File size: 50,266 Bytes
23804b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
"""
Persistent Memory Architecture for Advanced Cognitive Agents
Long-term memory systems with cross-session persistence and strategic thinking
"""

import sqlite3
import json
import pickle
import numpy as np
from typing import Dict, List, Optional, Any, Tuple, Union, Set
from dataclasses import dataclass, asdict
from datetime import datetime, timedelta
import logging
from abc import ABC, abstractmethod
from collections import defaultdict, deque
import asyncio
import threading
import time
from enum import Enum
import hashlib
import uuid
from pathlib import Path

class MemoryType(Enum):
    EPISODIC = "episodic"           # Events and experiences
    SEMANTIC = "semantic"           # Facts and knowledge
    PROCEDURAL = "procedural"       # Skills and procedures
    WORKING = "working"             # Temporary active memory
    STRATEGIC = "strategic"         # Long-term goals and plans

class ReasoningType(Enum):
    DEDUCTIVE = "deductive"         # General to specific
    INDUCTIVE = "inductive"         # Specific to general
    ABDUCTIVE = "abductive"         # Best explanation
    ANALOGICAL = "analogical"       # Pattern matching
    CAUSAL = "causal"              # Cause and effect
    STRATEGIC = "strategic"         # Goal-oriented
    COUNTERFACTUAL = "counterfactual"  # What-if scenarios
    METACOGNITIVE = "metacognitive"    # Thinking about thinking

@dataclass
class MemoryItem:
    """Base class for memory items"""
    memory_id: str
    memory_type: MemoryType
    content: Dict[str, Any]
    timestamp: str
    importance: float  # 0.0 to 1.0
    access_count: int
    last_accessed: str
    tags: List[str]
    metadata: Dict[str, Any]
    expires_at: Optional[str] = None

@dataclass
class EpisodicMemory(MemoryItem):
    """Specific events and experiences"""
    event_type: str
    context: Dict[str, Any]
    outcome: Dict[str, Any]
    learned_patterns: List[str]
    emotional_valence: float  # -1.0 (negative) to 1.0 (positive)
    
    def __post_init__(self):
        self.memory_type = MemoryType.EPISODIC

@dataclass
class SemanticMemory(MemoryItem):
    """Facts and general knowledge"""
    concept: str
    properties: Dict[str, Any]
    relationships: List[Dict[str, Any]]
    confidence: float
    evidence: List[str]
    
    def __post_init__(self):
        self.memory_type = MemoryType.SEMANTIC

@dataclass
class ProceduralMemory(MemoryItem):
    """Skills and procedures"""
    skill_name: str
    steps: List[Dict[str, Any]]
    conditions: Dict[str, Any]
    success_rate: float
    optimization_history: List[Dict[str, Any]]
    
    def __post_init__(self):
        self.memory_type = MemoryType.PROCEDURAL

@dataclass
class WorkingMemory(MemoryItem):
    """Temporary active memory"""
    current_goal: str
    active_context: Dict[str, Any]
    attention_focus: List[str]
    processing_state: Dict[str, Any]
    
    def __post_init__(self):
        self.memory_type = MemoryType.WORKING

@dataclass
class StrategicMemory(MemoryItem):
    """Long-term goals and strategic plans"""
    goal: str
    plan_steps: List[Dict[str, Any]]
    progress: float
    deadline: Optional[str]
    priority: int
    dependencies: List[str]
    success_criteria: Dict[str, Any]
    
    def __post_init__(self):
        self.memory_type = MemoryType.STRATEGIC

@dataclass
class ReasoningChain:
    """Represents a chain of reasoning"""
    chain_id: str
    reasoning_type: ReasoningType
    premise: Dict[str, Any]
    steps: List[Dict[str, Any]]
    conclusion: Dict[str, Any]
    confidence: float
    evidence: List[str]
    timestamp: str
    agent_id: str
    context: Dict[str, Any]

class MemoryConsolidator:
    """Consolidates and optimizes memory over time"""
    
    def __init__(self, database_path: str):
        self.database_path = database_path
        self.logger = logging.getLogger(__name__)
        self.consolidation_rules = self._init_consolidation_rules()
    
    def _init_consolidation_rules(self) -> Dict[str, Any]:
        """Initialize memory consolidation rules"""
        return {
            'episodic_to_semantic': {
                'min_occurrences': 3,
                'similarity_threshold': 0.8,
                'time_window_days': 30
            },
            'importance_decay': {
                'decay_rate': 0.95,
                'min_importance': 0.1,
                'access_boost': 1.1
            },
            'working_memory_cleanup': {
                'max_age_hours': 24,
                'max_items': 100,
                'importance_threshold': 0.3
            },
            'strategic_plan_updates': {
                'progress_review_days': 7,
                'priority_adjustment': True,
                'dependency_check': True
            }
        }
    
    async def consolidate_memories(self, agent_id: str) -> Dict[str, Any]:
        """Perform memory consolidation for an agent"""
        consolidation_results = {
            'episodic_consolidation': 0,
            'semantic_updates': 0,
            'procedural_optimizations': 0,
            'working_memory_cleanup': 0,
            'strategic_updates': 0,
            'total_processing_time': 0
        }
        
        start_time = time.time()
        
        try:
            # Episodic to semantic consolidation
            consolidation_results['episodic_consolidation'] = await self._consolidate_episodic_to_semantic(agent_id)
            
