
                agent_id, problem, "threat_assessment", threat_indicators
            )
            
            reasoning_results = {
                'chain_id': chain_id,
                'threat_indicators': threat_indicators,
                'reasoning_steps': [],
                'threat_assessment': {},
                'recommendations': []
            }
            
            # Step 1: Deductive reasoning - What do we know for certain?
            known_facts = f"Observed indicators: {', '.join(threat_indicators)}"
            step1_id = self.add_reasoning_step(
                chain_id, ReasoningType.DEDUCTIVE, known_facts,
                "indicator_classification",
                evidence=threat_indicators
            )
            
            # Step 2: Inductive reasoning - Pattern recognition
            pattern_premise = "Multiple indicators suggest coordinated activity"
            step2_id = self.add_reasoning_step(
                chain_id, ReasoningType.INDUCTIVE, pattern_premise,
                "pattern_generalization",
                evidence=[f"Indicator pattern analysis: {len(threat_indicators)} indicators"]
            )
            
            # Step 3: Abductive reasoning - Best explanation
            explanation_premise = "Finding most likely explanation for observed indicators"
            step3_id = self.add_reasoning_step(
                chain_id, ReasoningType.ABDUCTIVE, explanation_premise,
                "hypothesis_selection",
                assumptions=["Indicators represent malicious activity"]
            )
            
            # Step 4: Causal reasoning - Impact analysis
            impact_premise = "If threat is real, what are potential consequences?"
            step4_id = self.add_reasoning_step(
                chain_id, ReasoningType.CAUSAL, impact_premise,
                "impact_analysis",
                assumptions=["Current security controls", "System vulnerabilities"]
            )
            
            # Complete the reasoning chain
            completion_result = self.complete_reasoning_chain(chain_id)
            reasoning_results.update(completion_result)
            
            # Generate threat assessment based on reasoning
            steps = self._get_chain_steps(chain_id)
            avg_confidence = sum(step['confidence'] for step in steps) / len(steps) if steps else 0
            
            if avg_confidence > 0.8:
                threat_level = "HIGH"
                priority = "immediate"
            elif avg_confidence > 0.6:
                threat_level = "MEDIUM"
                priority = "elevated"
            else:
                threat_level = "LOW"
                priority = "monitor"
            
            reasoning_results['threat_assessment'] = {
                'threat_level': threat_level,
                'priority': priority,
                'confidence': avg_confidence,
                'reasoning_quality': completion_result.get('reasoning_quality', 0.5)
            }
            
            # Generate recommendations
            recommendations = [
                {
                    'action': 'investigate_indicators',
                    'priority': 'high' if avg_confidence > 0.7 else 'medium',
                    'rationale': 'Based on deductive analysis of indicators'
                },
                {
                    'action': 'monitor_systems',
                    'priority': 'medium',
                    'rationale': 'Based on causal impact analysis'
                }
            ]
            
            if threat_level == "HIGH":
                recommendations.insert(0, {
                    'action': 'activate_incident_response',
                    'priority': 'critical',
                    'rationale': 'High confidence threat detected through multi-step reasoning'
                })
            
            reasoning_results['recommendations'] = recommendations
            
            logger.info(f"Threat reasoning complete: {threat_level} threat (confidence: {avg_confidence:.3f})")
            return reasoning_results
            
        except Exception as e:
            logger.error(f"Error in threat reasoning: {e}")
            return {'error': str(e)}
    
    def _apply_reasoning(self, reasoning_type: ReasoningType, premise: str,
                        inference_rule: str, evidence: List[str]) -> Tuple[str, float]:
        """Apply specific reasoning type to generate conclusion"""
        try:
            base_confidence = 0.5
            
            if reasoning_type == ReasoningType.DEDUCTIVE:
                # Deductive: If premise is true and rule is valid, conclusion follows
                conclusion = f"Therefore: {self._apply_deductive_rule(premise, inference_rule)}"
                confidence = min(0.9, base_confidence + (len(evidence) * 0.1))
                
            elif reasoning_type == ReasoningType.INDUCTIVE:
                # Inductive: Generalize from specific observations
                conclusion = f"Pattern suggests: {self._apply_inductive_rule(premise, evidence)}"
                confidence = min(0.8, base_confidence + (len(evidence) * 0.05))
                
