File size: 18,140 Bytes
23804b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
"""
Data Lineage Tracking System
Tracks data flow, transformations, and dependencies across the cybersecurity AI pipeline
"""

import json
import sqlite3
import hashlib
from datetime import datetime
from pathlib import Path
from typing import Dict, List, Optional, Any
from dataclasses import dataclass, asdict
from enum import Enum

class DataSourceType(Enum):
    RAW_DATA = "raw_data"
    MITRE_ATTACK = "mitre_attack"
    CVE_DATABASE = "cve_database"
    THREAT_INTEL = "threat_intel"
    RED_TEAM_LOGS = "red_team_logs"
    DEFENSIVE_KNOWLEDGE = "defensive_knowledge"
    PREPROCESSED = "preprocessed"
    TRANSFORMED = "transformed"
    VALIDATED = "validated"
    AUGMENTED = "augmented"

class TransformationType(Enum):
    CLEANING = "cleaning"
    NORMALIZATION = "normalization"
    TOKENIZATION = "tokenization"
    AUGMENTATION = "augmentation"
    VALIDATION = "validation"
    FEATURE_EXTRACTION = "feature_extraction"
    ANONYMIZATION = "anonymization"
    AGGREGATION = "aggregation"

@dataclass
class DataAsset:
    """Represents a data asset in the lineage graph"""
    asset_id: str
    name: str
    source_type: DataSourceType
    file_path: str
    size_bytes: int
    checksum: str
    created_at: str
    schema_version: str
    metadata: Dict[str, Any]

@dataclass
class DataTransformation:
    """Represents a data transformation operation"""
    transformation_id: str
    transformation_type: TransformationType
    source_assets: List[str]
    target_assets: List[str]
    operation_name: str
    parameters: Dict[str, Any]
    executed_at: str
    execution_time_seconds: float
    success: bool
    error_message: Optional[str]

@dataclass
class DataLineageNode:
    """Node in the data lineage graph"""
    node_id: str
    asset: DataAsset
    upstream_nodes: List[str]
    downstream_nodes: List[str]
    transformations: List[str]

class DataLineageTracker:
    """Tracks data lineage across the cybersecurity AI pipeline"""
    
    def __init__(self, db_path: str = "data/lineage/data_lineage.db"):
        self.db_path = Path(db_path)
        self.db_path.parent.mkdir(parents=True, exist_ok=True)
        self._init_database()
        
    def _init_database(self):
        """Initialize the lineage database"""
        conn = sqlite3.connect(self.db_path)
        cursor = conn.cursor()
        
        # Data Assets table
        cursor.execute("""
            CREATE TABLE IF NOT EXISTS data_assets (
                asset_id TEXT PRIMARY KEY,
                name TEXT NOT NULL,
                source_type TEXT NOT NULL,
                file_path TEXT NOT NULL,
                size_bytes INTEGER NOT NULL,
                checksum TEXT NOT NULL,
                created_at TEXT NOT NULL,
                schema_version TEXT NOT NULL,
                metadata TEXT NOT NULL
            )
        """)
        
        # Data Transformations table
        cursor.execute("""
            CREATE TABLE IF NOT EXISTS data_transformations (
                transformation_id TEXT PRIMARY KEY,
                transformation_type TEXT NOT NULL,
                source_assets TEXT NOT NULL,
                target_assets TEXT NOT NULL,
                operation_name TEXT NOT NULL,
                parameters TEXT NOT NULL,
                executed_at TEXT NOT NULL,
                execution_time_seconds REAL NOT NULL,
                success BOOLEAN NOT NULL,
                error_message TEXT
            )
        """)
        
        # Lineage Relationships table
        cursor.execute("""
            CREATE TABLE IF NOT EXISTS lineage_relationships (
                id INTEGER PRIMARY KEY AUTOINCREMENT,
                parent_asset_id TEXT NOT NULL,
                child_asset_id TEXT NOT NULL,
                transformation_id TEXT NOT NULL,
                relationship_type TEXT NOT NULL,
                created_at TEXT NOT NULL,
                FOREIGN KEY (parent_asset_id) REFERENCES data_assets (asset_id),
                FOREIGN KEY (child_asset_id) REFERENCES data_assets (asset_id),
                FOREIGN KEY (transformation_id) REFERENCES data_transformations (transformation_id)
            )
        """)
        
