File size: 42,048 Bytes
23804b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 |
"""
AI Ethics and Responsible AI Framework for Cyber-LLM
Comprehensive ethical AI implementation with bias monitoring, fairness, and transparency
Author: Muzan Sano <[email protected]>
"""
import asyncio
import json
import logging
from datetime import datetime, timedelta
from typing import Dict, List, Any, Optional, Tuple, Union
from dataclasses import dataclass, field
from enum import Enum
import numpy as np
import pandas as pd
from pathlib import Path
import yaml
import sqlite3
from collections import defaultdict
from ..utils.logging_system import CyberLLMLogger, CyberLLMError, ErrorCategory
from ..learning.constitutional_ai import ConstitutionalAIManager
class EthicsFramework(Enum):
"""Supported AI ethics frameworks"""
IEEE_ETHICALLY_ALIGNED = "ieee_ethically_aligned"
EU_AI_ACT = "eu_ai_act"
NIST_AI_RMF = "nist_ai_rmf"
RESPONSIBLE_AI_MICROSOFT = "microsoft_responsible_ai"
PARTNERSHIP_ON_AI = "partnership_on_ai"
class BiasType(Enum):
"""Types of bias to monitor"""
DEMOGRAPHIC = "demographic"
REPRESENTATION = "representation"
MEASUREMENT = "measurement"
AGGREGATION = "aggregation"
EVALUATION = "evaluation"
HISTORICAL = "historical"
CONFIRMATION = "confirmation"
class FairnessMetric(Enum):
"""Fairness metrics"""
DEMOGRAPHIC_PARITY = "demographic_parity"
EQUALIZED_ODDS = "equalized_odds"
EQUAL_OPPORTUNITY = "equal_opportunity"
CALIBRATION = "calibration"
INDIVIDUAL_FAIRNESS = "individual_fairness"
COUNTERFACTUAL_FAIRNESS = "counterfactual_fairness"
class TransparencyLevel(Enum):
"""Model transparency levels"""
BLACK_BOX = "black_box"
LIMITED_EXPLANATION = "limited_explanation"
FEATURE_IMPORTANCE = "feature_importance"
RULE_BASED = "rule_based"
FULL_TRANSPARENCY = "full_transparency"
@dataclass
class BiasAssessment:
"""Bias assessment result"""
assessment_id: str
model_id: str
assessment_date: datetime
# Bias metrics by type
bias_scores: Dict[BiasType, float]
fairness_metrics: Dict[FairnessMetric, float]
# Demographic analysis
demographic_groups: List[str]
performance_by_group: Dict[str, Dict[str, float]]
# Assessment details
assessment_method: str
confidence_level: float
recommendations: List[str]
# Overall assessment
bias_risk_level: str # low, medium, high, critical
fairness_compliance: bool
requires_intervention: bool
@dataclass
class ExplainabilityReport:
"""Model explainability report"""
report_id: str
model_id: str
generated_at: datetime
# Transparency metrics
transparency_level: TransparencyLevel
explainability_score: float # 0-1
# Feature importance
global_feature_importance: Dict[str, float]
local_explanations_available: bool
# Explanation methods used
explanation_methods: List[str] # SHAP, LIME, attention weights, etc.