            # Update semantic relationships
            consolidation_results['semantic_updates'] = await self._update_semantic_relationships(agent_id)
            
            # Optimize procedural memories
            consolidation_results['procedural_optimizations'] = await self._optimize_procedural_memories(agent_id)
            
            # Clean working memory
            consolidation_results['working_memory_cleanup'] = await self._cleanup_working_memory(agent_id)
            
            # Update strategic plans
            consolidation_results['strategic_updates'] = await self._update_strategic_plans(agent_id)
            
            consolidation_results['total_processing_time'] = time.time() - start_time
            
            self.logger.info(f"Memory consolidation completed for agent {agent_id}: {consolidation_results}")
            
        except Exception as e:
            self.logger.error(f"Error during memory consolidation for agent {agent_id}: {e}")
        
        return consolidation_results
    
    async def _consolidate_episodic_to_semantic(self, agent_id: str) -> int:
        """Convert repeated episodic memories to semantic knowledge"""
        consolidated_count = 0
        
        with sqlite3.connect(self.database_path) as conn:
            # Find similar episodic memories
            cursor = conn.execute("""
                SELECT memory_id, content, timestamp, importance, access_count
                FROM memory_items 
                WHERE agent_id = ? AND memory_type = 'episodic' 
                ORDER BY timestamp DESC LIMIT 1000
            """, (agent_id,))
            
            episodic_memories = cursor.fetchall()
            
            # Group similar memories
            memory_groups = self._group_similar_memories(episodic_memories)
            
            for group in memory_groups:
                if len(group) >= self.consolidation_rules['episodic_to_semantic']['min_occurrences']:
                    # Create semantic memory from pattern
                    semantic_memory = self._create_semantic_from_episodic_group(group, agent_id)
                    
                    if semantic_memory:
                        # Insert semantic memory
                        conn.execute("""
                            INSERT INTO memory_items 
                            (memory_id, agent_id, memory_type, content, timestamp, importance, 
                             access_count, last_accessed, tags, metadata)
                            VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?)
                        """, (
                            semantic_memory.memory_id,
                            agent_id,
                            semantic_memory.memory_type.value,
                            json.dumps(asdict(semantic_memory)),
                            semantic_memory.timestamp,
                            semantic_memory.importance,
                            semantic_memory.access_count,
                            semantic_memory.last_accessed,
                            json.dumps(semantic_memory.tags),
                            json.dumps(semantic_memory.metadata)
                        ))
                        
                        consolidated_count += 1
        
        return consolidated_count
    
    def _group_similar_memories(self, memories: List[Tuple]) -> List[List[Dict]]:
        """Group similar episodic memories together"""
        memory_groups = []
        processed_memories = set()
        
        for i, memory in enumerate(memories):
            if i in processed_memories:
                continue
                
            current_group = [memory]
            memory_content = json.loads(memory[1])
            
            for j, other_memory in enumerate(memories[i+1:], i+1):
                if j in processed_memories:
                    continue
                
                other_content = json.loads(other_memory[1])
                similarity = self._calculate_memory_similarity(memory_content, other_content)
                
                if similarity >= self.consolidation_rules['episodic_to_semantic']['similarity_threshold']:
                    current_group.append(other_memory)
                    processed_memories.add(j)
            
            if len(current_group) > 1:
                memory_groups.append(current_group)
            
            processed_memories.add(i)
        
        return memory_groups
    
    def _calculate_memory_similarity(self, content1: Dict, content2: Dict) -> float:
        """Calculate similarity between two memory contents"""
        # Simple similarity based on common keys and values
        common_keys = set(content1.keys()) & set(content2.keys())
        
        if not common_keys:
            return 0.0
        
        similarity_scores = []
        
        for key in common_keys:
            val1, val2 = content1[key], content2[key]
            
            if isinstance(val1, str) and isinstance(val2, str):
                # String similarity (simplified)
                similarity_scores.append(1.0 if val1 == val2 else 0.5 if val1.lower() in val2.lower() else 0.0)
            elif isinstance(val1, (int, float)) and isinstance(val2, (int, float)):
                # Numeric similarity
                max_val = max(abs(val1), abs(val2))
                if max_val > 0:
                    similarity_scores.append(1.0 - abs(val1 - val2) / max_val)
                else:
                    similarity_scores.append(1.0)
            else:
                # Default similarity
                similarity_scores.append(1.0 if val1 == val2 else 0.0)
        
        return sum(similarity_scores) / len(similarity_scores) if similarity_scores else 0.0
    
    def _create_semantic_from_episodic_group(self, memory_group: List[Tuple], agent_id: str) -> Optional[SemanticMemory]:
        """Create semantic memory from a group of similar episodic memories"""
        try:
            # Extract common patterns and concepts
            all_contents = [json.loads(memory[1]) for memory in memory_group]
            
            # Find common concept
            common_elements = set(all_contents[0].keys())
            for content in all_contents[1:]:
                common_elements &= set(content.keys())
            
            if not common_elements:
                return None
            
            # Create semantic concept
            concept_name = f"pattern_{len(memory_group)}_occurrences_{int(time.time())}"
            
            properties = {}
            for key in common_elements:
                values = [content[key] for content in all_contents]
                if len(set(map(str, values))) == 1:
                    properties[key] = values[0]  # Consistent value
                else:
                    properties[f"{key}_variations"] = list(set(map(str, values)))
            
