File size: 30,607 Bytes
23804b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 |
"""
Causal Reasoning System for Cybersecurity Events
Understanding cause-effect relationships in security incidents and attack chains
"""
import json
import numpy as np
import pandas as pd
from typing import Dict, List, Optional, Any, Tuple, Set
from dataclasses import dataclass, asdict
from datetime import datetime, timedelta
from collections import defaultdict, deque
import networkx as nx
from enum import Enum
import logging
class CausalRelationType(Enum):
"""Types of causal relationships in cybersecurity events"""
DIRECT_CAUSE = "direct_cause"
INDIRECT_CAUSE = "indirect_cause"
ENABLING_CONDITION = "enabling_condition"
TEMPORAL_SEQUENCE = "temporal_sequence"
CORRELATED = "correlated"
SPURIOUS = "spurious"
class ConfidenceLevel(Enum):
"""Confidence levels for causal inferences"""
HIGH = "high" # > 0.8
MEDIUM = "medium" # 0.5 - 0.8
LOW = "low" # 0.2 - 0.5
UNCERTAIN = "uncertain" # < 0.2
@dataclass
class SecurityEvent:
"""Represents a security event with temporal and contextual information"""
event_id: str
timestamp: datetime
event_type: str
source: str
target: str
severity: str
attributes: Dict[str, Any]
context: Dict[str, Any]
@dataclass
class CausalHypothesis:
"""A hypothesis about causal relationship between events"""
hypothesis_id: str
cause_event_id: str
effect_event_id: str
relationship_type: CausalRelationType
confidence_score: float
confidence_level: ConfidenceLevel
evidence: Dict[str, Any]
temporal_gap: float # seconds
mechanism: str
created_at: str
@dataclass
class CausalChain:
"""A chain of causally linked security events"""
chain_id: str
events: List[SecurityEvent]
causal_links: List[CausalHypothesis]
root_cause: str
final_effect: str
attack_pattern: str
mitigation_points: List[str]
created_at: str
class CausalInferenceEngine:
"""Advanced causal inference engine for cybersecurity events"""
def __init__(self, max_temporal_gap: int = 3600):
self.max_temporal_gap = max_temporal_gap # Maximum gap in seconds for causal consideration
self.events = []
self.causal_graph = nx.DiGraph()
self.causal_patterns = self._load_causal_patterns()
self.logger = logging.getLogger(__name__)
# Causal inference models
self.temporal_models = self._initialize_temporal_models()
self.correlation_threshold = 0.7
self.causation_threshold = 0.6
def _load_causal_patterns(self) -> Dict[str, Any]:
"""Load known causal patterns in cybersecurity"""
return {
"attack_chains": {
"lateral_movement": {
"pattern": ["reconnaissance", "initial_access", "persistence", "privilege_escalation", "lateral_movement"],
"temporal_constraints": [300, 1800, 900, 600], # Max seconds between stages
"confidence_boost": 0.2
},
"data_exfiltration": {
"pattern": ["initial_access", "discovery", "collection", "exfiltration"],
"temporal_constraints": [1800, 3600, 1200],
"confidence_boost": 0.3
},
"ransomware": {
"pattern": ["initial_access", "persistence", "privilege_escalation", "lateral_movement", "encryption"],
"temporal_constraints": [600, 1200, 900, 300],
"confidence_boost": 0.25
}
},
"vulnerability_exploitation": {
"pattern": ["vulnerability_scan", "exploit_attempt", "successful_exploitation"],
"temporal_constraints": [300, 60],
"confidence_boost": 0.4
},
"insider_threat": {
"pattern": ["anomalous_access", "data_access", "data_transfer"],
"temporal_constraints": [1800, 900],
"confidence_boost": 0.15
}
}
def _initialize_temporal_models(self) -> Dict[str, Any]:
"""Initialize temporal causal inference models"""
return {
"granger_causality": {
"window_size": 10,
"max_lag": 5,
"significance_level": 0.05
},
"transfer_entropy": {
"k_history": 3,
"embedding_dim": 2,
"threshold": 0.1
},
"ccm": { # Convergent Cross Mapping
"embedding_dim": 3,
"tau": 1,
"library_size_range": (10, 100)
}
}
def add_event(self, event: SecurityEvent) -> None:
"""Add a security event to the analysis"""
self.events.append(event)
self.causal_graph.add_node(event.event_id, event=event)
# Update causal relationships
self._update_causal_relationships(event)
def _update_causal_relationships(self, new_event: SecurityEvent) -> None:
"""Update causal relationships when a new event is added"""
# Look for potential causal relationships with recent events
recent_events = [
e for e in self.events
