File size: 41,005 Bytes
23804b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 |
"""
Persistent Multi-Agent Integration
Integrates persistent cognitive system with existing agent framework
Author: Cyber-LLM Development Team
Date: August 6, 2025
Version: 2.0.0
"""
import asyncio
import logging
import json
from datetime import datetime, timedelta
from typing import Dict, List, Any, Optional, Set, Union
from dataclasses import dataclass, field
from pathlib import Path
import uuid
# Import existing agents
import sys
import os
sys.path.append(os.path.dirname(os.path.dirname(__file__)))
from agents.recon_agent import ReconAgent
from agents.c2_agent import C2Agent
from agents.post_exploit_agent import PostExploitAgent
from agents.safety_agent import SafetyAgent
from agents.explainability_agent import ExplainabilityAgent
from ..agents.orchestrator import Orchestrator
# Import our persistent systems
from cognitive.persistent_reasoning_system import (
PersistentCognitiveSystem, MemoryEntry, MemoryType,
ReasoningType, StrategicPlan, ReasoningChain
)
from server.persistent_agent_server import PersistentAgentServer, create_server_config
@dataclass
class AgentMemoryProfile:
"""Memory profile for each agent type"""
agent_id: str
agent_type: str
primary_memory_types: List[MemoryType] = field(default_factory=list)
reasoning_preferences: List[ReasoningType] = field(default_factory=list)
strategic_capabilities: List[str] = field(default_factory=list)
memory_retention_policy: Dict[str, Any] = field(default_factory=dict)
knowledge_domains: Set[str] = field(default_factory=set)
@dataclass
class CognitiveAgentState:
"""Enhanced agent state with cognitive capabilities"""
agent_id: str
base_agent: Any
memory_profile: AgentMemoryProfile
cognitive_session_id: str
active_reasoning_chains: List[str] = field(default_factory=list)
strategic_plans: List[str] = field(default_factory=list)
memory_consolidation_schedule: Optional[datetime] = None
last_cognitive_update: datetime = field(default_factory=datetime.now)
cognitive_metrics: Dict[str, Any] = field(default_factory=dict)
class PersistentMultiAgentSystem:
"""
Enhanced multi-agent system with persistent cognitive capabilities
"""
def __init__(self,
cognitive_db_path: str = "data/cognitive_system.db",
server_config: Optional[Any] = None):
self.cognitive_system = PersistentCognitiveSystem(cognitive_db_path)
self.logger = logging.getLogger("persistent_multi_agent")
# Agent registry with cognitive enhancement
self.cognitive_agents: Dict[str, CognitiveAgentState] = {}
self.agent_profiles: Dict[str, AgentMemoryProfile] = {}
# Original orchestrator integration
self.orchestrator = None
self.base_agents = {}
# Server integration
self.server = None
if server_config:
self.server = PersistentAgentServer(server_config)
# Cognitive coordination
self.global_memory_graph = {}
self.inter_agent_reasoning_chains = {}
self.collaborative_strategic_plans = {}
# Initialize system
self._initialize_agent_profiles()
# Background processes
self.cognitive_tasks = []
self.system_running = False
def _initialize_agent_profiles(self):
"""Initialize memory profiles for each agent type"""
# Reconnaissance Agent Profile
self.agent_profiles["recon"] = AgentMemoryProfile(
agent_id="recon",
agent_type="reconnaissance",
primary_memory_types=[
MemoryType.EPISODIC, # Target discovery events
MemoryType.SEMANTIC, # Network knowledge
MemoryType.PROCEDURAL # Scanning techniques
],
reasoning_preferences=[
ReasoningType.DEDUCTIVE, # Network analysis
ReasoningType.INDUCTIVE, # Pattern recognition
ReasoningType.ANALOGICAL # Similar network patterns
],
strategic_capabilities=[
"network_mapping",
"vulnerability_discovery",
"target_prioritization"
],
memory_retention_policy={
"target_info_retention": 90, # days
"scan_results_retention": 30,
"technique_learning_retention": 365
},
knowledge_domains={
"network_protocols", "vulnerability_databases",
"scanning_techniques", "target_profiling"
}
)
# Command & Control Agent Profile
self.agent_profiles["c2"] = AgentMemoryProfile(