            # Calculate confidence based on consistency and frequency
            confidence = min(1.0, len(memory_group) / 10.0)
            
            semantic_memory = SemanticMemory(
                memory_id=f"semantic_{uuid.uuid4().hex[:8]}",
                memory_type=MemoryType.SEMANTIC,
                content={},
                timestamp=datetime.now().isoformat(),
                importance=sum(memory[3] for memory in memory_group) / len(memory_group),
                access_count=0,
                last_accessed=datetime.now().isoformat(),
                tags=["consolidated", "pattern"],
                metadata={"source_episodic_count": len(memory_group)},
                concept=concept_name,
                properties=properties,
                relationships=[],
                confidence=confidence,
                evidence=[memory[0] for memory in memory_group]
            )
            
            return semantic_memory
            
        except Exception as e:
            self.logger.error(f"Error creating semantic memory from episodic group: {e}")
            return None
    
    async def _update_semantic_relationships(self, agent_id: str) -> int:
        """Update relationships between semantic memories"""
        updates_count = 0
        
        with sqlite3.connect(self.database_path) as conn:
            # Get all semantic memories
            cursor = conn.execute("""
                SELECT memory_id, content FROM memory_items 
                WHERE agent_id = ? AND memory_type = 'semantic'
            """, (agent_id,))
            
            semantic_memories = cursor.fetchall()
            
            # Find and update relationships
            for i, memory1 in enumerate(semantic_memories):
                memory1_content = json.loads(memory1[1])
                
                for memory2 in semantic_memories[i+1:]:
                    memory2_content = json.loads(memory2[1])
                    
                    # Check for potential relationships
                    relationship = self._identify_semantic_relationship(memory1_content, memory2_content)
                    
                    if relationship:
                        # Update both memories with the relationship
                        self._update_memory_relationships(conn, memory1[0], relationship)
                        self._update_memory_relationships(conn, memory2[0], relationship)
                        updates_count += 1
        
        return updates_count
    
    def _identify_semantic_relationship(self, content1: Dict, content2: Dict) -> Optional[Dict[str, Any]]:
        """Identify relationships between semantic memories"""
        # Simple relationship detection based on content overlap
        common_properties = set()
        
        if 'properties' in content1 and 'properties' in content2:
            props1 = content1['properties']
            props2 = content2['properties']
            
            for key in props1:
                if key in props2 and props1[key] == props2[key]:
                    common_properties.add(key)
        
        if len(common_properties) >= 2:
            return {
                'type': 'similarity',
                'strength': len(common_properties) / max(len(content1.get('properties', {})), len(content2.get('properties', {})), 1),
                'common_properties': list(common_properties)
            }
        
        return None
    
    def _update_memory_relationships(self, conn: sqlite3.Connection, memory_id: str, relationship: Dict[str, Any]):
        """Update memory with new relationship"""
        cursor = conn.execute("SELECT content FROM memory_items WHERE memory_id = ?", (memory_id,))
        result = cursor.fetchone()
        
        if result:
            content = json.loads(result[0])
            if 'relationships' not in content:
                content['relationships'] = []
            
            content['relationships'].append(relationship)
            
            conn.execute(
                "UPDATE memory_items SET content = ?, last_accessed = ? WHERE memory_id = ?",
                (json.dumps(content), datetime.now().isoformat(), memory_id)
            )
    
    async def _optimize_procedural_memories(self, agent_id: str) -> int:
        """Optimize procedural memories based on success rates"""
        optimizations = 0
        
        with sqlite3.connect(self.database_path) as conn:
            cursor = conn.execute("""
                SELECT memory_id, content FROM memory_items 
                WHERE agent_id = ? AND memory_type = 'procedural'
            """, (agent_id,))
            
            procedural_memories = cursor.fetchall()
            
            for memory_id, content_json in procedural_memories:
                content = json.loads(content_json)
                
                if 'success_rate' in content and content['success_rate'] < 0.7:
                    # Optimize low-performing procedures
                    optimized_steps = self._optimize_procedure_steps(content.get('steps', []))
                    
                    if optimized_steps != content.get('steps', []):
                        content['steps'] = optimized_steps
                        content['optimization_history'] = content.get('optimization_history', [])
                        content['optimization_history'].append({
                            'timestamp': datetime.now().isoformat(),
                            'type': 'step_optimization',
                            'previous_success_rate': content.get('success_rate', 0.0)
                        })
                        
                        conn.execute(
                            "UPDATE memory_items SET content = ?, last_accessed = ? WHERE memory_id = ?",
                            (json.dumps(content), datetime.now().isoformat(), memory_id)
                        )
                        
                        optimizations += 1
        
        return optimizations
    
    def _optimize_procedure_steps(self, steps: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
        """Optimize procedure steps for better success rate"""
        # Simple optimization: reorder steps by success probability
        optimized_steps = sorted(steps, key=lambda x: x.get('success_probability', 0.5), reverse=True)
        