if abs((new_event.timestamp - e.timestamp).total_seconds()) <= self.max_temporal_gap
and e.event_id != new_event.event_id
]
for event in recent_events:
hypothesis = self._generate_causal_hypothesis(event, new_event)
if hypothesis and hypothesis.confidence_score >= 0.2:
self._add_causal_edge(hypothesis)
def _generate_causal_hypothesis(self, cause_event: SecurityEvent,
effect_event: SecurityEvent) -> Optional[CausalHypothesis]:
"""Generate a causal hypothesis between two events"""
# Check temporal order
if cause_event.timestamp >= effect_event.timestamp:
return None
temporal_gap = (effect_event.timestamp - cause_event.timestamp).total_seconds()
if temporal_gap > self.max_temporal_gap:
return None
# Calculate confidence score based on multiple factors
confidence_factors = {
"temporal_proximity": self._calculate_temporal_confidence(temporal_gap),
"semantic_similarity": self._calculate_semantic_similarity(cause_event, effect_event),
"pattern_match": self._calculate_pattern_match(cause_event, effect_event),
"contextual_similarity": self._calculate_contextual_similarity(cause_event, effect_event),
"causal_mechanism": self._identify_causal_mechanism(cause_event, effect_event)
}
# Weighted confidence score
weights = {
"temporal_proximity": 0.2,
"semantic_similarity": 0.25,
"pattern_match": 0.3,
"contextual_similarity": 0.15,
"causal_mechanism": 0.1
}
confidence_score = sum(
confidence_factors[factor] * weights[factor]
for factor in confidence_factors
)
# Determine relationship type
relationship_type = self._determine_relationship_type(
cause_event, effect_event, confidence_factors
)
# Determine confidence level
if confidence_score > 0.8:
confidence_level = ConfidenceLevel.HIGH
elif confidence_score > 0.5:
confidence_level = ConfidenceLevel.MEDIUM
elif confidence_score > 0.2:
confidence_level = ConfidenceLevel.LOW
else:
confidence_level = ConfidenceLevel.UNCERTAIN
# Generate mechanism explanation
mechanism = self._generate_mechanism_explanation(cause_event, effect_event, confidence_factors)
hypothesis = CausalHypothesis(
hypothesis_id=f"hyp_{cause_event.event_id}_{effect_event.event_id}",
cause_event_id=cause_event.event_id,
effect_event_id=effect_event.event_id,
relationship_type=relationship_type,
confidence_score=confidence_score,
confidence_level=confidence_level,
evidence=confidence_factors,
temporal_gap=temporal_gap,
mechanism=mechanism,
created_at=datetime.now().isoformat()
)
return hypothesis
def _calculate_temporal_confidence(self, temporal_gap: float) -> float:
"""Calculate confidence based on temporal proximity"""
# Exponential decay function
return np.exp(-temporal_gap / 600) # 600 seconds half-life
def _calculate_semantic_similarity(self, event1: SecurityEvent, event2: SecurityEvent) -> float:
"""Calculate semantic similarity between events"""
# Simple keyword-based similarity (in production, use embeddings)
keywords1 = set(event1.event_type.lower().split() +
list(event1.attributes.get('keywords', [])))
keywords2 = set(event2.event_type.lower().split() +
list(event2.attributes.get('keywords', [])))
if not keywords1 or not keywords2:
return 0.0
intersection = len(keywords1 & keywords2)
union = len(keywords1 | keywords2)
return intersection / union if union > 0 else 0.0
def _calculate_pattern_match(self, cause_event: SecurityEvent, effect_event: SecurityEvent) -> float:
"""Calculate how well events match known causal patterns"""
max_match = 0.0
for pattern_name, pattern_info in self.causal_patterns.items():
if isinstance(pattern_info, dict) and 'pattern' in pattern_info:
pattern = pattern_info['pattern']
confidence_boost = pattern_info.get('confidence_boost', 0.1)
# Check if events match consecutive steps in pattern
try:
cause_idx = pattern.index(cause_event.event_type.lower())
effect_idx = pattern.index(effect_event.event_type.lower())
if effect_idx == cause_idx + 1:
match_score = 0.8 + confidence_boost
max_match = max(max_match, match_score)
elif effect_idx > cause_idx:
# Non-consecutive but in sequence
gap_penalty = (effect_idx - cause_idx - 1) * 0.1
match_score = max(0.3, 0.6 - gap_penalty + confidence_boost)
max_match = max(max_match, match_score)
except ValueError:
continue
return min(1.0, max_match)
def _calculate_contextual_similarity(self, event1: SecurityEvent, event2: SecurityEvent) -> float:
"""Calculate contextual similarity (same host, network, user, etc.)"""