        # Create indices for performance
        cursor.execute("CREATE INDEX IF NOT EXISTS idx_assets_source_type ON data_assets(source_type)")
        cursor.execute("CREATE INDEX IF NOT EXISTS idx_transformations_type ON data_transformations(transformation_type)")
        cursor.execute("CREATE INDEX IF NOT EXISTS idx_relationships_parent ON lineage_relationships(parent_asset_id)")
        cursor.execute("CREATE INDEX IF NOT EXISTS idx_relationships_child ON lineage_relationships(child_asset_id)")
        
        conn.commit()
        conn.close()
    
    def register_data_asset(self, asset: DataAsset) -> bool:
        """Register a new data asset"""
        try:
            conn = sqlite3.connect(self.db_path)
            cursor = conn.cursor()
            
            cursor.execute("""
                INSERT OR REPLACE INTO data_assets 
                (asset_id, name, source_type, file_path, size_bytes, checksum, 
                 created_at, schema_version, metadata)
                VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?)
            """, (
                asset.asset_id, asset.name, asset.source_type.value,
                asset.file_path, asset.size_bytes, asset.checksum,
                asset.created_at, asset.schema_version, json.dumps(asset.metadata)
            ))
            
            conn.commit()
            conn.close()
            return True
            
        except Exception as e:
            print(f"Error registering data asset: {e}")
            return False
    
    def register_transformation(self, transformation: DataTransformation) -> bool:
        """Register a data transformation operation"""
        try:
            conn = sqlite3.connect(self.db_path)
            cursor = conn.cursor()
            
            cursor.execute("""
                INSERT OR REPLACE INTO data_transformations 
                (transformation_id, transformation_type, source_assets, target_assets,
                 operation_name, parameters, executed_at, execution_time_seconds,
                 success, error_message)
                VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?)
            """, (
                transformation.transformation_id, transformation.transformation_type.value,
                json.dumps(transformation.source_assets), json.dumps(transformation.target_assets),
                transformation.operation_name, json.dumps(transformation.parameters),
                transformation.executed_at, transformation.execution_time_seconds,
                transformation.success, transformation.error_message
            ))
            
            # Register lineage relationships
            for source_id in transformation.source_assets:
                for target_id in transformation.target_assets:
                    cursor.execute("""
                        INSERT INTO lineage_relationships 
                        (parent_asset_id, child_asset_id, transformation_id, relationship_type, created_at)
                        VALUES (?, ?, ?, ?, ?)
                    """, (source_id, target_id, transformation.transformation_id, "transformation", transformation.executed_at))
            
            conn.commit()
            conn.close()
            return True
            
        except Exception as e:
            print(f"Error registering transformation: {e}")
            return False
    
    def get_asset_lineage(self, asset_id: str, direction: str = "both") -> Dict[str, Any]:
        """Get the lineage graph for a specific asset"""
        conn = sqlite3.connect(self.db_path)
        cursor = conn.cursor()
        
        lineage = {
            "asset_id": asset_id,
            "upstream": [],
            "downstream": [],
            "transformations": []
        }
        
        # Get upstream lineage
        if direction in ["upstream", "both"]:
            cursor.execute("""
                SELECT DISTINCT lr.parent_asset_id, da.name, da.source_type, dt.operation_name
                FROM lineage_relationships lr
                JOIN data_assets da ON lr.parent_asset_id = da.asset_id
                JOIN data_transformations dt ON lr.transformation_id = dt.transformation_id
                WHERE lr.child_asset_id = ?
            """, (asset_id,))
            
            lineage["upstream"] = [
                {
                    "asset_id": row[0],
                    "name": row[1],
                    "source_type": row[2],
                    "operation": row[3]
                }
                for row in cursor.fetchall()
            ]
        