agent_id="c2",
agent_type="command_control",
primary_memory_types=[
MemoryType.EPISODIC, # Command history
MemoryType.WORKING, # Active sessions
MemoryType.PROCEDURAL # C2 techniques
],
reasoning_preferences=[
ReasoningType.STRATEGIC, # Mission planning
ReasoningType.CAUSAL, # Command effects
ReasoningType.COUNTERFACTUAL # Alternative approaches
],
strategic_capabilities=[
"session_management",
"payload_delivery",
"persistence_mechanisms"
],
memory_retention_policy={
"session_logs_retention": 365,
"command_history_retention": 180,
"technique_effectiveness_retention": 730
},
knowledge_domains={
"c2_protocols", "payload_types", "persistence_methods",
"evasion_techniques", "communication_channels"
}
)
# Post-Exploitation Agent Profile
self.agent_profiles["post_exploit"] = AgentMemoryProfile(
agent_id="post_exploit",
agent_type="post_exploitation",
primary_memory_types=[
MemoryType.EPISODIC, # Exploitation events
MemoryType.SEMANTIC, # System knowledge
MemoryType.STRATEGIC # Long-term objectives
],
reasoning_preferences=[
ReasoningType.DEDUCTIVE, # System analysis
ReasoningType.STRATEGIC, # Privilege escalation planning
ReasoningType.META_COGNITIVE # Technique adaptation
],
strategic_capabilities=[
"privilege_escalation",
"lateral_movement",
"data_extraction"
],
memory_retention_policy={
"system_mapping_retention": 180,
"credential_retention": 365,
"technique_success_retention": 730
},
knowledge_domains={
"operating_systems", "privilege_escalation",
"lateral_movement", "data_exfiltration", "steganography"
}
)
# Safety Agent Profile
self.agent_profiles["safety"] = AgentMemoryProfile(
agent_id="safety",
agent_type="safety_monitor",
primary_memory_types=[
MemoryType.EPISODIC, # Safety violations
MemoryType.SEMANTIC, # Safety rules
MemoryType.WORKING # Active monitoring
],
reasoning_preferences=[
ReasoningType.DEDUCTIVE, # Rule application
ReasoningType.CAUSAL, # Impact analysis
ReasoningType.COUNTERFACTUAL # Risk scenarios
],
strategic_capabilities=[
"risk_assessment",
"intervention_planning",
"compliance_monitoring"
],
memory_retention_policy={
"safety_violations_retention": 2555, # 7 years
"rule_updates_retention": 1825, # 5 years
"intervention_logs_retention": 730 # 2 years
},
knowledge_domains={
"safety_regulations", "risk_assessment", "compliance_frameworks",
"incident_response", "legal_requirements"
}
)
# Explainability Agent Profile
self.agent_profiles["explainability"] = AgentMemoryProfile(
agent_id="explainability",
agent_type="explainability",
primary_memory_types=[
MemoryType.EPISODIC, # Decision events
MemoryType.SEMANTIC, # Explanation patterns
MemoryType.META_MEMORY # Reasoning about reasoning
],
reasoning_preferences=[
ReasoningType.META_COGNITIVE, # Reasoning analysis
ReasoningType.ANALOGICAL, # Example-based explanations
ReasoningType.ABDUCTIVE # Best explanation inference
],
strategic_capabilities=[
"decision_tracing",
"explanation_generation",
"transparency_reporting"
],
memory_retention_policy={
"decision_traces_retention": 365,
"explanation_templates_retention": 730,
"transparency_logs_retention": 1095
},
knowledge_domains={
"decision_analysis", "explanation_theory", "transparency_methods",
"audit_trails", "interpretability_techniques"
}
)
self.logger.info(f"Initialized {len(self.agent_profiles)} agent profiles")
async def initialize_system(self):
"""Initialize the persistent multi-agent system"""
try:
self.system_running = True
# Initialize cognitive system
await self.cognitive_system.initialize()
# Create base agents
await self._create_base_agents()
# Enhance agents with cognitive capabilities
await self._enhance_agents_with_cognition()
# Start cognitive background processes
self._start_cognitive_processes()
# Initialize orchestrator with cognitive enhancement
await self._initialize_cognitive_orchestrator()
# Start server if configured
if self.server:
asyncio.create_task(self.server.start_server())
self.logger.info("Persistent multi-agent system initialized")
except Exception as e:
self.logger.error(f"Error initializing system: {e}")