context_matches = 0
total_contexts = 0
contexts_to_check = ['source', 'target', 'user', 'host', 'network', 'process']
for context in contexts_to_check:
val1 = getattr(event1, context, None) or event1.context.get(context)
val2 = getattr(event2, context, None) or event2.context.get(context)
if val1 is not None and val2 is not None:
total_contexts += 1
if val1 == val2:
context_matches += 1
return context_matches / total_contexts if total_contexts > 0 else 0.0
def _identify_causal_mechanism(self, cause_event: SecurityEvent, effect_event: SecurityEvent) -> float:
"""Identify potential causal mechanisms"""
mechanisms = {
"exploitation": ["exploit", "vulnerability", "compromise"],
"lateral_movement": ["login", "access", "connection"],
"persistence": ["install", "create", "modify"],
"exfiltration": ["copy", "transfer", "download"]
}
cause_type = cause_event.event_type.lower()
effect_type = effect_event.event_type.lower()
for mechanism, keywords in mechanisms.items():
if any(kw in cause_type for kw in keywords) and any(kw in effect_type for kw in keywords):
return 0.7
return 0.3
def _determine_relationship_type(self, cause_event: SecurityEvent,
effect_event: SecurityEvent,
confidence_factors: Dict[str, float]) -> CausalRelationType:
"""Determine the type of causal relationship"""
if confidence_factors["pattern_match"] > 0.7:
return CausalRelationType.DIRECT_CAUSE
elif confidence_factors["temporal_proximity"] > 0.8 and confidence_factors["contextual_similarity"] > 0.6:
return CausalRelationType.DIRECT_CAUSE
elif confidence_factors["semantic_similarity"] > 0.5:
return CausalRelationType.INDIRECT_CAUSE
elif confidence_factors["temporal_proximity"] > 0.5:
return CausalRelationType.TEMPORAL_SEQUENCE
else:
return CausalRelationType.CORRELATED
def _generate_mechanism_explanation(self, cause_event: SecurityEvent,
effect_event: SecurityEvent,
confidence_factors: Dict[str, float]) -> str:
"""Generate human-readable explanation of causal mechanism"""
cause_type = cause_event.event_type
effect_type = effect_event.event_type
temporal_gap = (effect_event.timestamp - cause_event.timestamp).total_seconds()
if confidence_factors["pattern_match"] > 0.7:
return f"'{cause_type}' directly enabled '{effect_type}' as part of a known attack pattern"
elif confidence_factors["contextual_similarity"] > 0.6:
return f"'{cause_type}' on same system/user likely caused '{effect_type}' ({temporal_gap:.0f}s later)"
elif temporal_gap < 60:
return f"'{cause_type}' immediately preceded '{effect_type}' ({temporal_gap:.0f}s gap)"
else:
return f"'{cause_type}' may have contributed to conditions enabling '{effect_type}'"
def _add_causal_edge(self, hypothesis: CausalHypothesis) -> None:
"""Add a causal edge to the graph"""
self.causal_graph.add_edge(
hypothesis.cause_event_id,
hypothesis.effect_event_id,
hypothesis=hypothesis,
weight=hypothesis.confidence_score
)
def identify_attack_chains(self, min_confidence: float = 0.4) -> List[CausalChain]:
"""Identify causal attack chains from the event graph"""
chains = []
# Find all paths in the causal graph
for root_node in self.causal_graph.nodes():
# Check if this could be a root cause (few incoming edges)
if self.causal_graph.in_degree(root_node) <= 1:
paths = self._find_causal_paths_from_root(root_node, min_confidence)
for path in paths:
if len(path) >= 2: # At least 2 events for a chain
chain = self._create_causal_chain(path)
if chain:
chains.append(chain)
return chains
def _find_causal_paths_from_root(self, root_node: str, min_confidence: float) -> List[List[str]]:
"""Find all causal paths starting from a root node"""
paths = []
def dfs(node: str, current_path: List[str], visited: Set[str]):