        # Add validation steps
        for step in optimized_steps:
            if 'validation' not in step:
                step['validation'] = {
                    'check_conditions': True,
                    'verify_outcome': True,
                    'rollback_on_failure': True
                }
        
        return optimized_steps
    
    async def _cleanup_working_memory(self, agent_id: str) -> int:
        """Clean up old and low-importance working memory items"""
        cleanup_count = 0
        
        with sqlite3.connect(self.database_path) as conn:
            # Remove old working memory items
            cutoff_time = (datetime.now() - timedelta(
                hours=self.consolidation_rules['working_memory_cleanup']['max_age_hours']
            )).isoformat()
            
            cursor = conn.execute("""
                DELETE FROM memory_items 
                WHERE agent_id = ? AND memory_type = 'working' 
                AND (timestamp < ? OR importance < ?)
            """, (agent_id, cutoff_time, self.consolidation_rules['working_memory_cleanup']['importance_threshold']))
            
            cleanup_count = cursor.rowcount
            
            # Limit working memory to max items
            cursor = conn.execute("""
                SELECT memory_id FROM memory_items 
                WHERE agent_id = ? AND memory_type = 'working' 
                ORDER BY importance DESC, last_accessed DESC
            """, (agent_id,))
            
            working_memories = cursor.fetchall()
            max_items = self.consolidation_rules['working_memory_cleanup']['max_items']
            
            if len(working_memories) > max_items:
                memories_to_delete = working_memories[max_items:]
                for memory_id_tuple in memories_to_delete:
                    conn.execute("DELETE FROM memory_items WHERE memory_id = ?", memory_id_tuple)
                    cleanup_count += 1
        
        return cleanup_count
    
    async def _update_strategic_plans(self, agent_id: str) -> int:
        """Update strategic plans based on progress and dependencies"""
        updates = 0
        
        with sqlite3.connect(self.database_path) as conn:
            cursor = conn.execute("""
                SELECT memory_id, content FROM memory_items 
                WHERE agent_id = ? AND memory_type = 'strategic'
            """, (agent_id,))
            
            strategic_memories = cursor.fetchall()
            
            for memory_id, content_json in strategic_memories:
                content = json.loads(content_json)
                updated = False
                
                # Update progress based on completed steps
                if 'plan_steps' in content:
                    completed_steps = sum(1 for step in content['plan_steps'] if step.get('completed', False))
                    total_steps = len(content['plan_steps'])
                    
                    if total_steps > 0:
                        new_progress = completed_steps / total_steps
                        if new_progress != content.get('progress', 0.0):
                            content['progress'] = new_progress
                            updated = True
                
                # Check deadlines and adjust priorities
                if 'deadline' in content and content['deadline']:
                    deadline = datetime.fromisoformat(content['deadline'])
                    days_until_deadline = (deadline - datetime.now()).days
                    
                    if days_until_deadline <= 7 and content.get('priority', 0) < 8:
                        content['priority'] = min(10, content.get('priority', 0) + 2)
                        updated = True
                
                # Check dependencies
                if 'dependencies' in content:
                    resolved_dependencies = []
                    for dep in content['dependencies']:
                        if self._is_dependency_resolved(conn, agent_id, dep):
                            resolved_dependencies.append(dep)
                    
                    if resolved_dependencies:
                        content['dependencies'] = [dep for dep in content['dependencies'] 
                                                 if dep not in resolved_dependencies]
                        updated = True
                
                if updated:
                    conn.execute(
                        "UPDATE memory_items SET content = ?, last_accessed = ? WHERE memory_id = ?",
                        (json.dumps(content), datetime.now().isoformat(), memory_id)
                    )
                    updates += 1
        
        return updates
    
    def _is_dependency_resolved(self, conn: sqlite3.Connection, agent_id: str, dependency: str) -> bool:
        """Check if a strategic dependency has been resolved"""
        cursor = conn.execute("""
            SELECT COUNT(*) FROM memory_items 
            WHERE agent_id = ? AND memory_type = 'strategic' 
            AND content LIKE ? AND content LIKE '%"progress": 1.0%'
        """, (agent_id, f'%{dependency}%'))
        
        return cursor.fetchone()[0] > 0

class PersistentMemorySystem:
    """Main persistent memory system for cognitive agents"""
    
    def __init__(self, database_path: str = "data/cognitive/persistent_memory.db"):
        self.database_path = Path(database_path)
        self.database_path.parent.mkdir(parents=True, exist_ok=True)
        
        self.logger = logging.getLogger(__name__)
        self.consolidator = MemoryConsolidator(str(self.database_path))
        
        # Initialize database
        self._init_database()
        
        # Background consolidation
        self.consolidation_running = False
        self.consolidation_interval = 6 * 60 * 60  # 6 hours
    
    def _init_database(self):
        """Initialize SQLite database for persistent memory"""
        with sqlite3.connect(self.database_path) as conn:
            conn.execute("PRAGMA journal_mode=WAL")
            conn.execute("PRAGMA synchronous=NORMAL")
            conn.execute("PRAGMA cache_size=10000")
            conn.execute("PRAGMA temp_store=memory")
            
            # Memory items table
            conn.execute("""
                CREATE TABLE IF NOT EXISTS memory_items (
                    memory_id TEXT PRIMARY KEY,
                    agent_id TEXT NOT NULL,
                    memory_type TEXT NOT NULL,
                    content TEXT NOT NULL,
                    timestamp TEXT NOT NULL,
                    importance REAL NOT NULL,
                    access_count INTEGER DEFAULT 0,
                    last_accessed TEXT NOT NULL,
                    tags TEXT NOT NULL,
                    metadata TEXT NOT NULL,
                    expires_at TEXT,
                    created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
                )
            """)
            