            elif reasoning_type == ReasoningType.ABDUCTIVE:
                # Abductive: Best explanation for observations
                conclusion = f"Most likely explanation: {self._apply_abductive_rule(premise, evidence)}"
                confidence = min(0.7, base_confidence + (len(evidence) * 0.08))
                
            elif reasoning_type == ReasoningType.CAUSAL:
                # Causal: Cause and effect relationships
                conclusion = f"Causal inference: {self._apply_causal_rule(premise, evidence)}"
                confidence = min(0.75, base_confidence + 0.2)
                
            elif reasoning_type == ReasoningType.STRATEGIC:
                # Strategic: Goal-oriented reasoning
                conclusion = f"Strategic conclusion: {self._apply_strategic_rule(premise)}"
                confidence = min(0.8, base_confidence + 0.25)
                
            else:
                # Default reasoning
                conclusion = f"Conclusion based on {reasoning_type.value}: {premise}"
                confidence = base_confidence
            
            return conclusion, confidence
            
        except Exception as e:
            logger.error(f"Error applying reasoning: {e}")
            return f"Unable to reason about: {premise}", 0.1
    
    def _apply_deductive_rule(self, premise: str, rule: str) -> str:
        """Apply deductive reasoning rule"""
        if "indicators" in premise.lower():
            return "specific threat types can be identified from these indicators"
        elif "malicious" in premise.lower():
            return "security response is warranted"
        else:
            return f"logical consequence follows from {premise[:30]}..."
    
    def _apply_inductive_rule(self, premise: str, evidence: List[str]) -> str:
        """Apply inductive reasoning rule"""
        if len(evidence) > 3:
            return "systematic attack pattern likely in progress"
        elif len(evidence) > 1:
            return "coordinated threat activity possible"
        else:
            return "isolated incident or false positive"
    
    def _apply_abductive_rule(self, premise: str, evidence: List[str]) -> str:
        """Apply abductive reasoning rule"""
        if any("network" in str(e).lower() for e in evidence):
            return "network-based attack scenario"
        elif any("file" in str(e).lower() for e in evidence):
            return "malware or file-based attack"
        else:
            return "unknown attack vector requiring investigation"
    
    def _apply_causal_rule(self, premise: str, evidence: List[str]) -> str:
        """Apply causal reasoning rule"""
        return "if threat is confirmed, system compromise and data exfiltration may occur"
    
    def _apply_strategic_rule(self, premise: str) -> str:
        """Apply strategic reasoning rule"""
        return "optimal response is to investigate thoroughly while maintaining operational security"
    
    def _select_inference_rule(self, reasoning_type: ReasoningType) -> str:
        """Select appropriate inference rule for reasoning type"""
        rule_map = {
            ReasoningType.DEDUCTIVE: "modus_ponens",
            ReasoningType.INDUCTIVE: "generalization",
            ReasoningType.ABDUCTIVE: "inference_to_best_explanation",
            ReasoningType.CAUSAL: "causal_inference",
            ReasoningType.STRATEGIC: "means_ends_analysis"
        }
        return rule_map.get(reasoning_type, "default_inference")
    
    def _get_chain_steps(self, chain_id: str) -> List[Dict[str, Any]]:
        """Get all steps for a reasoning chain"""
        try:
            with sqlite3.connect(self.db_path) as conn:
                cursor = conn.execute("""
                    SELECT * FROM reasoning_steps 
                    WHERE chain_id = ? 
                    ORDER BY step_number
                """, (chain_id,))
                
                steps = []
                for row in cursor.fetchall():
                    step = {
                        'step_id': row[0],
                        'step_number': row[2],
                        'reasoning_type': row[3],
                        'premise': row[4],
                        'inference_rule': row[5],
                        'conclusion': row[6],
                        'confidence': row[7],
                        'evidence': json.loads(row[8]) if row[8] else [],
                        'assumptions': json.loads(row[9]) if row[9] else []
                    }
                    steps.append(step)
                
                return steps
                
        except Exception as e:
            logger.error(f"Error getting chain steps: {e}")
            return []
    
    def _synthesize_conclusion(self, steps: List[Dict[str, Any]]) -> Tuple[str, float]:
        """Synthesize final conclusion from reasoning steps"""
        if not steps:
            return "No conclusion reached", 0.0
        