raise
async def _create_base_agents(self):
"""Create base agent instances"""
try:
# Create standard agents
self.base_agents["recon"] = ReconAgent()
self.base_agents["c2"] = C2Agent()
self.base_agents["post_exploit"] = PostExploitAgent()
self.base_agents["safety"] = SafetyAgent()
self.base_agents["explainability"] = ExplainabilityAgent()
self.logger.info(f"Created {len(self.base_agents)} base agents")
except Exception as e:
self.logger.error(f"Error creating base agents: {e}")
raise
async def _enhance_agents_with_cognition(self):
"""Enhance base agents with persistent cognitive capabilities"""
try:
for agent_id, base_agent in self.base_agents.items():
# Get memory profile
profile = self.agent_profiles.get(agent_id)
if not profile:
self.logger.warning(f"No memory profile found for {agent_id}")
continue
# Create cognitive session
cognitive_session_id = str(uuid.uuid4())
# Initialize agent memories
await self._initialize_agent_memories(profile)
# Create cognitive agent state
cognitive_state = CognitiveAgentState(
agent_id=agent_id,
base_agent=base_agent,
memory_profile=profile,
cognitive_session_id=cognitive_session_id,
memory_consolidation_schedule=datetime.now() + timedelta(hours=6)
)
self.cognitive_agents[agent_id] = cognitive_state
# Enhance base agent with cognitive methods
await self._inject_cognitive_methods(base_agent, cognitive_state)
self.logger.info(f"Enhanced {agent_id} agent with cognitive capabilities")
except Exception as e:
self.logger.error(f"Error enhancing agents: {e}")
raise
async def _initialize_agent_memories(self, profile: AgentMemoryProfile):
"""Initialize memories for an agent based on its profile"""
try:
# Create initial semantic memories for knowledge domains
for domain in profile.knowledge_domains:
memory_entry = MemoryEntry(
memory_type=MemoryType.SEMANTIC,
content={
"domain": domain,
"agent_id": profile.agent_id,
"knowledge_base": f"Initialized knowledge base for {domain}",
"expertise_level": "basic",
"last_updated": datetime.now().isoformat()
},
importance=0.8,
tags={f"agent:{profile.agent_id}", f"domain:{domain}", "initialization"}
)
await self.cognitive_system.memory_manager.store_memory(memory_entry)
# Create procedural memories for capabilities
for capability in profile.strategic_capabilities:
memory_entry = MemoryEntry(
memory_type=MemoryType.PROCEDURAL,
content={
"capability": capability,
"agent_id": profile.agent_id,
"procedure_steps": f"Standard procedure for {capability}",
"success_rate": 0.0,
"last_used": None
},
importance=0.7,
tags={f"agent:{profile.agent_id}", f"capability:{capability}", "procedure"}
)
await self.cognitive_system.memory_manager.store_memory(memory_entry)
self.logger.debug(f"Initialized memories for agent {profile.agent_id}")
except Exception as e:
self.logger.error(f"Error initializing memories for {profile.agent_id}: {e}")
async def _inject_cognitive_methods(self, base_agent: Any, cognitive_state: CognitiveAgentState):
"""Inject cognitive methods into base agent"""
try:
agent_id = cognitive_state.agent_id
# Inject memory methods
async def remember(content: Dict[str, Any],
memory_type: MemoryType = MemoryType.EPISODIC,
importance: float = 0.5,
tags: Set[str] = None) -> str:
"""Enhanced memory storage method"""
if tags is None:
tags = set()
tags.add(f"agent:{agent_id}")
memory_entry = MemoryEntry(
memory_type=memory_type,
content=content,
importance=importance,
tags=tags
)
memory_id = await self.cognitive_system.memory_manager.store_memory(memory_entry)
# Update agent metrics
cognitive_state.cognitive_metrics.setdefault("memories_created", 0)
cognitive_state.cognitive_metrics["memories_created"] += 1
cognitive_state.last_cognitive_update = datetime.now()
return memory_id
async def recall(query: str,
memory_types: List[MemoryType] = None,
limit: int = 10) -> List[MemoryEntry]:
"""Enhanced memory recall method"""
if memory_types is None:
memory_types = cognitive_state.memory_profile.primary_memory_types
# Add agent-specific query filter
agent_query = f"{query} agent:{agent_id}"