            # Reasoning chains table
            conn.execute("""
                CREATE TABLE IF NOT EXISTS reasoning_chains (
                    chain_id TEXT PRIMARY KEY,
                    agent_id TEXT NOT NULL,
                    reasoning_type TEXT NOT NULL,
                    premise TEXT NOT NULL,
                    steps TEXT NOT NULL,
                    conclusion TEXT NOT NULL,
                    confidence REAL NOT NULL,
                    evidence TEXT NOT NULL,
                    timestamp TEXT NOT NULL,
                    context TEXT NOT NULL,
                    created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
                )
            """)
            
            # Memory associations table
            conn.execute("""
                CREATE TABLE IF NOT EXISTS memory_associations (
                    id INTEGER PRIMARY KEY AUTOINCREMENT,
                    memory_id_1 TEXT NOT NULL,
                    memory_id_2 TEXT NOT NULL,
                    association_type TEXT NOT NULL,
                    strength REAL NOT NULL,
                    created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
                    FOREIGN KEY (memory_id_1) REFERENCES memory_items (memory_id),
                    FOREIGN KEY (memory_id_2) REFERENCES memory_items (memory_id)
                )
            """)
            
            # Create indexes
            conn.execute("CREATE INDEX IF NOT EXISTS idx_memory_agent_type ON memory_items (agent_id, memory_type)")
            conn.execute("CREATE INDEX IF NOT EXISTS idx_memory_timestamp ON memory_items (timestamp)")
            conn.execute("CREATE INDEX IF NOT EXISTS idx_memory_importance ON memory_items (importance)")
            conn.execute("CREATE INDEX IF NOT EXISTS idx_reasoning_agent ON reasoning_chains (agent_id)")
            conn.execute("CREATE INDEX IF NOT EXISTS idx_reasoning_type ON reasoning_chains (reasoning_type)")
    
    async def store_memory(self, agent_id: str, memory: MemoryItem) -> bool:
        """Store a memory item"""
        try:
            with sqlite3.connect(self.database_path) as conn:
                conn.execute("""
                    INSERT OR REPLACE INTO memory_items 
                    (memory_id, agent_id, memory_type, content, timestamp, importance, 
                     access_count, last_accessed, tags, metadata, expires_at)
                    VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)
                """, (
                    memory.memory_id,
                    agent_id,
                    memory.memory_type.value,
                    json.dumps(asdict(memory)),
                    memory.timestamp,
                    memory.importance,
                    memory.access_count,
                    memory.last_accessed,
                    json.dumps(memory.tags),
                    json.dumps(memory.metadata),
                    memory.expires_at
                ))
            
            self.logger.debug(f"Stored memory {memory.memory_id} for agent {agent_id}")
            return True
            
        except Exception as e:
            self.logger.error(f"Error storing memory {memory.memory_id} for agent {agent_id}: {e}")
            return False
    
    async def retrieve_memories(self, agent_id: str, memory_type: Optional[MemoryType] = None,
                              tags: Optional[List[str]] = None, limit: int = 100) -> List[MemoryItem]:
        """Retrieve memories for an agent"""
        memories = []
        
        try:
            with sqlite3.connect(self.database_path) as conn:
                query = "SELECT * FROM memory_items WHERE agent_id = ?"
                params = [agent_id]
                
                if memory_type:
                    query += " AND memory_type = ?"
                    params.append(memory_type.value)
                
                if tags:
                    tag_conditions = " AND (" + " OR ".join(["tags LIKE ?" for _ in tags]) + ")"
                    query += tag_conditions
                    params.extend([f"%{tag}%" for tag in tags])
                
                query += " ORDER BY importance DESC, last_accessed DESC LIMIT ?"
                params.append(limit)
                
                cursor = conn.execute(query, params)
                rows = cursor.fetchall()
                
                for row in rows:
                    # Update access count
                    conn.execute(
                        "UPDATE memory_items SET access_count = access_count + 1, last_accessed = ? WHERE memory_id = ?",
                        (datetime.now().isoformat(), row[0])
                    )
                    
                    # Reconstruct memory object
                    memory_data = json.loads(row[3])
                    memory_type_enum = MemoryType(row[2])
                    
                    if memory_type_enum == MemoryType.EPISODIC:
                        memory = EpisodicMemory(**memory_data)
                    elif memory_type_enum == MemoryType.SEMANTIC:
                        memory = SemanticMemory(**memory_data)
                    elif memory_type_enum == MemoryType.PROCEDURAL:
                        memory = ProceduralMemory(**memory_data)
                    elif memory_type_enum == MemoryType.WORKING:
                        memory = WorkingMemory(**memory_data)
                    elif memory_type_enum == MemoryType.STRATEGIC:
                        memory = StrategicMemory(**memory_data)
                    else:
                        memory = MemoryItem(**memory_data)
                    
                    memories.append(memory)
            
            self.logger.debug(f"Retrieved {len(memories)} memories for agent {agent_id}")
            
        except Exception as e:
            self.logger.error(f"Error retrieving memories for agent {agent_id}: {e}")
        
