File size: 21,800 Bytes
23804b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
"""
Multi-Agent Collaboration Framework for Cyber-LLM
Advanced agent-to-agent communication and swarm intelligence

Author: Muzan Sano <[email protected]>
"""

import asyncio
import json
import logging
import uuid
from datetime import datetime, timedelta
from typing import Dict, List, Any, Optional, Tuple, Union, Callable
from dataclasses import dataclass, field
from enum import Enum
import numpy as np
from collections import defaultdict, deque
import websockets
import aiohttp

from ..utils.logging_system import CyberLLMLogger, CyberLLMError, ErrorCategory
from ..memory.persistent_memory import PersistentMemoryManager
from ..cognitive.meta_cognitive import MetaCognitiveEngine

class MessageType(Enum):
    """Agent communication message types"""
    TASK_REQUEST = "task_request"
    TASK_RESPONSE = "task_response"
    INFORMATION_SHARE = "information_share"
    COORDINATION_REQUEST = "coordination_request"
    CONSENSUS_PROPOSAL = "consensus_proposal"
    CONSENSUS_VOTE = "consensus_vote"
    CAPABILITY_ANNOUNCEMENT = "capability_announcement"
    RESOURCE_REQUEST = "resource_request"
    RESOURCE_OFFER = "resource_offer"
    SWARM_DIRECTIVE = "swarm_directive"
    EMERGENCY_ALERT = "emergency_alert"

class AgentRole(Enum):
    """Agent roles in the collaboration framework"""
    LEADER = "leader"
    SPECIALIST = "specialist"
    COORDINATOR = "coordinator"
    SCOUT = "scout"
    ANALYZER = "analyzer"
    EXECUTOR = "executor"
    MONITOR = "monitor"

class ConsensusAlgorithm(Enum):
    """Consensus algorithms for decision making"""
    MAJORITY_VOTE = "majority_vote"
    WEIGHTED_VOTE = "weighted_vote"
    BYZANTINE_FAULT_TOLERANT = "byzantine_fault_tolerant"
    PROOF_OF_EXPERTISE = "proof_of_expertise"
    RAFT = "raft"

@dataclass
class AgentMessage:
    """Inter-agent communication message"""
    message_id: str
    sender_id: str
    recipient_id: Optional[str]  # None for broadcast
    message_type: MessageType
    timestamp: datetime
    
    # Content
    content: Dict[str, Any]
    priority: int = 5  # 1-10, 10 = highest
    
    # Routing and delivery
    ttl: int = 300  # Time to live in seconds
    requires_acknowledgment: bool = False
    correlation_id: Optional[str] = None
    
    # Security
    signature: Optional[str] = None
    encrypted: bool = False

@dataclass
class AgentCapability:
    """Agent capability description"""
    capability_id: str
    name: str
    description: str
    
    # Performance metrics
    accuracy: float
    speed: float  # Operations per second
    resource_cost: float
    
    # Availability
    available: bool = True
    current_load: float = 0.0
    max_concurrent: int = 10
    
    # Requirements
    required_resources: Dict[str, float] = field(default_factory=dict)
    dependencies: List[str] = field(default_factory=list)

@dataclass
class SwarmTask:
    """Task for swarm execution"""
    task_id: str
    description: str
    task_type: str
    
    # Requirements
    required_capabilities: List[str]
    estimated_complexity: float
    deadline: Optional[datetime] = None
    
    # Decomposition
    subtasks: List['SwarmTask'] = field(default_factory=list)
    dependencies: List[str] = field(default_factory=list)
    
    # Assignment
    assigned_agents: List[str] = field(default_factory=list)
    status: str = "pending"
    
    # Results
    results: Dict[str, Any] = field(default_factory=dict)
    completion_time: Optional[datetime] = None

class AgentCommunicationProtocol:
    """Standardized protocol for agent communication"""
    
    def __init__(self, agent_id: str, logger: Optional[CyberLLMLogger] = None):
        self.agent_id = agent_id
        self.logger = logger or CyberLLMLogger(name="agent_protocol")
        
        # Communication infrastructure
        self.message_queue = asyncio.Queue()
        self.active_connections = {}
        self.message_handlers = {}
        self.acknowledgments = {}
        
        # Protocol state
        self.capabilities = {}
        self.peer_agents = {}
        self.conversation_contexts = {}
        
        # Security
        self.trusted_agents = set()
        self.encryption_keys = {}
        
        self.logger.info("Agent Communication Protocol initialized", agent_id=agent_id)
    
    async def send_message(self, message: AgentMessage) -> bool:
        """Send message to another agent or broadcast"""
        
        try:
            # Validate message
            if not self._validate_message(message):
                self.logger.error("Invalid message", message_id=message.message_id)
                return False
            