memories = await self.cognitive_system.memory_manager.search_memories(
agent_query, memory_types, limit
)
# Update agent metrics
cognitive_state.cognitive_metrics.setdefault("memory_recalls", 0)
cognitive_state.cognitive_metrics["memory_recalls"] += 1
return memories
async def reason(topic: str,
goal: str,
reasoning_type: ReasoningType = None) -> str:
"""Enhanced reasoning method"""
if reasoning_type is None:
reasoning_type = cognitive_state.memory_profile.reasoning_preferences[0]
chain_id = await self.cognitive_system.reasoning_engine.start_reasoning_chain(
topic=f"{topic} (Agent: {agent_id})",
goal=goal,
reasoning_type=reasoning_type
)
# Track reasoning chain
cognitive_state.active_reasoning_chains.append(chain_id)
# Update metrics
cognitive_state.cognitive_metrics.setdefault("reasoning_chains_started", 0)
cognitive_state.cognitive_metrics["reasoning_chains_started"] += 1
return chain_id
async def plan_strategically(title: str,
primary_goal: str,
template_type: str = "cybersecurity_assessment") -> str:
"""Enhanced strategic planning method"""
plan_id = await self.cognitive_system.strategic_planner.create_strategic_plan(
title=f"{title} (Agent: {agent_id})",
primary_goal=primary_goal,
template_type=template_type
)
# Track strategic plan
cognitive_state.strategic_plans.append(plan_id)
# Update metrics
cognitive_state.cognitive_metrics.setdefault("strategic_plans_created", 0)
cognitive_state.cognitive_metrics["strategic_plans_created"] += 1
return plan_id
async def get_cognitive_status() -> Dict[str, Any]:
"""Get cognitive status for agent"""
return {
"agent_id": agent_id,
"active_reasoning_chains": len(cognitive_state.active_reasoning_chains),
"strategic_plans": len(cognitive_state.strategic_plans),
"last_cognitive_update": cognitive_state.last_cognitive_update.isoformat(),
"cognitive_metrics": cognitive_state.cognitive_metrics,
"memory_profile": {
"primary_memory_types": [mt.value for mt in cognitive_state.memory_profile.primary_memory_types],
"reasoning_preferences": [rt.value for rt in cognitive_state.memory_profile.reasoning_preferences],
"knowledge_domains": list(cognitive_state.memory_profile.knowledge_domains)
}
}
# Inject methods into base agent
setattr(base_agent, 'remember', remember)
setattr(base_agent, 'recall', recall)
setattr(base_agent, 'reason', reason)
setattr(base_agent, 'plan_strategically', plan_strategically)
setattr(base_agent, 'get_cognitive_status', get_cognitive_status)
setattr(base_agent, 'cognitive_state', cognitive_state)
self.logger.debug(f"Injected cognitive methods into {agent_id} agent")
except Exception as e:
self.logger.error(f"Error injecting cognitive methods: {e}")
def _start_cognitive_processes(self):
"""Start background cognitive processes"""
# Memory consolidation process
async def memory_consolidation_worker():
while self.system_running:
try:
await asyncio.sleep(3600) # Every hour
await self._consolidate_agent_memories()
except Exception as e:
self.logger.error(f"Memory consolidation error: {e}")
# Inter-agent reasoning coordination
async def inter_agent_reasoning_coordinator():
while self.system_running:
try:
await asyncio.sleep(1800) # Every 30 minutes
await self._coordinate_inter_agent_reasoning()
except Exception as e:
self.logger.error(f"Inter-agent reasoning error: {e}")
# Strategic planning synchronization
async def strategic_plan_synchronizer():
while self.system_running:
try:
await asyncio.sleep(7200) # Every 2 hours
await self._synchronize_strategic_plans()
except Exception as e:
self.logger.error(f"Strategic plan sync error: {e}")
# Global memory graph maintenance
async def global_memory_maintenance():
while self.system_running:
try:
await asyncio.sleep(10800) # Every 3 hours
await self._maintain_global_memory_graph()
except Exception as e:
self.logger.error(f"Global memory maintenance error: {e}")
# Start background tasks
self.cognitive_tasks = [
asyncio.create_task(memory_consolidation_worker()),
asyncio.create_task(inter_agent_reasoning_coordinator()),
asyncio.create_task(strategic_plan_synchronizer()),
