File size: 32,603 Bytes
23804b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 |
"""
Constitutional AI Integration for Cyber-LLM
Implements ethical constraints and safety guardrails through constitutional AI principles.
Author: Muzan Sano <[email protected]>
"""
import asyncio
import json
import logging
from datetime import datetime, timedelta
from typing import Dict, List, Optional, Tuple, Any, Union, Callable
from dataclasses import dataclass, field
from enum import Enum
from abc import ABC, abstractmethod
import re
from pathlib import Path
import yaml
import torch
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
from collections import defaultdict
import numpy as np
from ..utils.logging_system import CyberLLMLogger
# Configure logging
logger = CyberLLMLogger(__name__).get_logger()
class EthicalPrinciple(Enum):
"""Core ethical principles for cybersecurity AI"""
HARM_PREVENTION = "harm_prevention" # Don't cause harm
LAWFULNESS = "lawfulness" # Operate within legal bounds
TRANSPARENCY = "transparency" # Be transparent about capabilities
ACCOUNTABILITY = "accountability" # Take responsibility for actions
PROPORTIONALITY = "proportionality" # Response proportional to threat
PRIVACY_PROTECTION = "privacy_protection" # Protect user privacy
DUAL_USE_AWARENESS = "dual_use_awareness" # Recognize dual-use potential
HUMAN_OVERSIGHT = "human_oversight" # Maintain human oversight
DEFENSIVE_ONLY = "defensive_only" # Focus on defensive applications
CONSENT_RESPECT = "consent_respect" # Respect user consent
class ViolationType(Enum):
"""Types of constitutional violations"""
ILLEGAL_ACTIVITY = "illegal_activity"
HARMFUL_CONTENT = "harmful_content"
PRIVACY_VIOLATION = "privacy_violation"
UNAUTHORIZED_ACCESS = "unauthorized_access"
MALICIOUS_INTENT = "malicious_intent"
DISPROPORTIONATE_RESPONSE = "disproportionate_response"
DUAL_USE_CONCERN = "dual_use_concern"
LACK_OF_CONSENT = "lack_of_consent"
TRANSPARENCY_FAILURE = "transparency_failure"
HUMAN_OVERSIGHT_BYPASS = "human_oversight_bypass"
class ActionType(Enum):
"""Types of actions that can be taken"""
BLOCK = "block" # Block the action completely
MODIFY = "modify" # Modify to comply with principles
WARN = "warn" # Issue warning but allow
LOG = "log" # Log for review
ESCALATE = "escalate" # Escalate to human oversight
REQUEST_PERMISSION = "request_permission" # Request user permission
@dataclass
class ConstitutionalRule:
"""Individual constitutional rule"""
rule_id: str
name: str
description: str
principle: EthicalPrinciple
violation_type: ViolationType
# Rule logic
triggers: List[str] # Patterns or conditions that trigger this rule
severity: float # Severity score 0-1
action: ActionType
# Context
applicable_contexts: List[str] # Contexts where this rule applies
exceptions: List[str] # Exception conditions
# Metadata
created_at: datetime
updated_at: datetime
active: bool = True
@dataclass
class ConstitutionalViolation:
"""Constitutional violation record"""
violation_id: str
rule_id: str
violation_type: ViolationType
severity: float
# Context
input_text: str
context: Dict[str, Any]
timestamp: datetime
# Details
explanation: str
suggested_modification: Optional[str]
action_taken: ActionType
# Resolution
resolved: bool = False
resolution_notes: Optional[str] = None
human_review_required: bool = False
class EthicalClassifier:
"""Classifier for ethical content evaluation"""
def __init__(self, model_name: str = "martin-ha/toxic-comment-model"):
try:
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.model = AutoModelForSequenceClassification.from_pretrained(model_name)
self.classifier = pipeline(
"text-classification",
model=self.model,
tokenizer=self.tokenizer,
device=0 if torch.cuda.is_available() else -1
)
logger.info(f"Loaded ethical classifier: {model_name}")
except Exception as e:
logger.warning(f"Could not load classifier {model_name}: {str(e)}")
self.classifier = None