        return memories
    
    async def store_reasoning_chain(self, reasoning_chain: ReasoningChain) -> bool:
        """Store a reasoning chain"""
        try:
            with sqlite3.connect(self.database_path) as conn:
                conn.execute("""
                    INSERT OR REPLACE INTO reasoning_chains 
                    (chain_id, agent_id, reasoning_type, premise, steps, conclusion, 
                     confidence, evidence, timestamp, context)
                    VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?)
                """, (
                    reasoning_chain.chain_id,
                    reasoning_chain.agent_id,
                    reasoning_chain.reasoning_type.value,
                    json.dumps(reasoning_chain.premise),
                    json.dumps(reasoning_chain.steps),
                    json.dumps(reasoning_chain.conclusion),
                    reasoning_chain.confidence,
                    json.dumps(reasoning_chain.evidence),
                    reasoning_chain.timestamp,
                    json.dumps(reasoning_chain.context)
                ))
            
            self.logger.debug(f"Stored reasoning chain {reasoning_chain.chain_id}")
            return True
            
        except Exception as e:
            self.logger.error(f"Error storing reasoning chain {reasoning_chain.chain_id}: {e}")
            return False
    
    async def retrieve_reasoning_chains(self, agent_id: str, reasoning_type: Optional[ReasoningType] = None,
                                      limit: int = 50) -> List[ReasoningChain]:
        """Retrieve reasoning chains for an agent"""
        chains = []
        
        try:
            with sqlite3.connect(self.database_path) as conn:
                query = "SELECT * FROM reasoning_chains WHERE agent_id = ?"
                params = [agent_id]
                
                if reasoning_type:
                    query += " AND reasoning_type = ?"
                    params.append(reasoning_type.value)
                
                query += " ORDER BY confidence DESC, timestamp DESC LIMIT ?"
                params.append(limit)
                
                cursor = conn.execute(query, params)
                rows = cursor.fetchall()
                
                for row in rows:
                    chain = ReasoningChain(
                        chain_id=row[0],
                        agent_id=row[1],
                        reasoning_type=ReasoningType(row[2]),
                        premise=json.loads(row[3]),
                        steps=json.loads(row[4]),
                        conclusion=json.loads(row[5]),
                        confidence=row[6],
                        evidence=json.loads(row[7]),
                        timestamp=row[8],
                        context=json.loads(row[9])
                    )
                    chains.append(chain)
            
            self.logger.debug(f"Retrieved {len(chains)} reasoning chains for agent {agent_id}")
            
        except Exception as e:
            self.logger.error(f"Error retrieving reasoning chains for agent {agent_id}: {e}")
        
        return chains
    
    async def create_memory_association(self, memory_id_1: str, memory_id_2: str, 
                                      association_type: str, strength: float) -> bool:
        """Create an association between two memories"""
        try:
            with sqlite3.connect(self.database_path) as conn:
                conn.execute("""
                    INSERT INTO memory_associations (memory_id_1, memory_id_2, association_type, strength)
                    VALUES (?, ?, ?, ?)
                """, (memory_id_1, memory_id_2, association_type, strength))
            
            return True
            
        except Exception as e:
            self.logger.error(f"Error creating memory association: {e}")
            return False
    
    async def find_associated_memories(self, memory_id: str, min_strength: float = 0.5) -> List[Tuple[str, str, float]]:
        """Find memories associated with a given memory"""
        associations = []
        
        try:
            with sqlite3.connect(self.database_path) as conn:
                cursor = conn.execute("""
                    SELECT memory_id_2, association_type, strength 
                    FROM memory_associations 
                    WHERE memory_id_1 = ? AND strength >= ?
                    UNION
                    SELECT memory_id_1, association_type, strength 
                    FROM memory_associations 
                    WHERE memory_id_2 = ? AND strength >= ?
                    ORDER BY strength DESC
                """, (memory_id, min_strength, memory_id, min_strength))
                
                associations = cursor.fetchall()
            
        except Exception as e:
            self.logger.error(f"Error finding associated memories for {memory_id}: {e}")
        
        return associations
    
    def start_background_consolidation(self):
        """Start background memory consolidation process"""
        if self.consolidation_running:
            return
        
        self.consolidation_running = True
        
        def consolidation_loop():
            while self.consolidation_running:
                try:
                    # Get all agents with memories
                    with sqlite3.connect(self.database_path) as conn:
                        cursor = conn.execute("SELECT DISTINCT agent_id FROM memory_items")
                        agent_ids = [row[0] for row in cursor.fetchall()]
                    
                    # Consolidate memories for each agent
                    for agent_id in agent_ids:
                        asyncio.run(self.consolidator.consolidate_memories(agent_id))
                    
                    # Sleep until next consolidation cycle
                    time.sleep(self.consolidation_interval)
                    
                except Exception as e:
                    self.logger.error(f"Error in background consolidation: {e}")
                    time.sleep(300)  # Wait 5 minutes before retrying
        
        consolidation_thread = threading.Thread(target=consolidation_loop, daemon=True)
        consolidation_thread.start()
        
        self.logger.info("Started background memory consolidation")
    
    def stop_background_consolidation(self):
        """Stop background memory consolidation process"""
        self.consolidation_running = False
        self.logger.info("Stopped background memory consolidation")
    
    def get_memory_statistics(self, agent_id: str) -> Dict[str, Any]:
        """Get memory statistics for an agent"""
        stats = {}
        
        try:
            with sqlite3.connect(self.database_path) as conn:
                # Total memory counts by type
                cursor = conn.execute("""
                    SELECT memory_type, COUNT(*) FROM memory_items 
                    WHERE agent_id = ? GROUP BY memory_type
                """, (agent_id,))
                
                memory_counts = dict(cursor.fetchall())
                stats['memory_counts'] = memory_counts
                