# User comprehension
explanation_quality: Dict[str, float] # clarity, completeness, actionability
user_satisfaction_score: Optional[float]
@dataclass
class EthicsViolation:
"""Ethics violation record"""
violation_id: str
model_id: str
violation_type: str
severity: str # low, medium, high, critical
description: str
evidence: Dict[str, Any]
detected_at: datetime
# Resolution tracking
status: str = "open" # open, investigating, resolved, false_positive
assigned_to: Optional[str] = None
resolution_plan: Optional[str] = None
resolved_at: Optional[datetime] = None
class AIEthicsManager:
"""Comprehensive AI ethics and responsible AI management"""
def __init__(self,
config_path: str = "configs/ethics_config.yaml",
logger: Optional[CyberLLMLogger] = None):
self.logger = logger or CyberLLMLogger(name="ai_ethics")
self.config_path = Path(config_path)
self.config = self._load_config()
# Initialize components
self.constitutional_ai = ConstitutionalAIManager()
self.bias_assessments = {}
self.explainability_reports = {}
self.ethics_violations = []
# Database for ethics tracking
self.db_path = Path("data/ai_ethics.db")
self.db_path.parent.mkdir(parents=True, exist_ok=True)
# Initialize ethics framework
asyncio.create_task(self._initialize_ethics_system())
self.logger.info("AI Ethics manager initialized")
def _load_config(self) -> Dict[str, Any]:
"""Load ethics configuration"""
default_config = {
"ethics_frameworks": ["EU_AI_ACT", "NIST_AI_RMF"],
"bias_thresholds": {
"demographic_parity": 0.1,
"equalized_odds": 0.1,
"equal_opportunity": 0.1
},
"fairness_requirements": {
"minimum_fairness_score": 0.8,
"demographic_groups": ["gender", "age", "ethnicity", "location"],
"protected_attributes": ["race", "gender", "religion", "political_affiliation"]
},
"transparency_requirements": {
"minimum_explainability_score": 0.7,
"explanation_methods": ["SHAP", "LIME", "attention"],
"local_explanations_required": True
},
"monitoring": {
"continuous_bias_monitoring": True,
"fairness_drift_detection": True,
"explanation_quality_tracking": True
}
}
if self.config_path.exists():
with open(self.config_path, 'r') as f:
user_config = yaml.safe_load(f)
default_config.update(user_config)
else:
self.config_path.parent.mkdir(exist_ok=True, parents=True)
with open(self.config_path, 'w') as f:
yaml.dump(default_config, f)
return default_config
async def _initialize_ethics_system(self):
"""Initialize AI ethics system and database"""
try:
conn = sqlite3.connect(self.db_path)
cursor = conn.cursor()
# Bias assessments table
cursor.execute("""
CREATE TABLE IF NOT EXISTS bias_assessments (
assessment_id TEXT PRIMARY KEY,
model_id TEXT NOT NULL,
assessment_date TIMESTAMP,
bias_scores TEXT, -- JSON
fairness_metrics TEXT, -- JSON
demographic_groups TEXT, -- JSON
performance_by_group TEXT, -- JSON
assessment_method TEXT,
confidence_level REAL,
recommendations TEXT, -- JSON
bias_risk_level TEXT,
fairness_compliance BOOLEAN,
requires_intervention BOOLEAN
)
""")
# Explainability reports table
cursor.execute("""
CREATE TABLE IF NOT EXISTS explainability_reports (
report_id TEXT PRIMARY KEY,
model_id TEXT NOT NULL,
generated_at TIMESTAMP,
transparency_level TEXT,
explainability_score REAL,
global_feature_importance TEXT, -- JSON
local_explanations_available BOOLEAN,
explanation_methods TEXT, -- JSON
explanation_quality TEXT, -- JSON
user_satisfaction_score REAL
)
""")
# Ethics violations table
cursor.execute("""
CREATE TABLE IF NOT EXISTS ethics_violations (
violation_id TEXT PRIMARY KEY,
model_id TEXT NOT NULL,
violation_type TEXT,
severity TEXT,
description TEXT,
evidence TEXT, -- JSON
detected_at TIMESTAMP,
status TEXT DEFAULT 'open',
assigned_to TEXT,
resolution_plan TEXT,
resolved_at TIMESTAMP
)
""")
# Fairness monitoring table
cursor.execute("""
CREATE TABLE IF NOT EXISTS fairness_monitoring (
id INTEGER PRIMARY KEY AUTOINCREMENT,
model_id TEXT NOT NULL,