asyncio.create_task(global_memory_maintenance())
]
self.logger.info("Started cognitive background processes")
async def _consolidate_agent_memories(self):
"""Consolidate memories for all agents"""
try:
for agent_id, cognitive_state in self.cognitive_agents.items():
# Check if consolidation is due
if (cognitive_state.memory_consolidation_schedule and
datetime.now() >= cognitive_state.memory_consolidation_schedule):
# Perform memory consolidation
await self.cognitive_system.memory_manager.consolidate_memories()
# Schedule next consolidation
cognitive_state.memory_consolidation_schedule = datetime.now() + timedelta(hours=6)
# Update metrics
cognitive_state.cognitive_metrics.setdefault("memory_consolidations", 0)
cognitive_state.cognitive_metrics["memory_consolidations"] += 1
self.logger.debug(f"Consolidated memories for agent {agent_id}")
except Exception as e:
self.logger.error(f"Error consolidating memories: {e}")
async def _coordinate_inter_agent_reasoning(self):
"""Coordinate reasoning between agents"""
try:
# Find active reasoning chains from all agents
all_chains = []
for cognitive_state in self.cognitive_agents.values():
all_chains.extend(cognitive_state.active_reasoning_chains)
if len(all_chains) < 2:
return # Need at least 2 chains for coordination
# Create collaborative reasoning chain
collaborative_topic = "Multi-Agent Collaborative Analysis"
collaborative_goal = "Synthesize insights from multiple agent perspectives"
collaborative_chain_id = await self.cognitive_system.reasoning_engine.start_reasoning_chain(
topic=collaborative_topic,
goal=collaborative_goal,
reasoning_type=ReasoningType.META_COGNITIVE
)
# Add reasoning steps from individual chains
for chain_id in all_chains[-5:]: # Last 5 chains
try:
chain = await self.cognitive_system.reasoning_engine.get_reasoning_chain(chain_id)
if chain and chain.reasoning_steps:
await self.cognitive_system.reasoning_engine.add_reasoning_step(
collaborative_chain_id,
premise=f"Agent reasoning from chain {chain_id}",
inference_rule="collaborative_synthesis",
evidence=[step.conclusion for step in chain.reasoning_steps[-3:]]
)
except Exception as e:
self.logger.debug(f"Error processing chain {chain_id}: {e}")
continue
# Complete collaborative reasoning
final_chain = await self.cognitive_system.reasoning_engine.complete_reasoning_chain(
collaborative_chain_id
)
if final_chain:
self.inter_agent_reasoning_chains[collaborative_chain_id] = {
"created_at": datetime.now(),
"participating_agents": list(self.cognitive_agents.keys()),
"conclusion": final_chain.conclusion,
"confidence": final_chain.confidence
}
self.logger.info(f"Created collaborative reasoning chain: {collaborative_chain_id}")
except Exception as e:
self.logger.error(f"Error coordinating inter-agent reasoning: {e}")
async def _synchronize_strategic_plans(self):
"""Synchronize strategic plans across agents"""
try:
# Collect all strategic plans
all_plans = []
for cognitive_state in self.cognitive_agents.values():
all_plans.extend(cognitive_state.strategic_plans)
if not all_plans:
return
# Create master strategic plan
master_plan_id = await self.cognitive_system.strategic_planner.create_strategic_plan(
title="Multi-Agent Coordinated Strategic Plan",
primary_goal="Coordinate strategic objectives across all agents",
template_type="cybersecurity_assessment"
)
# Add goals from individual plans
for plan_id in all_plans[-10:]: # Last 10 plans
try:
plan = await self.cognitive_system.strategic_planner.get_strategic_plan(plan_id)
if plan:
# Add plan's goals as sub-goals
await self.cognitive_system.strategic_planner.add_goal_to_plan(
master_plan_id,
title=f"Sub-goal from plan {plan_id}",
description=plan.primary_goal,
priority=5
)
except Exception as e:
self.logger.debug(f"Error processing plan {plan_id}: {e}")
continue
self.collaborative_strategic_plans[master_plan_id] = {
"created_at": datetime.now(),
"participating_agents": list(self.cognitive_agents.keys()),
"individual_plans": all_plans
}
self.logger.info(f"Created master strategic plan: {master_plan_id}")