            # Add timestamp and sender
            message.timestamp = datetime.now()
            message.sender_id = self.agent_id
            
            # Sign message if required
            if message.encrypted or message.signature:
                message = await self._secure_message(message)
            
            # Route message
            if message.recipient_id:
                # Direct message
                success = await self._send_direct_message(message)
            else:
                # Broadcast message
                success = await self._broadcast_message(message)
            
            # Handle acknowledgment requirement
            if message.requires_acknowledgment and success:
                asyncio.create_task(self._wait_for_acknowledgment(message))
            
            self.logger.info("Message sent",
                           message_id=message.message_id,
                           recipient=message.recipient_id or "broadcast",
                           type=message.message_type.value)
            
            return success
            
        except Exception as e:
            self.logger.error("Failed to send message", error=str(e))
            return False
    
    async def receive_message(self) -> Optional[AgentMessage]:
        """Receive next message from queue"""
        
        try:
            # Get message from queue (with timeout)
            message = await asyncio.wait_for(self.message_queue.get(), timeout=1.0)
            
            # Validate and process message
            if self._validate_received_message(message):
                await self._process_received_message(message)
                return message
            
            return None
            
        except asyncio.TimeoutError:
            return None
        except Exception as e:
            self.logger.error("Failed to receive message", error=str(e))
            return None
    
    async def register_capability(self, capability: AgentCapability):
        """Register agent capability"""
        
        self.capabilities[capability.capability_id] = capability
        
        # Announce capability to other agents
        announcement = AgentMessage(
            message_id=str(uuid.uuid4()),
            sender_id=self.agent_id,
            recipient_id=None,  # Broadcast
            message_type=MessageType.CAPABILITY_ANNOUNCEMENT,
            timestamp=datetime.now(),
            content={
                "capability": {
                    "id": capability.capability_id,
                    "name": capability.name,
                    "description": capability.description,
                    "accuracy": capability.accuracy,
                    "speed": capability.speed,
                    "available": capability.available
                }
            }
        )
        
        await self.send_message(announcement)
        
        self.logger.info("Capability registered and announced",
                       capability_id=capability.capability_id,
                       name=capability.name)

class DistributedConsensus:
    """Distributed consensus mechanisms for multi-agent decisions"""
    
    def __init__(self, 
                 agent_id: str,
                 communication_protocol: AgentCommunicationProtocol,
                 logger: Optional[CyberLLMLogger] = None):
        
        self.agent_id = agent_id
        self.protocol = communication_protocol
        self.logger = logger or CyberLLMLogger(name="consensus")
        
        # Consensus state
        self.active_proposals = {}
        self.voting_history = deque(maxlen=1000)
        self.consensus_results = {}
        
        # Agent weights for weighted voting
        self.agent_weights = {}
        
        self.logger.info("Distributed Consensus initialized", agent_id=agent_id)
    
    async def propose_consensus(self, 
                              proposal_id: str,
                              proposal_content: Dict[str, Any],
                              algorithm: ConsensusAlgorithm = ConsensusAlgorithm.MAJORITY_VOTE,
                              timeout: int = 300) -> Dict[str, Any]:
        """Propose a decision for consensus"""
        
        try:
            proposal = {
                "proposal_id": proposal_id,
                "proposer": self.agent_id,
                "content": proposal_content,
                "algorithm": algorithm.value,
                "created_at": datetime.now().isoformat(),
                "timeout": timeout,
                "votes": {},
                "status": "active"
            }
            
            self.active_proposals[proposal_id] = proposal
            
            # Broadcast proposal
            message = AgentMessage(
                message_id=str(uuid.uuid4()),
                sender_id=self.agent_id,
                recipient_id=None,  # Broadcast
                message_type=MessageType.CONSENSUS_PROPOSAL,
                timestamp=datetime.now(),
                content=proposal,
                ttl=timeout
            )
            
            await self.protocol.send_message(message)
            