timestamp TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
metric_name TEXT,
metric_value REAL,
demographic_group TEXT,
threshold_violated BOOLEAN,
drift_detected BOOLEAN
)
""")
conn.commit()
conn.close()
self.logger.info("AI Ethics system database initialized")
except Exception as e:
self.logger.error("Failed to initialize AI ethics system", error=str(e))
raise CyberLLMError("Ethics system initialization failed", ErrorCategory.SYSTEM)
async def conduct_bias_assessment(self,
model_id: str,
test_data: pd.DataFrame,
protected_attributes: List[str],
target_column: str) -> BiasAssessment:
"""Conduct comprehensive bias assessment"""
assessment_id = f"bias_assessment_{model_id}_{datetime.now().strftime('%Y%m%d_%H%M%S')}"
try:
# Calculate bias metrics
bias_scores = {}
fairness_metrics = {}
performance_by_group = {}
# Demographic parity assessment
for attr in protected_attributes:
if attr in test_data.columns:
dp_score = await self._calculate_demographic_parity(
test_data, attr, target_column
)
bias_scores[BiasType.DEMOGRAPHIC] = dp_score
fairness_metrics[FairnessMetric.DEMOGRAPHIC_PARITY] = dp_score
# Equalized odds assessment
eo_score = await self._calculate_equalized_odds(test_data, protected_attributes, target_column)
fairness_metrics[FairnessMetric.EQUALIZED_ODDS] = eo_score
# Equal opportunity assessment
eop_score = await self._calculate_equal_opportunity(test_data, protected_attributes, target_column)
fairness_metrics[FairnessMetric.EQUAL_OPPORTUNITY] = eop_score
# Performance by demographic group
for attr in protected_attributes:
if attr in test_data.columns:
group_performance = await self._calculate_group_performance(
test_data, attr, target_column
)
performance_by_group[attr] = group_performance
# Overall bias risk assessment
bias_risk_level = self._assess_bias_risk_level(bias_scores, fairness_metrics)
# Generate recommendations
recommendations = await self._generate_bias_recommendations(
bias_scores, fairness_metrics, performance_by_group
)
# Create bias assessment
assessment = BiasAssessment(
assessment_id=assessment_id,
model_id=model_id,
assessment_date=datetime.now(),
bias_scores=bias_scores,
fairness_metrics=fairness_metrics,
demographic_groups=protected_attributes,
performance_by_group=performance_by_group,
assessment_method="comprehensive_statistical_analysis",
confidence_level=0.95,
recommendations=recommendations,
bias_risk_level=bias_risk_level,
fairness_compliance=self._check_fairness_compliance(fairness_metrics),
requires_intervention=bias_risk_level in ["high", "critical"]
)
# Store assessment
await self._store_bias_assessment(assessment)
self.bias_assessments[assessment_id] = assessment
self.logger.info(f"Bias assessment completed for model: {model_id}",
bias_risk=bias_risk_level,
fairness_compliant=assessment.fairness_compliance)
return assessment
except Exception as e:
self.logger.error(f"Failed to conduct bias assessment for model: {model_id}", error=str(e))
raise CyberLLMError("Bias assessment failed", ErrorCategory.ANALYSIS)
async def _calculate_demographic_parity(self,
data: pd.DataFrame,
protected_attr: str,
target_col: str) -> float:
"""Calculate demographic parity score"""
groups = data[protected_attr].unique()
positive_rates = {}
for group in groups:
group_data = data[data[protected_attr] == group]
positive_rate = group_data[target_col].mean()
positive_rates[group] = positive_rate
# Calculate maximum difference in positive rates
rates = list(positive_rates.values())
max_diff = max(rates) - min(rates)
# Convert to fairness score (1 - bias_level)
return 1 - max_diff
async def _calculate_equalized_odds(self,
data: pd.DataFrame,
protected_attrs: List[str],
target_col: str) -> float:
"""Calculate equalized odds score"""
# Simplified equalized odds calculation
# In practice, this would require model predictions and true labels
total_score = 0
valid_attrs = 0
for attr in protected_attrs:
if attr in data.columns:
groups = data[attr].unique()