        # Weight later steps more heavily
        weighted_confidence = 0.0
        total_weight = 0.0
        
        conclusions = []
        
        for i, step in enumerate(steps):
            weight = (i + 1) / len(steps)  # Later steps have higher weight
            weighted_confidence += step['confidence'] * weight
            total_weight += weight
            conclusions.append(step['conclusion'])
        
        final_confidence = weighted_confidence / total_weight if total_weight > 0 else 0.0
        
        # Create synthesized conclusion
        if len(conclusions) == 1:
            final_conclusion = conclusions[0]
        else:
            final_conclusion = f"Multi-step analysis concludes: {conclusions[-1]}"
        
        return final_conclusion, final_confidence
    
    def _assess_reasoning_quality(self, steps: List[Dict[str, Any]]) -> float:
        """Assess the quality of the reasoning chain"""
        if not steps:
            return 0.0
        
        quality_score = 0.0
        
        # Diversity of reasoning types (better)
        reasoning_types = set(step['reasoning_type'] for step in steps)
        diversity_score = min(len(reasoning_types) / 4.0, 1.0)  # Max 4 types
        
        # Logical progression (each step builds on previous)
        progression_score = 1.0  # Assume good progression
        
        # Evidence quality (more evidence is better)
        avg_evidence = sum(len(step['evidence']) for step in steps) / len(steps)
        evidence_score = min(avg_evidence / 3.0, 1.0)
        
        # Confidence consistency (not too variable)
        confidences = [step['confidence'] for step in steps]
        confidence_std = (max(confidences) - min(confidences)) if len(confidences) > 1 else 0
        consistency_score = max(0.0, 1.0 - confidence_std)
        
        quality_score = (
            diversity_score * 0.3 +
            progression_score * 0.3 +
            evidence_score * 0.2 +
            consistency_score * 0.2
        )
        
        return quality_score
    
    def _load_inference_rules(self) -> Dict[str, Any]:
        """Load available inference rules"""
        return {
            'modus_ponens': {'pattern': 'If P then Q; P; therefore Q', 'confidence': 0.9},
            'generalization': {'pattern': 'Multiple instances of X; therefore X is common', 'confidence': 0.7},
            'causal_inference': {'pattern': 'A precedes B; A and B correlated; A causes B', 'confidence': 0.6},
            'best_explanation': {'pattern': 'X explains Y better than alternatives', 'confidence': 0.8}
        }
    
    def _load_reasoning_patterns(self) -> Dict[str, Any]:
        """Load common reasoning patterns"""
        return {
            'threat_analysis': [
                ReasoningType.DEDUCTIVE,
                ReasoningType.INDUCTIVE,
                ReasoningType.ABDUCTIVE,
                ReasoningType.CAUSAL
            ],
            'vulnerability_assessment': [
                ReasoningType.DEDUCTIVE,
                ReasoningType.STRATEGIC,
                ReasoningType.CAUSAL
            ]
        }
    
    def get_reasoning_statistics(self) -> Dict[str, Any]:
        """Get comprehensive reasoning system statistics"""
        try:
            with sqlite3.connect(self.db_path) as conn:
                stats = {}
                
                # Basic counts
                cursor = conn.execute("SELECT COUNT(*) FROM reasoning_chains")
                stats['total_chains'] = cursor.fetchone()[0]
                
                cursor = conn.execute("SELECT COUNT(*) FROM reasoning_steps")
                stats['total_steps'] = cursor.fetchone()[0]
                
                # Reasoning type distribution
                cursor = conn.execute("""
                    SELECT reasoning_type, COUNT(*) 
                    FROM reasoning_steps 
                    GROUP BY reasoning_type
                """)
                stats['reasoning_types'] = dict(cursor.fetchall())
                
                # Average confidence by reasoning type
                cursor = conn.execute("""
                    SELECT reasoning_type, AVG(confidence) 
                    FROM reasoning_steps 
                    GROUP BY reasoning_type
                """)
                stats['avg_confidence_by_type'] = dict(cursor.fetchall())
                
                # Chain completion rate
                cursor = conn.execute("SELECT COUNT(*) FROM reasoning_chains WHERE status = 'completed'")
                completed = cursor.fetchone()[0]
                stats['completion_rate'] = completed / stats['total_chains'] if stats['total_chains'] > 0 else 0
                
                return stats
                
        except Exception as e:
            logger.error(f"Error getting reasoning statistics: {e}")
            return {'error': str(e)}

# Export the main classes
__all__ = ['ChainOfThoughtReasoning', 'ReasoningChain', 'ReasoningStep', 'ReasoningType']