if node in visited:
return
visited.add(node)
current_path.append(node)
# Get successors with sufficient confidence
successors = []
for successor in self.causal_graph.successors(node):
edge_data = self.causal_graph.get_edge_data(node, successor)
if edge_data and edge_data.get('weight', 0) >= min_confidence:
successors.append(successor)
if not successors:
# End of path
if len(current_path) >= 2:
paths.append(current_path.copy())
else:
for successor in successors:
dfs(successor, current_path, visited.copy())
current_path.pop()
dfs(root_node, [], set())
return paths
def _create_causal_chain(self, event_path: List[str]) -> Optional[CausalChain]:
"""Create a causal chain from a path of events"""
events = []
causal_links = []
# Get events for path
event_dict = {event.event_id: event for event in self.events}
for event_id in event_path:
if event_id in event_dict:
events.append(event_dict[event_id])
if len(events) < 2:
return None
# Get causal links
for i in range(len(event_path) - 1):
edge_data = self.causal_graph.get_edge_data(event_path[i], event_path[i + 1])
if edge_data and 'hypothesis' in edge_data:
causal_links.append(edge_data['hypothesis'])
# Identify attack pattern
attack_pattern = self._identify_attack_pattern(events)
# Identify mitigation points
mitigation_points = self._identify_mitigation_points(events, causal_links)
chain = CausalChain(
chain_id=f"chain_{datetime.now().strftime('%Y%m%d_%H%M%S_%f')}",
events=events,
causal_links=causal_links,
root_cause=events[0].event_id,
final_effect=events[-1].event_id,
attack_pattern=attack_pattern,
mitigation_points=mitigation_points,
created_at=datetime.now().isoformat()
)
return chain
def _identify_attack_pattern(self, events: List[SecurityEvent]) -> str:
"""Identify the attack pattern represented by event sequence"""
event_types = [event.event_type.lower() for event in events]
# Check against known patterns
for pattern_name, pattern_info in self.causal_patterns.items():
if isinstance(pattern_info, dict) and 'pattern' in pattern_info:
pattern = pattern_info['pattern']
# Check if event sequence matches pattern
if self._sequence_matches_pattern(event_types, pattern):
return pattern_name
# Generic classification based on final effect
final_event = events[-1].event_type.lower()
if 'exfiltration' in final_event or 'download' in final_event:
return "data_exfiltration"
elif 'encryption' in final_event or 'ransomware' in final_event:
return "ransomware"
elif 'privilege' in final_event or 'escalation' in final_event:
return "privilege_escalation"
else:
return "unknown_attack"
def _sequence_matches_pattern(self, event_types: List[str], pattern: List[str]) -> bool:
"""Check if event sequence matches a known pattern"""
if len(event_types) > len(pattern):
return False
pattern_index = 0
for event_type in event_types:
while pattern_index < len(pattern):
if event_type in pattern[pattern_index] or pattern[pattern_index] in event_type:
pattern_index += 1
break
pattern_index += 1
else:
return False
return True
def _identify_mitigation_points(self, events: List[SecurityEvent],
causal_links: List[CausalHypothesis]) -> List[str]:
"""Identify points where the attack chain could have been disrupted"""
mitigation_points = []
for i, event in enumerate(events[:-1]): # Exclude final event
event_type = event.event_type.lower()
# Common mitigation points
if 'reconnaissance' in event_type or 'scan' in event_type:
mitigation_points.append(f"Detect and block reconnaissance at event {event.event_id}")
elif 'initial_access' in event_type or 'exploit' in event_type:
mitigation_points.append(f"Prevent initial access at event {event.event_id}")