if len(groups) >= 2:
# Calculate TPR and FPR for each group
group_scores = []
for group in groups:
group_data = data[data[attr] == group]
# Simplified metric - in practice would use true TPR/FPR
score = group_data[target_col].mean()
group_scores.append(score)
# Equalized odds: minimize difference in TPR and FPR across groups
max_diff = max(group_scores) - min(group_scores)
attr_score = 1 - max_diff
total_score += attr_score
valid_attrs += 1
return total_score / valid_attrs if valid_attrs > 0 else 1.0
async def _calculate_equal_opportunity(self,
data: pd.DataFrame,
protected_attrs: List[str],
target_col: str) -> float:
"""Calculate equal opportunity score"""
# Focus on true positive rates across groups
total_score = 0
valid_attrs = 0
for attr in protected_attrs:
if attr in data.columns:
groups = data[attr].unique()
if len(groups) >= 2:
tpr_scores = []
for group in groups:
group_data = data[data[attr] == group]
# Simplified - would use actual TPR in practice
tpr = group_data[target_col].mean()
tpr_scores.append(tpr)
max_diff = max(tpr_scores) - min(tpr_scores)
attr_score = 1 - max_diff
total_score += attr_score
valid_attrs += 1
return total_score / valid_attrs if valid_attrs > 0 else 1.0
async def _calculate_group_performance(self,
data: pd.DataFrame,
protected_attr: str,
target_col: str) -> Dict[str, Dict[str, float]]:
"""Calculate performance metrics by demographic group"""
group_performance = {}
groups = data[protected_attr].unique()
for group in groups:
group_data = data[data[protected_attr] == group]
# Calculate various performance metrics
performance = {
"count": len(group_data),
"positive_rate": group_data[target_col].mean(),
"negative_rate": 1 - group_data[target_col].mean(),
"representation": len(group_data) / len(data)
}
# Add statistical measures
if len(group_data) > 1:
performance["std_dev"] = group_data[target_col].std()
performance["variance"] = group_data[target_col].var()
group_performance[str(group)] = performance
return group_performance
def _assess_bias_risk_level(self,
bias_scores: Dict[BiasType, float],
fairness_metrics: Dict[FairnessMetric, float]) -> str:
"""Assess overall bias risk level"""
min_score = 1.0
# Check bias scores
for score in bias_scores.values():
min_score = min(min_score, score)
# Check fairness metrics
for score in fairness_metrics.values():
min_score = min(min_score, score)
# Determine risk level based on minimum score
if min_score >= 0.9:
return "low"
elif min_score >= 0.8:
return "medium"
elif min_score >= 0.6:
return "high"
else:
return "critical"
def _check_fairness_compliance(self, fairness_metrics: Dict[FairnessMetric, float]) -> bool:
"""Check if model meets fairness compliance requirements"""
thresholds = self.config["bias_thresholds"]
minimum_score = self.config["fairness_requirements"]["minimum_fairness_score"]
for metric, score in fairness_metrics.items():
threshold = thresholds.get(metric.value, minimum_score)
if score < threshold:
return False
return True
async def _generate_bias_recommendations(self,
bias_scores: Dict[BiasType, float],
fairness_metrics: Dict[FairnessMetric, float],
performance_by_group: Dict[str, Dict[str, float]]) -> List[str]:
"""Generate bias remediation recommendations"""
recommendations = []
# Check demographic parity
if FairnessMetric.DEMOGRAPHIC_PARITY in fairness_metrics:
dp_score = fairness_metrics[FairnessMetric.DEMOGRAPHIC_PARITY]
if dp_score < 0.8:
recommendations.append("Apply post-processing calibration to achieve demographic parity")
recommendations.append("Consider re-sampling training data to balance demographic groups")
# Check equalized odds
if FairnessMetric.EQUALIZED_ODDS in fairness_metrics:
eo_score = fairness_metrics[FairnessMetric.EQUALIZED_ODDS]
if eo_score < 0.8:
recommendations.append("Implement equalized odds post-processing")
recommendations.append("Review and adjust decision thresholds per demographic group")