        # Get downstream lineage
        if direction in ["downstream", "both"]:
            cursor.execute("""
                SELECT DISTINCT lr.child_asset_id, da.name, da.source_type, dt.operation_name
                FROM lineage_relationships lr
                JOIN data_assets da ON lr.child_asset_id = da.asset_id
                JOIN data_transformations dt ON lr.transformation_id = dt.transformation_id
                WHERE lr.parent_asset_id = ?
            """, (asset_id,))
            
            lineage["downstream"] = [
                {
                    "asset_id": row[0],
                    "name": row[1],
                    "source_type": row[2],
                    "operation": row[3]
                }
                for row in cursor.fetchall()
            ]
        
        # Get transformations involving this asset
        cursor.execute("""
            SELECT dt.transformation_id, dt.operation_name, dt.executed_at, dt.success
            FROM data_transformations dt
            WHERE JSON_EXTRACT(dt.source_assets, '$') LIKE '%' || ? || '%'
               OR JSON_EXTRACT(dt.target_assets, '$') LIKE '%' || ? || '%'
        """, (asset_id, asset_id))
        
        lineage["transformations"] = [
            {
                "transformation_id": row[0],
                "operation_name": row[1],
                "executed_at": row[2],
                "success": bool(row[3])
            }
            for row in cursor.fetchall()
        ]
        
        conn.close()
        return lineage
    
    def get_data_flow_impact(self, asset_id: str) -> Dict[str, Any]:
        """Analyze the impact of changes to a specific data asset"""
        lineage = self.get_asset_lineage(asset_id, direction="downstream")
        
        impact_analysis = {
            "source_asset": asset_id,
            "affected_assets": len(lineage["downstream"]),
            "affected_asset_types": {},
            "critical_dependencies": [],
            "recommendation": ""
        }
        
        # Count affected asset types
        for asset in lineage["downstream"]:
            asset_type = asset["source_type"]
            impact_analysis["affected_asset_types"][asset_type] = (
                impact_analysis["affected_asset_types"].get(asset_type, 0) + 1
            )
        
        # Identify critical dependencies
        conn = sqlite3.connect(self.db_path)
        cursor = conn.cursor()
        
        cursor.execute("""
            SELECT da.asset_id, da.name, da.source_type
            FROM data_assets da
            WHERE da.source_type IN ('validated', 'augmented', 'transformed')
              AND da.asset_id IN (
                  SELECT lr.child_asset_id 
                  FROM lineage_relationships lr
                  WHERE lr.parent_asset_id = ?
              )
        """, (asset_id,))
        
        impact_analysis["critical_dependencies"] = [
            {"asset_id": row[0], "name": row[1], "type": row[2]}
            for row in cursor.fetchall()
        ]
        
        # Generate recommendation
        if impact_analysis["affected_assets"] > 10:
            impact_analysis["recommendation"] = "HIGH IMPACT: Changes require comprehensive testing"
        elif impact_analysis["affected_assets"] > 5:
            impact_analysis["recommendation"] = "MEDIUM IMPACT: Changes require targeted testing"
        else:
            impact_analysis["recommendation"] = "LOW IMPACT: Standard validation sufficient"
        
        conn.close()
        return impact_analysis
    
    def generate_lineage_report(self) -> Dict[str, Any]:
        """Generate a comprehensive data lineage report"""
        conn = sqlite3.connect(self.db_path)
        cursor = conn.cursor()
        
        report = {
            "generated_at": datetime.now().isoformat(),
            "summary": {},
            "asset_types": {},
            "transformation_types": {},
            "data_quality": {},
            "recommendations": []
        }
        
        # Summary statistics
        cursor.execute("SELECT COUNT(*) FROM data_assets")
        total_assets = cursor.fetchone()[0]
        
        cursor.execute("SELECT COUNT(*) FROM data_transformations")
        total_transformations = cursor.fetchone()[0]
        
        cursor.execute("SELECT COUNT(*) FROM lineage_relationships")
        total_relationships = cursor.fetchone()[0]
        
        report["summary"] = {
            "total_assets": total_assets,
            "total_transformations": total_transformations,
            "total_relationships": total_relationships
        }
        
        # Asset type distribution
        cursor.execute("""
            SELECT source_type, COUNT(*), AVG(size_bytes)
            FROM data_assets
            GROUP BY source_type
        """)
        
        for row in cursor.fetchall():
            report["asset_types"][row[0]] = {
                "count": row[1],
                "avg_size_bytes": row[2]
            }
        