            # Wait for consensus or timeout
            result = await self._wait_for_consensus(proposal_id, timeout)
            
            self.logger.info("Consensus proposal completed",
                           proposal_id=proposal_id,
                           result=result.get("decision"),
                           votes_received=len(result.get("votes", {})))
            
            return result
            
        except Exception as e:
            self.logger.error("Consensus proposal failed", error=str(e))
            return {"decision": "failed", "error": str(e)}
    
    async def vote_on_proposal(self, 
                             proposal_id: str, 
                             vote: Union[bool, float, str],
                             justification: Optional[str] = None) -> bool:
        """Vote on an active proposal"""
        
        try:
            if proposal_id not in self.active_proposals:
                self.logger.warning("Unknown proposal", proposal_id=proposal_id)
                return False
            
            proposal = self.active_proposals[proposal_id]
            
            # Create vote message
            vote_content = {
                "proposal_id": proposal_id,
                "vote": vote,
                "voter": self.agent_id,
                "timestamp": datetime.now().isoformat(),
                "justification": justification
            }
            
            message = AgentMessage(
                message_id=str(uuid.uuid4()),
                sender_id=self.agent_id,
                recipient_id=proposal["proposer"],
                message_type=MessageType.CONSENSUS_VOTE,
                timestamp=datetime.now(),
                content=vote_content
            )
            
            await self.protocol.send_message(message)
            
            # Record vote locally
            self.voting_history.append((datetime.now(), proposal_id, vote))
            
            self.logger.info("Vote submitted",
                           proposal_id=proposal_id,
                           vote=vote)
            
            return True
            
        except Exception as e:
            self.logger.error("Failed to vote on proposal", error=str(e))
            return False

class SwarmIntelligence:
    """Swarm intelligence capabilities for emergent behavior"""
    
    def __init__(self, 
                 agent_id: str,
                 communication_protocol: AgentCommunicationProtocol,
                 memory_manager: PersistentMemoryManager,
                 logger: Optional[CyberLLMLogger] = None):
        
        self.agent_id = agent_id
        self.protocol = communication_protocol
        self.memory_manager = memory_manager
        self.logger = logger or CyberLLMLogger(name="swarm_intelligence")
        
        # Swarm state
        self.swarm_members = set()
        self.role = AgentRole.SPECIALIST
        self.current_tasks = {}
        
        # Intelligence mechanisms
        self.pheromone_trails = defaultdict(float)
        self.collective_knowledge = {}
        self.emergence_patterns = {}
        
        # Task distribution
        self.task_queue = asyncio.Queue()
        self.completed_tasks = deque(maxlen=1000)
        
        self.logger.info("Swarm Intelligence initialized", agent_id=agent_id)
    
    async def join_swarm(self, swarm_id: str, role: AgentRole = AgentRole.SPECIALIST):
        """Join a swarm with specified role"""
        
        try:
            self.role = role
            self.swarm_members.add(self.agent_id)
            
            # Announce joining
            message = AgentMessage(
                message_id=str(uuid.uuid4()),
                sender_id=self.agent_id,
                recipient_id=None,  # Broadcast
                message_type=MessageType.INFORMATION_SHARE,
                timestamp=datetime.now(),
                content={
                    "action": "join_swarm",
                    "swarm_id": swarm_id,
                    "role": role.value,
                    "agent_capabilities": list(self.protocol.capabilities.keys())
                }
            )
            
            await self.protocol.send_message(message)
            
            # Start swarm behaviors
            asyncio.create_task(self._run_swarm_behaviors())
            
            self.logger.info("Joined swarm",
                           swarm_id=swarm_id,
                           role=role.value)
            
        except Exception as e:
            self.logger.error("Failed to join swarm", error=str(e))
    
    async def distribute_task(self, task: SwarmTask) -> str:
        """Distribute task across swarm members"""
        
        try:
            # Analyze task requirements
            task_requirements = await self._analyze_task_requirements(task)
            
            # Find suitable agents
            suitable_agents = await self._find_suitable_agents(task_requirements)
            
            if not suitable_agents:
                self.logger.warning("No suitable agents found for task", task_id=task.task_id)
                return "failed"
            
            # Decompose task if needed
            if len(task.required_capabilities) > 1 or task.estimated_complexity > 0.7:
                subtasks = await self._decompose_task(task)
                if subtasks:
                    # Distribute subtasks
                    for subtask in subtasks:
                        await self.distribute_task(subtask)
                    return "distributed"
            
            # Assign task to best agent
            best_agent = await self._select_best_agent(suitable_agents, task_requirements)
            
            # Send task assignment
            task_message = AgentMessage(
                message_id=str(uuid.uuid4()),
                sender_id=self.agent_id,
                recipient_id=best_agent,
                message_type=MessageType.TASK_REQUEST,
                timestamp=datetime.now(),
                content={
                    "task": {
                        "id": task.task_id,
                        "description": task.description,
                        "type": task.task_type,
                        "complexity": task.estimated_complexity,
                        "deadline": task.deadline.isoformat() if task.deadline else None,
                        "requirements": task_requirements
                    }
                },
                requires_acknowledgment=True
            )
            
            await self.protocol.send_message(task_message)
            