# Check representation
for attr, groups in performance_by_group.items():
min_representation = min(group["representation"] for group in groups.values())
if min_representation < 0.1: # Less than 10% representation
recommendations.append(f"Increase representation for underrepresented groups in {attr}")
# General recommendations
if not recommendations:
recommendations.append("Continue monitoring for bias drift during model operation")
else:
recommendations.append("Implement continuous bias monitoring in production")
recommendations.append("Consider adversarial debiasing techniques during training")
return recommendations
async def generate_explainability_report(self,
model_id: str,
model: Any,
sample_data: pd.DataFrame) -> ExplainabilityReport:
"""Generate comprehensive explainability report"""
report_id = f"explainability_{model_id}_{datetime.now().strftime('%Y%m%d_%H%M%S')}"
try:
# Calculate global feature importance (simplified)
feature_importance = await self._calculate_feature_importance(model, sample_data)
# Determine transparency level
transparency_level = self._assess_transparency_level(model)
# Calculate explainability score
explainability_score = await self._calculate_explainability_score(
model, sample_data, feature_importance
)
# Assess explanation methods availability
explanation_methods = self._identify_explanation_methods(model)
# Evaluate explanation quality
explanation_quality = await self._evaluate_explanation_quality(
model, sample_data, explanation_methods
)
# Create explainability report
report = ExplainabilityReport(
report_id=report_id,
model_id=model_id,
generated_at=datetime.now(),
transparency_level=transparency_level,
explainability_score=explainability_score,
global_feature_importance=feature_importance,
local_explanations_available=len(explanation_methods) > 0,
explanation_methods=explanation_methods,
explanation_quality=explanation_quality,
user_satisfaction_score=None # Would be collected from user feedback
)
# Store report
await self._store_explainability_report(report)
self.explainability_reports[report_id] = report
self.logger.info(f"Explainability report generated for model: {model_id}",
transparency_level=transparency_level.value,
explainability_score=explainability_score)
return report
except Exception as e:
self.logger.error(f"Failed to generate explainability report for model: {model_id}", error=str(e))
raise CyberLLMError("Explainability report generation failed", ErrorCategory.ANALYSIS)
async def _calculate_feature_importance(self,
model: Any,
sample_data: pd.DataFrame) -> Dict[str, float]:
"""Calculate global feature importance"""
# Simplified feature importance calculation
# In practice, would use SHAP, permutation importance, etc.
feature_names = sample_data.columns.tolist()
# Generate random importance scores (placeholder)
# In real implementation, use actual model inspection techniques
importance_scores = np.random.dirichlet(np.ones(len(feature_names)))
return dict(zip(feature_names, importance_scores.tolist()))
def _assess_transparency_level(self, model: Any) -> TransparencyLevel:
"""Assess model transparency level"""
# Simplified assessment based on model type
model_type = type(model).__name__.lower()
if "linear" in model_type or "tree" in model_type:
return TransparencyLevel.FULL_TRANSPARENCY
elif "ensemble" in model_type or "forest" in model_type:
return TransparencyLevel.FEATURE_IMPORTANCE
elif "neural" in model_type or "deep" in model_type:
return TransparencyLevel.LIMITED_EXPLANATION
else:
return TransparencyLevel.BLACK_BOX
async def _calculate_explainability_score(self,
model: Any,
sample_data: pd.DataFrame,
feature_importance: Dict[str, float]) -> float:
"""Calculate overall explainability score"""
# Factors contributing to explainability
transparency_score = self._get_transparency_score(model)
feature_clarity_score = self._assess_feature_clarity(feature_importance)