except Exception as e:
self.logger.error(f"Error synchronizing strategic plans: {e}")
async def _maintain_global_memory_graph(self):
"""Maintain global memory graph across agents"""
try:
# Build memory relationships across agents
for agent_id, cognitive_state in self.cognitive_agents.items():
# Get recent memories for this agent
recent_memories = await self.cognitive_system.memory_manager.search_memories(
query=f"agent:{agent_id}",
limit=20
)
for memory in recent_memories:
# Look for related memories from other agents
for other_agent_id in self.cognitive_agents.keys():
if other_agent_id == agent_id:
continue
# Search for related memories
related_memories = await self.cognitive_system.memory_manager.search_memories(
query=f"agent:{other_agent_id}",
memory_types=[memory.memory_type],
limit=5
)
# Create relationships
for related_memory in related_memories:
relationship_key = f"{memory.memory_id}:{related_memory.memory_id}"
if relationship_key not in self.global_memory_graph:
self.global_memory_graph[relationship_key] = {
"source_agent": agent_id,
"target_agent": other_agent_id,
"relationship_type": "cross_agent_correlation",
"strength": 0.3, # Base correlation strength
"created_at": datetime.now(),
"access_count": 0
}
self.logger.debug(f"Global memory graph has {len(self.global_memory_graph)} relationships")
except Exception as e:
self.logger.error(f"Error maintaining global memory graph: {e}")
async def _initialize_cognitive_orchestrator(self):
"""Initialize orchestrator with cognitive enhancements"""
try:
# Create enhanced orchestrator
self.orchestrator = Orchestrator()
# Inject cognitive coordination methods
async def coordinate_cognitive_analysis(scenario: Dict[str, Any]) -> Dict[str, Any]:
"""Coordinate cognitive analysis across all agents"""
results = {}
# Run scenario through each cognitive agent
for agent_id, cognitive_state in self.cognitive_agents.items():
base_agent = cognitive_state.base_agent
# Store scenario in agent memory
memory_id = await base_agent.remember(
content={
"scenario": scenario,
"analysis_requested": datetime.now().isoformat(),
"scenario_type": scenario.get("type", "unknown")
},
memory_type=MemoryType.EPISODIC,
importance=0.8,
tags={"scenario_analysis", "orchestrated"}
)
# Start reasoning chain for analysis
reasoning_chain_id = await base_agent.reason(
topic=f"Scenario Analysis: {scenario.get('title', 'Untitled')}",
goal=f"Analyze scenario from {agent_id} perspective",
reasoning_type=cognitive_state.memory_profile.reasoning_preferences[0]
)
# Create strategic plan if appropriate
if agent_id in ["recon", "c2", "post_exploit"]:
plan_id = await base_agent.plan_strategically(
title=f"Strategic Response to Scenario ({agent_id})",
primary_goal=scenario.get("primary_goal", "Address scenario requirements")
)
results[f"{agent_id}_strategic_plan"] = plan_id
results[f"{agent_id}_memory"] = memory_id
results[f"{agent_id}_reasoning"] = reasoning_chain_id
# Create collaborative analysis
collaborative_analysis = await self.cognitive_system.process_complex_scenario({
**scenario,
"multi_agent_analysis": True,
"participating_agents": list(self.cognitive_agents.keys()),
"individual_results": results
})
results["collaborative_analysis"] = collaborative_analysis
return results
async def get_system_cognitive_status() -> Dict[str, Any]:
"""Get cognitive status of entire system"""
system_status = {
"timestamp": datetime.now().isoformat(),
"agents": {},
"global_metrics": {
"total_active_reasoning_chains": sum(
len(cs.active_reasoning_chains)
for cs in self.cognitive_agents.values()
),
"total_strategic_plans": sum(
len(cs.strategic_plans)
for cs in self.cognitive_agents.values()
),
"inter_agent_reasoning_chains": len(self.inter_agent_reasoning_chains),
"collaborative_strategic_plans": len(self.collaborative_strategic_plans),
"global_memory_relationships": len(self.global_memory_graph)
},
"memory_stats": await self.cognitive_system.memory_manager.get_memory_stats()
}
# Get individual agent status
for agent_id, cognitive_state in self.cognitive_agents.items():