elif 'persistence' in event_type:
mitigation_points.append(f"Detect persistence mechanisms at event {event.event_id}")
elif 'lateral_movement' in event_type:
mitigation_points.append(f"Segment network to prevent lateral movement at event {event.event_id}")
# Check causal link strength
if i < len(causal_links):
link = causal_links[i]
if link.confidence_score < 0.7: # Weak causal link
mitigation_points.append(f"Strengthen monitoring between events {link.cause_event_id} and {link.effect_event_id}")
return mitigation_points
def analyze_root_causes(self, min_events: int = 3) -> List[Dict[str, Any]]:
"""Analyze root causes of security incidents"""
root_causes = []
# Find nodes with high out-degree (many effects) and low in-degree (few causes)
for node in self.causal_graph.nodes():
in_degree = self.causal_graph.in_degree(node)
out_degree = self.causal_graph.out_degree(node)
if in_degree <= 1 and out_degree >= min_events - 1:
# Get all events caused by this root cause
reachable_events = list(nx.descendants(self.causal_graph, node))
if len(reachable_events) >= min_events - 1:
event = next((e for e in self.events if e.event_id == node), None)
if event:
root_causes.append({
"root_cause_event": event,
"affected_events": len(reachable_events),
"causal_impact_score": out_degree / len(self.events),
"downstream_events": [
next((e for e in self.events if e.event_id == eid), None)
for eid in reachable_events[:10] # Top 10
]
})
# Sort by impact score
root_causes.sort(key=lambda x: x["causal_impact_score"], reverse=True)
return root_causes
def get_causal_explanations(self, event_id: str) -> Dict[str, Any]:
"""Get causal explanations for a specific event"""
if event_id not in self.causal_graph.nodes():
return {"error": "Event not found"}
# Get direct causes
predecessors = list(self.causal_graph.predecessors(event_id))
direct_causes = []
for pred in predecessors:
edge_data = self.causal_graph.get_edge_data(pred, event_id)
if edge_data and 'hypothesis' in edge_data:
hypothesis = edge_data['hypothesis']
cause_event = next((e for e in self.events if e.event_id == pred), None)
if cause_event:
direct_causes.append({
"cause_event": cause_event,
"mechanism": hypothesis.mechanism,
"confidence": hypothesis.confidence_score,
"relationship_type": hypothesis.relationship_type.value
})
# Get effects
successors = list(self.causal_graph.successors(event_id))
effects = []
for succ in successors:
edge_data = self.causal_graph.get_edge_data(event_id, succ)
if edge_data and 'hypothesis' in edge_data:
hypothesis = edge_data['hypothesis']
effect_event = next((e for e in self.events if e.event_id == succ), None)
if effect_event:
effects.append({
"effect_event": effect_event,
"mechanism": hypothesis.mechanism,
"confidence": hypothesis.confidence_score,
"relationship_type": hypothesis.relationship_type.value
})
# Get indirect causes (ancestors)
ancestors = list(nx.ancestors(self.causal_graph, event_id))[:5] # Limit to 5
indirect_causes = [
next((e for e in self.events if e.event_id == aid), None)
for aid in ancestors if aid not in predecessors
]
return {
"target_event": next((e for e in self.events if e.event_id == event_id), None),
"direct_causes": direct_causes,
"effects": effects,
"indirect_causes": [c for c in indirect_causes if c is not None],
"causal_chain_length": len(list(nx.ancestors(self.causal_graph, event_id))) + 1
}
# Example usage and testing
if __name__ == "__main__":
print("๐ Causal Reasoning System Testing:")
print("=" * 50)
# Initialize causal inference engine
causal_engine = CausalInferenceEngine()
# Create sample security events
base_time = datetime.now()
events = [
SecurityEvent(
event_id="evt_001",
timestamp=base_time,