interpretability_score = self._assess_model_interpretability(model)
# Weighted average
weights = [0.4, 0.3, 0.3]
scores = [transparency_score, feature_clarity_score, interpretability_score]
return sum(w * s for w, s in zip(weights, scores))
def _get_transparency_score(self, model: Any) -> float:
"""Get transparency score based on model type"""
transparency_level = self._assess_transparency_level(model)
scores = {
TransparencyLevel.FULL_TRANSPARENCY: 1.0,
TransparencyLevel.RULE_BASED: 0.9,
TransparencyLevel.FEATURE_IMPORTANCE: 0.7,
TransparencyLevel.LIMITED_EXPLANATION: 0.4,
TransparencyLevel.BLACK_BOX: 0.1
}
return scores.get(transparency_level, 0.1)
def _assess_feature_clarity(self, feature_importance: Dict[str, float]) -> float:
"""Assess clarity of feature importance"""
importance_values = list(feature_importance.values())
# High concentration of importance in few features = more interpretable
gini_coefficient = self._calculate_gini_coefficient(importance_values)
# Convert Gini coefficient to clarity score (higher Gini = more concentrated = clearer)
return gini_coefficient
def _calculate_gini_coefficient(self, values: List[float]) -> float:
"""Calculate Gini coefficient for concentration measurement"""
sorted_values = sorted(values)
n = len(values)
cumulative_sum = sum((i + 1) * val for i, val in enumerate(sorted_values))
return (2 * cumulative_sum) / (n * sum(values)) - (n + 1) / n
def _assess_model_interpretability(self, model: Any) -> float:
"""Assess overall model interpretability"""
# Simplified assessment - in practice would analyze model architecture
model_name = type(model).__name__.lower()
interpretability_scores = {
"logistic": 0.9,
"linear": 0.9,
"tree": 0.8,
"forest": 0.6,
"gradient": 0.5,
"neural": 0.3,
"deep": 0.2
}
for model_type, score in interpretability_scores.items():
if model_type in model_name:
return score
return 0.1 # Default for unknown models
def _identify_explanation_methods(self, model: Any) -> List[str]:
"""Identify available explanation methods for model"""
methods = []
model_name = type(model).__name__.lower()
# Universal methods
methods.extend(["permutation_importance", "partial_dependence"])
# Model-specific methods
if "linear" in model_name:
methods.extend(["coefficients", "feature_weights"])
elif "tree" in model_name:
methods.extend(["tree_structure", "path_analysis"])
elif "neural" in model_name:
methods.extend(["gradient_attribution", "layer_wise_relevance"])
# Advanced methods (if libraries available)
methods.extend(["shap_values", "lime_explanations"])
return methods
async def _evaluate_explanation_quality(self,
model: Any,
sample_data: pd.DataFrame,
explanation_methods: List[str]) -> Dict[str, float]:
"""Evaluate quality of explanations"""
quality_metrics = {
"clarity": 0.0,
"completeness": 0.0,
"actionability": 0.0,
"consistency": 0.0
}
# Clarity: how easy explanations are to understand
quality_metrics["clarity"] = 0.8 if "shap_values" in explanation_methods else 0.6
# Completeness: how much of model behavior is explained
quality_metrics["completeness"] = min(1.0, len(explanation_methods) / 5)
# Actionability: how useful explanations are for decisions
actionable_methods = ["feature_weights", "shap_values", "lime_explanations"]
actionable_count = sum(1 for method in explanation_methods if method in actionable_methods)
quality_metrics["actionability"] = min(1.0, actionable_count / 3)
# Consistency: how stable explanations are
quality_metrics["consistency"] = 0.7 # Would measure through repeated explanations
return quality_metrics
async def monitor_fairness_drift(self,
model_id: str,
current_data: pd.DataFrame,
protected_attributes: List[str],
target_column: str) -> Dict[str, Any]:
"""Monitor for fairness drift over time"""
drift_report = {
"model_id": model_id,
"monitoring_date": datetime.now().isoformat(),
"drift_detected": False,
"drift_metrics": {},
"affected_groups": [],
"recommendations": []
}
try:
# Get historical fairness metrics
historical_metrics = await self._get_historical_fairness_metrics(model_id)
if not historical_metrics:
self.logger.warning(f"No historical fairness data for model: {model_id}")
return drift_report
# Calculate current fairness metrics
current_assessment = await self.conduct_bias_assessment(
model_id, current_data, protected_attributes, target_column
)
current_metrics = current_assessment.fairness_metrics
# Compare metrics for drift
for metric, current_value in current_metrics.items():
if metric.value in historical_metrics:
historical_value = historical_metrics[metric.value]
drift_magnitude = abs(current_value - historical_value)
# Drift threshold (configurable)
drift_threshold = 0.05 # 5% change
drift_report["drift_metrics"][metric.value] = {
"historical_value": historical_value,
"current_value": current_value,
"drift_magnitude": drift_magnitude,
"drift_detected": drift_magnitude > drift_threshold
}
if drift_magnitude > drift_threshold:
drift_report["drift_detected"] = True
# Identify affected demographic groups
if drift_report["drift_detected"]:
affected_groups = await self._identify_affected_groups(
current_assessment, historical_metrics
)
drift_report["affected_groups"] = affected_groups
# Generate recommendations
recommendations = await self._generate_drift_recommendations(drift_report)
drift_report["recommendations"] = recommendations
# Store monitoring record
await self._store_fairness_monitoring_record(drift_report)
return drift_report
except Exception as e:
self.logger.error(f"Failed to monitor fairness drift for model: {model_id}", error=str(e))
raise CyberLLMError("Fairness drift monitoring failed", ErrorCategory.ANALYSIS)
async def _get_historical_fairness_metrics(self, model_id: str) -> Dict[str, float]:
"""Get historical fairness metrics for comparison"""
try:
conn = sqlite3.connect(self.db_path)
cursor = conn.cursor()
cursor.execute("""
SELECT fairness_metrics FROM bias_assessments
WHERE model_id = ?
ORDER BY assessment_date DESC
LIMIT 1
""", (model_id,))
row = cursor.fetchone()
conn.close()
if row:
return json.loads(row[0])
return {}
except Exception as e:
self.logger.error("Failed to retrieve historical fairness metrics", error=str(e))
return {}
async def _identify_affected_groups(self,
current_assessment: BiasAssessment,
historical_metrics: Dict[str, float]) -> List[str]:
"""Identify demographic groups most affected by drift"""
affected_groups = []
# Compare group performance
for group, performance in current_assessment.performance_by_group.items():
# Simplified comparison - in practice would have historical group data
if performance["positive_rate"] < 0.5: # Example threshold
affected_groups.append(group)
return affected_groups
async def _generate_drift_recommendations(self, drift_report: Dict[str, Any]) -> List[str]:
"""Generate recommendations for addressing fairness drift"""
recommendations = []
if drift_report["drift_detected"]:
recommendations.append("Investigate root causes of fairness drift")
recommendations.append("Consider model retraining with recent data")
if drift_report["affected_groups"]:
recommendations.append("Focus remediation efforts on affected demographic groups")
recommendations.append("Implement group-specific bias mitigation techniques")
recommendations.append("Increase frequency of fairness monitoring")
recommendations.append("Review and update fairness constraints")
return recommendations
def get_ethics_dashboard_data(self) -> Dict[str, Any]:
"""Get data for AI ethics dashboard"""
# Summary statistics
total_assessments = len(self.bias_assessments)
compliant_models = sum(
1 for assessment in self.bias_assessments.values()
if assessment.fairness_compliance
)
high_risk_models = sum(
1 for assessment in self.bias_assessments.values()
if assessment.bias_risk_level in ["high", "critical"]
)
# Recent violations
recent_violations = [
v for v in self.ethics_violations