                # Total memories
                stats['total_memories'] = sum(memory_counts.values())
                
                # Memory importance distribution
                cursor = conn.execute("""
                    SELECT AVG(importance), MIN(importance), MAX(importance) 
                    FROM memory_items WHERE agent_id = ?
                """, (agent_id,))
                
                importance_stats = cursor.fetchone()
                stats['importance_stats'] = {
                    'average': importance_stats[0] or 0.0,
                    'minimum': importance_stats[1] or 0.0,
                    'maximum': importance_stats[2] or 0.0
                }
                
                # Recent activity
                cursor = conn.execute("""
                    SELECT COUNT(*) FROM memory_items 
                    WHERE agent_id = ? AND last_accessed >= ?
                """, (agent_id, (datetime.now() - timedelta(days=1)).isoformat()))
                
                stats['recent_access_count'] = cursor.fetchone()[0]
                
                # Reasoning chain stats
                cursor = conn.execute("""
                    SELECT reasoning_type, COUNT(*) FROM reasoning_chains 
                    WHERE agent_id = ? GROUP BY reasoning_type
                """, (agent_id,))
                
                reasoning_counts = dict(cursor.fetchall())
                stats['reasoning_counts'] = reasoning_counts
                stats['total_reasoning_chains'] = sum(reasoning_counts.values())
                
                # Association stats
                cursor = conn.execute("""
                    SELECT COUNT(*) FROM memory_associations ma
                    JOIN memory_items mi1 ON ma.memory_id_1 = mi1.memory_id
                    JOIN memory_items mi2 ON ma.memory_id_2 = mi2.memory_id
                    WHERE mi1.agent_id = ? OR mi2.agent_id = ?
                """, (agent_id, agent_id))
                
                stats['association_count'] = cursor.fetchone()[0]
            
        except Exception as e:
            self.logger.error(f"Error getting memory statistics for agent {agent_id}: {e}")
            stats = {'error': str(e)}
        
        return stats

# Example usage and testing
if __name__ == "__main__":
    print("๐Ÿง  Persistent Memory Architecture Testing:")
    print("=" * 50)
    
    # Initialize persistent memory system
    memory_system = PersistentMemorySystem()
    
    # Start background consolidation
    memory_system.start_background_consolidation()
    
    async def test_memory_operations():
        agent_id = "test_agent_001"
        
        # Test episodic memory storage
        print("\n๐Ÿ“š Testing episodic memory storage...")
        episodic_memory = EpisodicMemory(
            memory_id="episode_001",
            memory_type=MemoryType.EPISODIC,
            content={},
            timestamp=datetime.now().isoformat(),
            importance=0.8,
            access_count=0,
            last_accessed=datetime.now().isoformat(),
            tags=["security_incident", "network_scan"],
            metadata={"source": "ids_alert"},
            event_type="network_scan_detected",
            context={"source_ip": "192.168.1.100", "target_ports": [22, 80, 443]},
            outcome={"blocked": True, "alert_generated": True},
            learned_patterns=["port_scan_pattern"],
            emotional_valence=0.2
        )
        
        success = await memory_system.store_memory(agent_id, episodic_memory)
        print(f"  Stored episodic memory: {success}")
        
        # Test semantic memory storage
        print("\n๐Ÿง  Testing semantic memory storage...")
        semantic_memory = SemanticMemory(
            memory_id="semantic_001",
            memory_type=MemoryType.SEMANTIC,
            content={},
            timestamp=datetime.now().isoformat(),
            importance=0.9,
            access_count=0,
            last_accessed=datetime.now().isoformat(),
            tags=["cybersecurity_knowledge", "network_security"],
            metadata={"domain": "network_security"},
            concept="port_scanning",
            properties={
                "definition": "Systematic probing of network ports to identify services",
                "indicators": ["sequential_port_access", "connection_attempts", "timeout_patterns"],
                "countermeasures": ["port_blocking", "rate_limiting", "intrusion_detection"]
            },
            relationships=[],
            confidence=0.95,
            evidence=["rfc_standards", "security_literature"]
        )
        
        success = await memory_system.store_memory(agent_id, semantic_memory)
        print(f"  Stored semantic memory: {success}")
        
        # Test procedural memory storage
        print("\nโš™๏ธ Testing procedural memory storage...")
        procedural_memory = ProceduralMemory(
            memory_id="procedure_001",
            memory_type=MemoryType.PROCEDURAL,
            content={},
            timestamp=datetime.now().isoformat(),
            importance=0.7,
            access_count=0,
            last_accessed=datetime.now().isoformat(),
            tags=["incident_response", "network_security"],
            metadata={"category": "defensive_procedures"},
            skill_name="network_scan_response",
            steps=[
                {"step": 1, "action": "identify_source", "success_probability": 0.9},
                {"step": 2, "action": "block_source_ip", "success_probability": 0.95},
                {"step": 3, "action": "generate_alert", "success_probability": 1.0},
                {"step": 4, "action": "investigate_context", "success_probability": 0.8}
            ],
            conditions={"trigger": "port_scan_detected", "confidence": ">0.8"},
            success_rate=0.85,
            optimization_history=[]
        )
        
        success = await memory_system.store_memory(agent_id, procedural_memory)
        print(f"  Stored procedural memory: {success}")
        