            # Update task status
            task.assigned_agents = [best_agent]
            task.status = "assigned"
            self.current_tasks[task.task_id] = task
            
            self.logger.info("Task distributed",
                           task_id=task.task_id,
                           assigned_agent=best_agent)
            
            return "assigned"
            
        except Exception as e:
            self.logger.error("Task distribution failed", error=str(e))
            return "failed"
    
    async def execute_collective_problem_solving(self, 
                                               problem: Dict[str, Any]) -> Dict[str, Any]:
        """Execute collective problem solving using swarm intelligence"""
        
        try:
            problem_id = problem.get("id", str(uuid.uuid4()))
            
            self.logger.info("Starting collective problem solving", problem_id=problem_id)
            
            # Phase 1: Problem decomposition
            subproblems = await self._decompose_problem(problem)
            
            # Phase 2: Distribute subproblems
            partial_solutions = []
            for subproblem in subproblems:
                solution = await self._solve_subproblem_collectively(subproblem)
                partial_solutions.append(solution)
            
            # Phase 3: Solution synthesis
            final_solution = await self._synthesize_solutions(partial_solutions, problem)
            
            # Phase 4: Validation through consensus
            validation_result = await self._validate_solution_collectively(
                final_solution, problem)
            
            # Store in collective knowledge
            self.collective_knowledge[problem_id] = {
                "problem": problem,
                "solution": final_solution,
                "validation": validation_result,
                "timestamp": datetime.now().isoformat(),
                "participating_agents": list(self.swarm_members)
            }
            
            # Update pheromone trails for successful patterns
            if validation_result.get("valid", False):
                await self._update_pheromone_trails(problem, final_solution)
            
            self.logger.info("Collective problem solving completed",
                           problem_id=problem_id,
                           solution_quality=validation_result.get("quality", 0.0))
            
            return {
                "problem_id": problem_id,
                "solution": final_solution,
                "validation": validation_result,
                "collective_intelligence_applied": True
            }
            
        except Exception as e:
            self.logger.error("Collective problem solving failed", error=str(e))
            return {"problem_id": problem_id, "error": str(e)}

class TaskDistributionEngine:
    """Advanced task distribution and load balancing"""
    
    def __init__(self, logger: Optional[CyberLLMLogger] = None):
        self.logger = logger or CyberLLMLogger(name="task_distribution")
        self.agent_loads = defaultdict(float)
        self.task_history = deque(maxlen=10000)
        self.performance_metrics = defaultdict(dict)
    
    async def distribute_workload(self, 
                                tasks: List[SwarmTask],
                                available_agents: Dict[str, AgentCapability]) -> Dict[str, List[str]]:
        """Distribute workload optimally across agents"""
        
        try:
            # Calculate agent scores for each task
            task_assignments = {}
            
            for task in tasks:
                best_agent = await self._find_optimal_agent(task, available_agents)
                if best_agent:
                    if best_agent not in task_assignments:
                        task_assignments[best_agent] = []
                    task_assignments[best_agent].append(task.task_id)
                    
                    # Update agent load
                    self.agent_loads[best_agent] += task.estimated_complexity
            
            self.logger.info("Workload distributed",
                           tasks_count=len(tasks),
                           agents_used=len(task_assignments))
            
            return task_assignments
            
        except Exception as e:
            self.logger.error("Workload distribution failed", error=str(e))
            return {}

# Factory functions
def create_communication_protocol(agent_id: str, **kwargs) -> AgentCommunicationProtocol:
    """Create agent communication protocol"""
    return AgentCommunicationProtocol(agent_id, **kwargs)

def create_distributed_consensus(agent_id: str, 
                               protocol: AgentCommunicationProtocol, 
                               **kwargs) -> DistributedConsensus:
    """Create distributed consensus manager"""
    return DistributedConsensus(agent_id, protocol, **kwargs)

def create_swarm_intelligence(agent_id: str,
                            protocol: AgentCommunicationProtocol,
                            memory_manager: PersistentMemoryManager,
                            **kwargs) -> SwarmIntelligence:
    """Create swarm intelligence engine"""
    return SwarmIntelligence(agent_id, protocol, memory_manager, **kwargs)