        # Transformation type distribution
        cursor.execute("""
            SELECT transformation_type, COUNT(*), AVG(execution_time_seconds), 
                   SUM(CASE WHEN success = 1 THEN 1 ELSE 0 END) * 100.0 / COUNT(*)
            FROM data_transformations
            GROUP BY transformation_type
        """)
        
        for row in cursor.fetchall():
            report["transformation_types"][row[0]] = {
                "count": row[1],
                "avg_execution_time": row[2],
                "success_rate": row[3]
            }
        
        # Data quality metrics
        cursor.execute("""
            SELECT 
                COUNT(*) as total,
                SUM(CASE WHEN source_type IN ('validated', 'augmented') THEN 1 ELSE 0 END) as high_quality,
                AVG(size_bytes) as avg_size
            FROM data_assets
        """)
        
        row = cursor.fetchone()
        report["data_quality"] = {
            "total_assets": row[0],
            "high_quality_assets": row[1],
            "quality_percentage": (row[1] / row[0] * 100) if row[0] > 0 else 0,
            "average_asset_size": row[2]
        }
        
        # Generate recommendations
        if report["data_quality"]["quality_percentage"] < 70:
            report["recommendations"].append("Increase data validation and quality assurance processes")
        
        if any(info["success_rate"] < 90 for info in report["transformation_types"].values()):
            report["recommendations"].append("Review and optimize failing data transformations")
        
        if report["summary"]["total_relationships"] / report["summary"]["total_assets"] < 1.5:
            report["recommendations"].append("Consider enriching data lineage tracking")
        
        conn.close()
        return report
    
    def create_asset_from_file(self, file_path: str, source_type: DataSourceType, 
                              name: Optional[str] = None, metadata: Optional[Dict] = None) -> DataAsset:
        """Create a DataAsset from a file"""
        path = Path(file_path)
        
        if not path.exists():
            raise FileNotFoundError(f"File not found: {file_path}")
        
        # Calculate file checksum
        hasher = hashlib.sha256()
        with open(path, 'rb') as f:
            for chunk in iter(lambda: f.read(4096), b""):
                hasher.update(chunk)
        
        asset_id = f"{source_type.value}_{hasher.hexdigest()[:16]}"
        
        return DataAsset(
            asset_id=asset_id,
            name=name or path.name,
            source_type=source_type,
            file_path=str(path.absolute()),
            size_bytes=path.stat().st_size,
            checksum=hasher.hexdigest(),
            created_at=datetime.now().isoformat(),
            schema_version="1.0",
            metadata=metadata or {}
        )

# Example usage and testing
if __name__ == "__main__":
    # Initialize the tracker
    tracker = DataLineageTracker("data/lineage/data_lineage.db")
    
    # Example: Track MITRE ATT&CK data processing
    mitre_asset = DataAsset(
        asset_id="mitre_attack_raw_001",
        name="MITRE ATT&CK Framework Data",
        source_type=DataSourceType.MITRE_ATTACK,
        file_path="data/raw/mitre_attack.json",
        size_bytes=1024000,
        checksum="abc123def456",
        created_at=datetime.now().isoformat(),
        schema_version="1.0",
        metadata={"version": "14.1", "techniques": 200}
    )
    
    tracker.register_data_asset(mitre_asset)
    
    # Track preprocessing transformation
    preprocessing = DataTransformation(
        transformation_id="preprocess_001",
        transformation_type=TransformationType.CLEANING,
        source_assets=["mitre_attack_raw_001"],
        target_assets=["mitre_attack_clean_001"],
        operation_name="clean_and_normalize_mitre_data",
        parameters={"remove_deprecated": True, "normalize_names": True},
        executed_at=datetime.now().isoformat(),
        execution_time_seconds=15.7,
        success=True,
        error_message=None
    )
    
    tracker.register_transformation(preprocessing)
    
    # Generate lineage report
    report = tracker.generate_lineage_report()
    print("Data Lineage Report:")
    print(json.dumps(report, indent=2))
    
    print("✅ Data Lineage Tracking System implemented and tested")