def classify_content(self, text: str) -> Dict[str, Any]:
"""Classify content for ethical concerns"""
if not self.classifier:
return {'toxic': False, 'confidence': 0.0, 'categories': []}
try:
results = self.classifier(text)
# Process results based on model output format
if isinstance(results, list) and results:
result = results[0]
label = result.get('label', '').lower()
score = result.get('score', 0.0)
is_toxic = 'toxic' in label or score > 0.7
return {
'toxic': is_toxic,
'confidence': score,
'label': label,
'categories': [label] if is_toxic else []
}
except Exception as e:
logger.error(f"Content classification failed: {str(e)}")
return {'toxic': False, 'confidence': 0.0, 'categories': []}
def detect_harmful_patterns(self, text: str) -> List[Dict[str, Any]]:
"""Detect specific harmful patterns in text"""
harmful_patterns = {
'illegal_hacking': [
r'hack\s+into\s+\w+',
r'break\s+into\s+system',
r'unauthorized\s+access\s+to',
r'steal\s+credentials',
r'bypass\s+security'
],
'malware_creation': [
r'create\s+malware',
r'develop\s+virus',
r'write\s+trojan',
r'backdoor\s+implementation',
r'payload\s+execution'
],
'privacy_violation': [
r'extract\s+personal\s+data',
r'collect\s+private\s+information',
r'access\s+confidential',
r'steal\s+identity',
r'harvest\s+emails'
],
'social_engineering': [
r'phishing\s+campaign',
r'deceive\s+users',
r'manipulate\s+victims',
r'pretend\s+to\s+be',
r'social\s+engineer'
]
}
detected_patterns = []
for category, patterns in harmful_patterns.items():
for pattern in patterns:
matches = re.finditer(pattern, text, re.IGNORECASE)
for match in matches:
detected_patterns.append({
'category': category,
'pattern': pattern,
'match': match.group(),
'start': match.start(),
'end': match.end(),
'severity': self._calculate_pattern_severity(category)
})
return detected_patterns
def _calculate_pattern_severity(self, category: str) -> float:
"""Calculate severity score for pattern category"""
severity_map = {
'illegal_hacking': 0.9,
'malware_creation': 0.95,
'privacy_violation': 0.8,
'social_engineering': 0.7
}
return severity_map.get(category, 0.5)
class ConstitutionalRuleEngine:
"""Engine for managing and evaluating constitutional rules"""
def __init__(self):
self.rules: Dict[str, ConstitutionalRule] = {}
self.violations_history: List[ConstitutionalViolation] = []
self.ethical_classifier = EthicalClassifier()
# Load default rules
self._load_default_rules()
# Statistics
self.evaluation_stats = {
'total_evaluations': 0,
'violations_found': 0,
'actions_taken': defaultdict(int),
'rules_triggered': defaultdict(int)
}
def _load_default_rules(self):
"""Load default constitutional rules"""
default_rules = [
ConstitutionalRule(
rule_id="no_illegal_hacking",
name="No Illegal Hacking",
description="Prevent assistance with illegal hacking activities",
principle=EthicalPrinciple.LAWFULNESS,
violation_type=ViolationType.ILLEGAL_ACTIVITY,
triggers=[
"hack into", "break into system", "unauthorized access",
"steal credentials", "bypass security", "exploit vulnerability"
],
severity=0.9,
action=ActionType.BLOCK,
applicable_contexts=["query_processing", "response_generation"],
exceptions=["authorized penetration testing", "educational context"],
created_at=datetime.now(),
updated_at=datetime.now()
),
ConstitutionalRule(
rule_id="no_malware_creation",
name="No Malware Creation",
description="Prevent assistance with malware development",
principle=EthicalPrinciple.HARM_PREVENTION,
violation_type=ViolationType.HARMFUL_CONTENT,
triggers=[
"create malware", "develop virus", "write trojan",
"backdoor implementation", "malicious payload"
],
severity=0.95,
action=ActionType.BLOCK,
applicable_contexts=["code_generation", "query_processing"],
exceptions=["malware analysis", "security research"],
created_at=datetime.now(),
updated_at=datetime.now()
),
ConstitutionalRule(
rule_id="privacy_protection",
name="Privacy Protection",
description="Protect user privacy and personal data",