        # Test strategic memory storage
        print("\n๐ŸŽฏ Testing strategic memory storage...")
        strategic_memory = StrategicMemory(
            memory_id="strategic_001",
            memory_type=MemoryType.STRATEGIC,
            content={},
            timestamp=datetime.now().isoformat(),
            importance=1.0,
            access_count=0,
            last_accessed=datetime.now().isoformat(),
            tags=["long_term_goal", "security_posture"],
            metadata={"category": "defensive_strategy"},
            goal="improve_network_security_posture",
            plan_steps=[
                {"step": 1, "description": "Deploy additional IDS sensors", "completed": False, "target_date": "2025-08-15"},
                {"step": 2, "description": "Implement rate limiting", "completed": False, "target_date": "2025-08-20"},
                {"step": 3, "description": "Update response procedures", "completed": False, "target_date": "2025-08-25"}
            ],
            progress=0.0,
            deadline=(datetime.now() + timedelta(days=30)).isoformat(),
            priority=8,
            dependencies=["budget_approval", "technical_resources"],
            success_criteria={"scan_detection_rate": ">95%", "response_time": "<60s"}
        )
        
        success = await memory_system.store_memory(agent_id, strategic_memory)
        print(f"  Stored strategic memory: {success}")
        
        # Test reasoning chain storage
        print("\n๐Ÿ”— Testing reasoning chain storage...")
        reasoning_chain = ReasoningChain(
            chain_id="reasoning_001",
            reasoning_type=ReasoningType.DEDUCTIVE,
            premise={
                "observation": "Multiple connection attempts to various ports from single IP",
                "pattern": "Sequential port access with short intervals"
            },
            steps=[
                {"step": 1, "reasoning": "Sequential port access indicates systematic scanning"},
                {"step": 2, "reasoning": "Single source IP suggests coordinated effort"},
                {"step": 3, "reasoning": "Pattern matches known port scanning signatures"}
            ],
            conclusion={
                "assessment": "Network port scan detected",
                "confidence_level": "high",
                "recommended_action": "block_and_investigate"
            },
            confidence=0.92,
            evidence=["network_logs", "ids_patterns", "historical_data"],
            timestamp=datetime.now().isoformat(),
            agent_id=agent_id,
            context={"alert_id": "alert_12345", "network_segment": "dmz"}
        )
        
        success = await memory_system.store_reasoning_chain(reasoning_chain)
        print(f"  Stored reasoning chain: {success}")
        
        # Test memory retrieval
        print("\n๐Ÿ” Testing memory retrieval...")
        
        # Retrieve all memories
        all_memories = await memory_system.retrieve_memories(agent_id, limit=10)
        print(f"  Retrieved {len(all_memories)} total memories")
        
        # Retrieve specific memory types
        episodic_memories = await memory_system.retrieve_memories(agent_id, MemoryType.EPISODIC)
        print(f"  Retrieved {len(episodic_memories)} episodic memories")
        
        semantic_memories = await memory_system.retrieve_memories(agent_id, MemoryType.SEMANTIC)
        print(f"  Retrieved {len(semantic_memories)} semantic memories")
        
        # Retrieve by tags
        security_memories = await memory_system.retrieve_memories(agent_id, tags=["security_incident"])
        print(f"  Retrieved {len(security_memories)} security-related memories")
        
        # Test reasoning chain retrieval
        reasoning_chains = await memory_system.retrieve_reasoning_chains(agent_id)
        print(f"  Retrieved {len(reasoning_chains)} reasoning chains")
        
        # Test memory associations
        print("\n๐Ÿ”— Testing memory associations...")
        success = await memory_system.create_memory_association(
            "episode_001", "semantic_001", "relates_to", 0.8
        )
        print(f"  Created memory association: {success}")
        
        associations = await memory_system.find_associated_memories("episode_001")
        print(f"  Found {len(associations)} associations")
        
        # Test memory statistics
        print("\n๐Ÿ“Š Testing memory statistics...")
        stats = memory_system.get_memory_statistics(agent_id)
        print(f"  Memory statistics: {stats}")
        
        # Test memory consolidation
        print("\n๐Ÿ”„ Testing memory consolidation...")
        consolidation_results = await memory_system.consolidator.consolidate_memories(agent_id)
        print(f"  Consolidation results: {consolidation_results}")
        
        return True
    
    # Run async tests
    import asyncio
    asyncio.run(test_memory_operations())
    
    # Stop background consolidation for testing
    memory_system.stop_background_consolidation()
    
    print("\nโœ… Persistent Memory Architecture implemented and tested")
    print(f"  Database: {memory_system.database_path}")
    print(f"  Features: Episodic, Semantic, Procedural, Working, Strategic Memory")
    print(f"  Capabilities: Cross-session persistence, automated consolidation, reasoning chains")