event_type="vulnerability_scan",
source="192.168.1.100",
target="192.168.1.50",
severity="low",
attributes={"scanner": "nmap", "ports": "22,80,443"},
context={"network": "internal", "user": "attacker"}
),
SecurityEvent(
event_id="evt_002",
timestamp=base_time + timedelta(minutes=5),
event_type="exploit_attempt",
source="192.168.1.100",
target="192.168.1.50",
severity="medium",
attributes={"exploit": "ssh_brute_force", "port": "22"},
context={"network": "internal", "user": "attacker"}
),
SecurityEvent(
event_id="evt_003",
timestamp=base_time + timedelta(minutes=8),
event_type="successful_exploitation",
source="192.168.1.100",
target="192.168.1.50",
severity="high",
attributes={"method": "credential_brute_force", "service": "ssh"},
context={"network": "internal", "user": "attacker", "compromised_account": "admin"}
),
SecurityEvent(
event_id="evt_004",
timestamp=base_time + timedelta(minutes=15),
event_type="privilege_escalation",
source="192.168.1.50",
target="192.168.1.50",
severity="high",
attributes={"method": "sudo_exploit", "user": "admin"},
context={"network": "internal", "user": "attacker", "host": "server1"}
),
SecurityEvent(
event_id="evt_005",
timestamp=base_time + timedelta(minutes=25),
event_type="lateral_movement",
source="192.168.1.50",
target="192.168.1.75",
severity="high",
attributes={"method": "ssh_key", "protocol": "ssh"},
context={"network": "internal", "user": "attacker", "host": "server2"}
),
SecurityEvent(
event_id="evt_006",
timestamp=base_time + timedelta(minutes=30),
event_type="data_exfiltration",
source="192.168.1.75",
target="external_server",
severity="critical",
attributes={"method": "scp", "data_volume": "500MB"},
context={"network": "external", "user": "attacker", "data_type": "sensitive"}
)
]
# Add events to causal engine
print("\n๐ Adding security events...")
for event in events:
causal_engine.add_event(event)
print(f" Added: {event.event_type} at {event.timestamp.strftime('%H:%M:%S')}")
# Identify attack chains
print("\n๐ Identifying causal attack chains...")
attack_chains = causal_engine.identify_attack_chains(min_confidence=0.3)
for i, chain in enumerate(attack_chains, 1):
print(f"\n Chain {i}: {chain.attack_pattern}")
print(f" Events: {len(chain.events)}")
print(f" Root Cause: {chain.root_cause}")
print(f" Final Effect: {chain.final_effect}")
print(f" Causal Links: {len(chain.causal_links)}")
for link in chain.causal_links[:3]: # Show first 3 links
print(f" {link.cause_event_id} โ {link.effect_event_id} "
f"(confidence: {link.confidence_score:.3f}, {link.relationship_type.value})")
if chain.mitigation_points:
print(f" Mitigation Points:")
for point in chain.mitigation_points[:2]: # Show first 2
print(f" - {point}")
# Analyze root causes
print("\n๐ฏ Root Cause Analysis:")
root_causes = causal_engine.analyze_root_causes()
for cause in root_causes[:3]: # Show top 3
event = cause["root_cause_event"]
print(f" Root Cause: {event.event_type}")
print(f" Impact Score: {cause['causal_impact_score']:.3f}")
print(f" Affected Events: {cause['affected_events']}")
# Get causal explanations for specific event
print("\n๐ก Causal Explanation for Final Event:")
explanation = causal_engine.get_causal_explanations("evt_006")
print(f" Target Event: {explanation['target_event'].event_type}")
print(f" Causal Chain Length: {explanation['causal_chain_length']}")
if explanation['direct_causes']:
print(f" Direct Causes:")
for cause in explanation['direct_causes'][:2]:
print(f" - {cause['cause_event'].event_type} "
f"(confidence: {cause['confidence']:.3f})")
print(f" Mechanism: {cause['mechanism']}")
print("\nโ
Causal Reasoning System implemented and tested")
|