if v.detected_at >= datetime.now() - timedelta(days=7)
]
# Transparency metrics
total_explainability_reports = len(self.explainability_reports)
high_transparency_models = sum(
1 for report in self.explainability_reports.values()
if report.explainability_score >= 0.8
)
return {
"bias_assessment": {
"total_assessments": total_assessments,
"compliant_models": compliant_models,
"compliance_rate": compliant_models / total_assessments if total_assessments > 0 else 0,
"high_risk_models": high_risk_models
},
"explainability": {
"total_reports": total_explainability_reports,
"high_transparency_models": high_transparency_models,
"transparency_rate": high_transparency_models / total_explainability_reports if total_explainability_reports > 0 else 0
},
"violations": {
"recent_violations": len(recent_violations),
"open_violations": sum(1 for v in self.ethics_violations if v.status == "open")
},
"last_updated": datetime.now().isoformat()
}
async def _store_bias_assessment(self, assessment: BiasAssessment):
"""Store bias assessment in database"""
try:
conn = sqlite3.connect(self.db_path)
cursor = conn.cursor()
cursor.execute("""
INSERT OR REPLACE INTO bias_assessments
(assessment_id, model_id, assessment_date, bias_scores, fairness_metrics,
demographic_groups, performance_by_group, assessment_method, confidence_level,
recommendations, bias_risk_level, fairness_compliance, requires_intervention)
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)
""", (
assessment.assessment_id,
assessment.model_id,
assessment.assessment_date.isoformat(),
json.dumps({k.value: v for k, v in assessment.bias_scores.items()}),
json.dumps({k.value: v for k, v in assessment.fairness_metrics.items()}),
json.dumps(assessment.demographic_groups),
json.dumps(assessment.performance_by_group),
assessment.assessment_method,
assessment.confidence_level,
json.dumps(assessment.recommendations),
assessment.bias_risk_level,
assessment.fairness_compliance,
assessment.requires_intervention
))
conn.commit()
conn.close()
except Exception as e:
self.logger.error("Failed to store bias assessment", error=str(e))
async def _store_explainability_report(self, report: ExplainabilityReport):
"""Store explainability report in database"""
try:
conn = sqlite3.connect(self.db_path)
cursor = conn.cursor()
cursor.execute("""
INSERT OR REPLACE INTO explainability_reports
(report_id, model_id, generated_at, transparency_level, explainability_score,
global_feature_importance, local_explanations_available, explanation_methods,
explanation_quality, user_satisfaction_score)
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?)
""", (
report.report_id,
report.model_id,
report.generated_at.isoformat(),
report.transparency_level.value,
report.explainability_score,
json.dumps(report.global_feature_importance),
report.local_explanations_available,
json.dumps(report.explanation_methods),
json.dumps(report.explanation_quality),
report.user_satisfaction_score
))
conn.commit()
conn.close()
except Exception as e:
self.logger.error("Failed to store explainability report", error=str(e))
async def _store_fairness_monitoring_record(self, drift_report: Dict[str, Any]):
"""Store fairness monitoring record"""
try:
conn = sqlite3.connect(self.db_path)
cursor = conn.cursor()
for metric_name, metric_data in drift_report["drift_metrics"].items():
cursor.execute("""
INSERT INTO fairness_monitoring
(model_id, metric_name, metric_value, threshold_violated, drift_detected)
VALUES (?, ?, ?, ?, ?)
""", (
drift_report["model_id"],
metric_name,
metric_data["current_value"],
metric_data["drift_detected"],
drift_report["drift_detected"]
))
conn.commit()
conn.close()
except Exception as e:
self.logger.error("Failed to store fairness monitoring record", error=str(e))
# Factory function
def create_ai_ethics_manager(**kwargs) -> AIEthicsManager:
"""Create AI ethics manager with configuration"""
return AIEthicsManager(**kwargs)
|