principle=EthicalPrinciple.PRIVACY_PROTECTION,
violation_type=ViolationType.PRIVACY_VIOLATION,
triggers=[
"extract personal data", "collect private information",
"access confidential", "harvest emails", "steal identity"
],
severity=0.8,
action=ActionType.MODIFY,
applicable_contexts=["data_processing", "query_processing"],
exceptions=["with explicit consent", "anonymized data"],
created_at=datetime.now(),
updated_at=datetime.now()
),
ConstitutionalRule(
rule_id="proportional_response",
name="Proportional Response",
description="Ensure responses are proportional to threats",
principle=EthicalPrinciple.PROPORTIONALITY,
violation_type=ViolationType.DISPROPORTIONATE_RESPONSE,
triggers=[
"nuclear option", "destroy everything", "maximum damage",
"scorched earth", "overkill"
],
severity=0.7,
action=ActionType.WARN,
applicable_contexts=["response_generation", "action_planning"],
exceptions=["critical infrastructure protection"],
created_at=datetime.now(),
updated_at=datetime.now()
),
ConstitutionalRule(
rule_id="require_consent",
name="Require Consent",
description="Require explicit consent for sensitive operations",
principle=EthicalPrinciple.CONSENT_RESPECT,
violation_type=ViolationType.LACK_OF_CONSENT,
triggers=[
"scan network", "access system", "modify configuration",
"deploy tool", "execute command"
],
severity=0.6,
action=ActionType.REQUEST_PERMISSION,
applicable_contexts=["action_execution", "tool_deployment"],
exceptions=["emergency response", "pre-authorized actions"],
created_at=datetime.now(),
updated_at=datetime.now()
),
ConstitutionalRule(
rule_id="human_oversight_required",
name="Human Oversight Required",
description="Require human oversight for high-risk operations",
principle=EthicalPrinciple.HUMAN_OVERSIGHT,
violation_type=ViolationType.HUMAN_OVERSIGHT_BYPASS,
triggers=[
"autonomous operation", "unsupervised execution",
"critical system access", "irreversible action"
],
severity=0.8,
action=ActionType.ESCALATE,
applicable_contexts=["autonomous_operations", "critical_actions"],
exceptions=["emergency protocols", "pre-approved scenarios"],
created_at=datetime.now(),
updated_at=datetime.now()
),
ConstitutionalRule(
rule_id="dual_use_awareness",
name="Dual Use Awareness",
description="Be aware of dual-use potential of cybersecurity tools",
principle=EthicalPrinciple.DUAL_USE_AWARENESS,
violation_type=ViolationType.DUAL_USE_CONCERN,
triggers=[
"offensive capability", "attack tool", "exploitation framework",
"weaponization", "dual use"
],
severity=0.75,
action=ActionType.WARN,
applicable_contexts=["tool_recommendation", "capability_discussion"],
exceptions=["defensive research", "authorized red team"],
created_at=datetime.now(),
updated_at=datetime.now()
)
]
for rule in default_rules:
self.rules[rule.rule_id] = rule
logger.info(f"Loaded {len(default_rules)} default constitutional rules")
def add_rule(self, rule: ConstitutionalRule):
"""Add new constitutional rule"""
self.rules[rule.rule_id] = rule
logger.info(f"Added constitutional rule: {rule.name}")
def evaluate_content(self,
content: str,
context: Dict[str, Any]) -> List[ConstitutionalViolation]:
"""Evaluate content against constitutional rules"""
self.evaluation_stats['total_evaluations'] += 1
violations = []
# Get applicable rules based on context
applicable_rules = self._get_applicable_rules(context)
for rule in applicable_rules:
if not rule.active:
continue
# Check if rule is triggered
if self._is_rule_triggered(rule, content, context):
self.evaluation_stats['rules_triggered'][rule.rule_id] += 1
# Create violation record
violation = ConstitutionalViolation(
violation_id=f"violation_{datetime.now().timestamp()}",
rule_id=rule.rule_id,
violation_type=rule.violation_type,
severity=rule.severity,
input_text=content,
context=context,
timestamp=datetime.now(),
explanation=f"Triggered rule: {rule.name} - {rule.description}",
suggested_modification=self._suggest_modification(rule, content),
action_taken=rule.action,
human_review_required=rule.action in [ActionType.ESCALATE, ActionType.REQUEST_PERMISSION]
)
violations.append(violation)
self.violations_history.append(violation)
self.evaluation_stats['violations_found'] += 1
self.evaluation_stats['actions_taken'][rule.action.value] += 1
# Use ethical classifier for additional evaluation
classification = self.ethical_classifier.classify_content(content)
if classification['toxic'] and classification['confidence'] > 0.8:
violation = ConstitutionalViolation(
violation_id=f"violation_{datetime.now().timestamp()}",
rule_id="ethical_classifier",
violation_type=ViolationType.HARMFUL_CONTENT,
severity=classification['confidence'],
input_text=content,
context=context,
timestamp=datetime.now(),
explanation=f"Ethical classifier detected harmful content: {classification['label']}",
suggested_modification="Please rephrase to remove harmful content",
action_taken=ActionType.MODIFY,
human_review_required=classification['confidence'] > 0.9
)
violations.append(violation)
# Detect harmful patterns
harmful_patterns = self.ethical_classifier.detect_harmful_patterns(content)
for pattern in harmful_patterns:
if pattern['severity'] > 0.7:
violation = ConstitutionalViolation(
violation_id=f"violation_{datetime.now().timestamp()}",
rule_id="pattern_detection",
violation_type=ViolationType.HARMFUL_CONTENT,
severity=pattern['severity'],
input_text=content,
context=context,
timestamp=datetime.now(),
explanation=f"Detected harmful pattern: {pattern['category']} - {pattern['match']}",
suggested_modification=f"Remove or rephrase: {pattern['match']}",
action_taken=ActionType.BLOCK if pattern['severity'] > 0.8 else ActionType.WARN
)
violations.append(violation)
return violations
def _get_applicable_rules(self, context: Dict[str, Any]) -> List[ConstitutionalRule]:
"""Get rules applicable to current context"""
current_context = context.get('context_type', 'general')
applicable_rules = []
for rule in self.rules.values():
if not rule.applicable_contexts or current_context in rule.applicable_contexts:
applicable_rules.append(rule)
return applicable_rules
def _is_rule_triggered(self,
rule: ConstitutionalRule,
content: str,
context: Dict[str, Any]) -> bool:
"""Check if rule is triggered by content"""
# Check exceptions first
for exception in rule.exceptions:
if exception.lower() in content.lower() or exception.lower() in str(context).lower():
return False
# Check triggers
for trigger in rule.triggers:
if trigger.lower() in content.lower():
return True
return False
def _suggest_modification(self, rule: ConstitutionalRule, content: str) -> Optional[str]:
"""Suggest modification to comply with rule"""
modification_templates = {
ViolationType.ILLEGAL_ACTIVITY: "Please rephrase to focus on authorized and legal cybersecurity practices.",
ViolationType.HARMFUL_CONTENT: "Please modify to remove potentially harmful content.",
ViolationType.PRIVACY_VIOLATION: "Please ensure explicit consent and privacy protection measures.",
ViolationType.DISPROPORTIONATE_RESPONSE: "Please consider a more proportional approach to the threat level.",
ViolationType.DUAL_USE_CONCERN: "Please clarify the defensive and ethical use of this capability.",
ViolationType.LACK_OF_CONSENT: "Please ensure proper authorization before proceeding.",
}
return modification_templates.get(rule.violation_type)
class ConstitutionalAIManager:
"""Main manager for constitutional AI integration"""
def __init__(self, config_path: str = "configs/constitutional_ai.yaml"):
self.config_path = Path(config_path)
self.config = self._load_config()
# Initialize components
self.rule_engine = ConstitutionalRuleEngine()
# Action handlers
self.action_handlers = {
ActionType.BLOCK: self._handle_block,
ActionType.MODIFY: self._handle_modify,
ActionType.WARN: self._handle_warn,
ActionType.LOG: self._handle_log,
ActionType.ESCALATE: self._handle_escalate,
ActionType.REQUEST_PERMISSION: self._handle_request_permission
}
# Human oversight queue
self.human_review_queue = []
logger.info("ConstitutionalAIManager initialized")
def _load_config(self) -> Dict[str, Any]:
"""Load constitutional AI configuration"""
if self.config_path.exists():
with open(self.config_path, 'r') as f:
return yaml.safe_load(f)
else:
# Default configuration
default_config = {
'strict_mode': True,
'auto_modify_enabled': True,
'human_oversight_threshold': 0.8,
'violation_reporting': True,
'learning_from_violations': True,
'transparency_level': 'high'
}
# Save default configuration
self.config_path.parent.mkdir(exist_ok=True)
with open(self.config_path, 'w') as f:
yaml.dump(default_config, f)
return default_config
async def evaluate_and_enforce(self,
content: str,
context: Dict[str, Any]) -> Dict[str, Any]:
"""Evaluate content and enforce constitutional principles"""
# Evaluate content against rules
violations = self.rule_engine.evaluate_content(content, context)
if not violations:
return {
'allowed': True,
'content': content,
'violations': [],
'actions_taken': []
}
# Process violations
actions_taken = []
modified_content = content
blocked = False
for violation in violations:
action_result = await self.action_handlers[violation.action_taken](
violation, modified_content, context
)
actions_taken.append({
'violation_id': violation.violation_id,
'action': violation.action_taken.value,
'result': action_result
})
# Update content based on action result
if action_result.get('blocked'):
blocked = True
break
elif action_result.get('modified_content'):
modified_content = action_result['modified_content']
return {
'allowed': not blocked,
'content': modified_content,
'violations': [v.__dict__ for v in violations],
'actions_taken': actions_taken,
'human_review_required': any(v.human_review_required for v in violations)
}
async def _handle_block(self,
violation: ConstitutionalViolation,
content: str,
context: Dict[str, Any]) -> Dict[str, Any]:
"""Handle block action"""
logger.warning(f"Blocked content due to violation: {violation.rule_id}")
return {
'blocked': True,
'reason': violation.explanation,
'severity': violation.severity
}
async def _handle_modify(self,
violation: ConstitutionalViolation,
content: str,
context: Dict[str, Any]) -> Dict[str, Any]:
"""Handle modify action"""
if not self.config.get('auto_modify_enabled', True):
return {'blocked': True, 'reason': 'Auto-modification disabled'}
# Simple content modification (in practice, use more sophisticated methods)
modified_content = self._auto_modify_content(content, violation)
logger.info(f"Modified content due to violation: {violation.rule_id}")
return {
'blocked': False,
'modified_content': modified_content,
'modification_reason': violation.explanation
}
async def _handle_warn(self,
violation: ConstitutionalViolation,
content: str,
context: Dict[str, Any]) -> Dict[str, Any]:
"""Handle warn action"""
logger.warning(f"Warning for potential violation: {violation.rule_id}")
return {
'blocked': False,
'warning': violation.explanation,
'suggested_modification': violation.suggested_modification
}
async def _handle_log(self,
violation: ConstitutionalViolation,
content: str,
context: Dict[str, Any]) -> Dict[str, Any]:
"""Handle log action"""
logger.info(f"Logged violation: {violation.rule_id}")
return {
'blocked': False,
'logged': True,
'log_entry': violation.explanation
}
async def _handle_escalate(self,
violation: ConstitutionalViolation,
content: str,
context: Dict[str, Any]) -> Dict[str, Any]:
"""Handle escalate action"""
# Add to human review queue
self.human_review_queue.append({
'violation': violation,
'content': content,
'context': context,
'timestamp': datetime.now(),
'status': 'pending'
})
logger.warning(f"Escalated to human oversight: {violation.rule_id}")
if self.config.get('strict_mode', True):
return {
'blocked': True,
'reason': 'Escalated to human oversight - awaiting approval',
'escalation_id': violation.violation_id
}
else:
return {
'blocked': False,
'escalated': True,
'escalation_id': violation.violation_id
}
async def _handle_request_permission(self,
violation: ConstitutionalViolation,
content: str,
context: Dict[str, Any]) -> Dict[str, Any]:
"""Handle request permission action"""
# In a real implementation, this would integrate with a permission system
logger.info(f"Permission requested for: {violation.rule_id}")
return {
'blocked': True,
'reason': 'Explicit permission required',
'permission_request': violation.explanation
}
def _auto_modify_content(self, content: str, violation: ConstitutionalViolation) -> str:
"""Automatically modify content to address violation"""
# Simple modification strategies based on violation type
if violation.violation_type == ViolationType.ILLEGAL_ACTIVITY:
# Replace harmful terms with ethical alternatives
harmful_terms = {
'hack into': 'securely assess',
'break into': 'authorized penetration test of',
'steal': 'ethically collect',
'exploit': 'responsibly disclose'
}
modified = content
for harmful, ethical in harmful_terms.items():
modified = modified.replace(harmful, ethical)
return modified
elif violation.violation_type == ViolationType.PRIVACY_VIOLATION:
# Add privacy disclaimers
return f"{content}\n\n[Note: Ensure proper consent and privacy protections are in place]"
elif violation.violation_type == ViolationType.DUAL_USE_CONCERN:
# Add ethical use disclaimer
return f"{content}\n\n[Note: This information should only be used for defensive cybersecurity purposes]"
return content
def get_human_review_queue(self) -> List[Dict[str, Any]]:
"""Get pending human review items"""
return [item for item in self.human_review_queue if item['status'] == 'pending']
def resolve_human_review(self, escalation_id: str, decision: str, notes: str = ""):
"""Resolve human review item"""
for item in self.human_review_queue:
if item['violation'].violation_id == escalation_id:
item['status'] = 'resolved'
item['decision'] = decision
item['resolution_notes'] = notes
item['resolved_at'] = datetime.now()
logger.info(f"Resolved human review: {escalation_id} - {decision}")
break
def get_constitutional_statistics(self) -> Dict[str, Any]:
"""Get constitutional AI statistics"""
# Recent violations (last 24 hours)
recent_violations = [
v for v in self.rule_engine.violations_history
if v.timestamp >= datetime.now() - timedelta(days=1)
]
# Violation distribution by type
violation_types = defaultdict(int)
for violation in self.rule_engine.violations_history:
violation_types[violation.violation_type.value] += 1
# Rule effectiveness
rule_effectiveness = {}
for rule_id, count in self.rule_engine.evaluation_stats['rules_triggered'].items():
rule = self.rule_engine.rules.get(rule_id)
if rule:
rule_effectiveness[rule.name] = {
'triggers': count,
'severity': rule.severity,
'action': rule.action.value
}
return {
'evaluation_stats': self.rule_engine.evaluation_stats,
'total_violations': len(self.rule_engine.violations_history),
'recent_violations_24h': len(recent_violations),
'violation_distribution': dict(violation_types),
'active_rules': len([r for r in self.rule_engine.rules.values() if r.active]),
'pending_human_reviews': len(self.get_human_review_queue()),
'rule_effectiveness': rule_effectiveness
}
def update_rule(self, rule_id: str, updates: Dict[str, Any]):
"""Update constitutional rule"""
if rule_id in self.rule_engine.rules:
rule = self.rule_engine.rules[rule_id]
for key, value in updates.items():
if hasattr(rule, key):
setattr(rule, key, value)
rule.updated_at = datetime.now()
logger.info(f"Updated constitutional rule: {rule_id}")
else:
raise ValueError(f"Rule not found: {rule_id}")
# Factory function
def create_constitutional_ai_manager(**kwargs) -> ConstitutionalAIManager:
"""Create constitutional AI manager with configuration"""
return ConstitutionalAIManager(**kwargs)
|