system_status["agents"][agent_id] = await cognitive_state.base_agent.get_cognitive_status()
return system_status
# Inject methods into orchestrator
setattr(self.orchestrator, 'coordinate_cognitive_analysis', coordinate_cognitive_analysis)
setattr(self.orchestrator, 'get_system_cognitive_status', get_system_cognitive_status)
setattr(self.orchestrator, 'cognitive_agents', self.cognitive_agents)
self.logger.info("Initialized cognitive orchestrator")
except Exception as e:
self.logger.error(f"Error initializing cognitive orchestrator: {e}")
async def run_cognitive_scenario(self, scenario: Dict[str, Any]) -> Dict[str, Any]:
"""Run a scenario through the cognitive multi-agent system"""
try:
self.logger.info(f"Starting cognitive scenario: {scenario.get('title', 'Untitled')}")
# Use orchestrator's cognitive analysis
if self.orchestrator and hasattr(self.orchestrator, 'coordinate_cognitive_analysis'):
results = await self.orchestrator.coordinate_cognitive_analysis(scenario)
else:
# Fallback to direct cognitive processing
results = await self.cognitive_system.process_complex_scenario(scenario)
self.logger.info("Cognitive scenario completed")
return results
except Exception as e:
self.logger.error(f"Error running cognitive scenario: {e}")
return {"status": "error", "message": str(e)}
async def get_agent(self, agent_id: str) -> Optional[Any]:
"""Get enhanced agent by ID"""
cognitive_state = self.cognitive_agents.get(agent_id)
return cognitive_state.base_agent if cognitive_state else None
async def get_system_status(self) -> Dict[str, Any]:
"""Get comprehensive system status"""
if self.orchestrator and hasattr(self.orchestrator, 'get_system_cognitive_status'):
return await self.orchestrator.get_system_cognitive_status()
else:
return {
"status": "basic",
"agents": list(self.cognitive_agents.keys()),
"system_running": self.system_running
}
async def shutdown(self):
"""Graceful shutdown of the cognitive system"""
try:
self.logger.info("Shutting down persistent multi-agent system...")
self.system_running = False
# Cancel cognitive tasks
for task in self.cognitive_tasks:
task.cancel()
if self.cognitive_tasks:
await asyncio.gather(*self.cognitive_tasks, return_exceptions=True)
# Shutdown server if running
if self.server:
await self.server.shutdown()
self.logger.info("System shutdown complete")
except Exception as e:
self.logger.error(f"Error during shutdown: {e}")
# Factory function
def create_persistent_multi_agent_system(
cognitive_db_path: str = "data/cognitive_system.db",
enable_server: bool = True,
server_port: int = 8080
) -> PersistentMultiAgentSystem:
"""Create persistent multi-agent system"""
server_config = None
if enable_server:
server_config = create_server_config(port=server_port)
return PersistentMultiAgentSystem(
cognitive_db_path=cognitive_db_path,
server_config=server_config
)
# Example usage and testing
async def main():
"""Example usage of the persistent multi-agent system"""
# Configure logging
logging.basicConfig(level=logging.INFO)
# Create system
system = create_persistent_multi_agent_system()
try:
# Initialize
await system.initialize_system()
# Run example scenario
scenario = {
"title": "Advanced Persistent Threat Analysis",
"type": "cybersecurity_assessment",
"primary_goal": "Identify and analyze APT indicators",
"target_environment": "corporate_network",
"threat_indicators": [
"suspicious_network_traffic",
"unusual_authentication_patterns",
"lateral_movement_attempts"
],
"time_constraints": "72_hours",
"risk_tolerance": "low"
}
# Process scenario
results = await system.run_cognitive_scenario(scenario)
print(f"Scenario results: {json.dumps(results, indent=2, default=str)}")
# Get system status
status = await system.get_system_status()
print(f"System status: {json.dumps(status, indent=2, default=str)}")
# Keep system running
while True:
await asyncio.sleep(60) # Check every minute
except KeyboardInterrupt:
print("Shutdown requested by user")
finally:
await system.shutdown()
if __name__ == "__main__":
asyncio.run(main())
|