File size: 3,911 Bytes
23804b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
version: '3.8'

services:
  # Main Cyber-LLM API service
  cyber-llm-api:
    build:
      context: ../../../
      dockerfile: src/deployment/docker/Dockerfile
      target: production
    container_name: cyber-llm-api
    ports:
      - "8000:8000"
    environment:
      - PYTHONPATH=/home/cyberllm
      - CUDA_VISIBLE_DEVICES=0
      - TRANSFORMERS_CACHE=/home/cyberllm/models/cache
    volumes:
      - ./data:/home/cyberllm/data
      - ./models:/home/cyberllm/models
      - ./logs:/home/cyberllm/logs
      - ./configs:/home/cyberllm/configs
    networks:
      - cyber-llm-network
    restart: unless-stopped
    healthcheck:
      test: ["CMD", "curl", "-f", "http://localhost:8000/health"]
      interval: 30s
      timeout: 10s
      retries: 3
      start_period: 40s

  # Training service (optional)
  cyber-llm-training:
    build:
      context: ../../../
      dockerfile: src/deployment/docker/Dockerfile
      target: training
    container_name: cyber-llm-training
    environment:
      - PYTHONPATH=/home/cyberllm
      - CUDA_VISIBLE_DEVICES=0
      - WANDB_API_KEY=${WANDB_API_KEY}
      - MLFLOW_TRACKING_URI=http://mlflow:5000
    volumes:
      - ./data:/home/cyberllm/data
      - ./models:/home/cyberllm/models
      - ./logs:/home/cyberllm/logs
      - ./configs:/home/cyberllm/configs
    networks:
      - cyber-llm-network
    profiles:
      - training
    depends_on:
      - mlflow

  # MLflow tracking server
  mlflow:
    image: python:3.10-slim
    container_name: cyber-llm-mlflow
    ports:
      - "5000:5000"
    environment:
      - MLFLOW_BACKEND_STORE_URI=sqlite:///mlflow/mlflow.db
      - MLFLOW_DEFAULT_ARTIFACT_ROOT=/mlflow/artifacts
    volumes:
      - ./mlflow:/mlflow
    networks:
      - cyber-llm-network
    command: >
      bash -c "
        pip install mlflow &&
        mlflow server 
          --backend-store-uri sqlite:///mlflow/mlflow.db 
          --default-artifact-root /mlflow/artifacts 
          --host 0.0.0.0 
          --port 5000
      "
    profiles:
      - training
      - monitoring

  # Prometheus monitoring
  prometheus:
    image: prom/prometheus:latest
    container_name: cyber-llm-prometheus
    ports:
      - "9090:9090"
    volumes:
      - ./monitoring/prometheus.yml:/etc/prometheus/prometheus.yml
      - ./monitoring/prometheus_data:/prometheus
    command:
      - '--config.file=/etc/prometheus/prometheus.yml'
      - '--storage.tsdb.path=/prometheus'
      - '--web.console.libraries=/etc/prometheus/console_libraries'
      - '--web.console.templates=/etc/prometheus/consoles'
      - '--web.enable-lifecycle'
    networks:
      - cyber-llm-network
    profiles:
      - monitoring

  # Grafana dashboard
  grafana:
    image: grafana/grafana:latest
    container_name: cyber-llm-grafana
    ports:
      - "3000:3000"
    environment:
      - GF_SECURITY_ADMIN_PASSWORD=admin123
    volumes:
      - ./monitoring/grafana_data:/var/lib/grafana
      - ./monitoring/grafana/dashboards:/etc/grafana/provisioning/dashboards
      - ./monitoring/grafana/datasources:/etc/grafana/provisioning/datasources
    networks:
      - cyber-llm-network
    profiles:
      - monitoring

  # Redis for caching (optional)
  redis:
    image: redis:7-alpine
    container_name: cyber-llm-redis
    ports:
      - "6379:6379"
    volumes:
      - ./redis_data:/data
    networks:
      - cyber-llm-network
    profiles:
      - cache

  # Nginx reverse proxy
  nginx:
    image: nginx:alpine
    container_name: cyber-llm-nginx
    ports:
      - "80:80"
      - "443:443"
    volumes:
      - ./nginx/nginx.conf:/etc/nginx/nginx.conf
      - ./nginx/ssl:/etc/nginx/ssl
    networks:
      - cyber-llm-network
    depends_on:
      - cyber-llm-api
    profiles:
      - production

networks:
  cyber-llm-network:
    driver: bridge

volumes:
  data:
  models:
  logs:
  mlflow:
  prometheus_data:
  grafana_data:
  redis_data: