File size: 21,530 Bytes
23804b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
"""
Phase 7 Integration Module for Cyber-LLM
Integrates all continuous intelligence and evolution components into a cohesive system.

Author: Muzan Sano <[email protected]>
"""

import asyncio
import json
import logging
from datetime import datetime, timedelta
from typing import Dict, List, Optional, Tuple, Any, Union
from dataclasses import dataclass, asdict
from enum import Enum
import yaml
from pathlib import Path

# Import Phase 7 components
from .online_learning import OnlineLearningManager, LearningEvent, LearningEventType
from .federated_learning import FederatedLearningCoordinator, FederatedLearningParticipant
from .meta_learning import MetaLearningManager, MetaLearningStrategy
from .research_collaboration import ResearchCollaborationManager, CollaborationType
from .constitutional_ai import ConstitutionalAIManager

from ..utils.logging_system import CyberLLMLogger

# Configure logging
logger = CyberLLMLogger(__name__).get_logger()

class ContinuousIntelligenceMode(Enum):
    """Modes of continuous intelligence operation"""
    CONSERVATIVE = "conservative"     # Minimal learning, high safety
    BALANCED = "balanced"            # Balanced learning and safety
    AGGRESSIVE = "aggressive"        # Maximum learning, calculated risks
    RESEARCH = "research"            # Research-focused with collaboration
    PRODUCTION = "production"        # Production-optimized stability

@dataclass
class ContinuousIntelligenceConfig:
    """Configuration for continuous intelligence system"""
    
    # General settings
    mode: ContinuousIntelligenceMode = ContinuousIntelligenceMode.BALANCED
    organization_name: str = "CyberLLM-Org"
    enable_online_learning: bool = True
    enable_federated_learning: bool = True
    enable_meta_learning: bool = True
    enable_research_collaboration: bool = True
    enable_constitutional_ai: bool = True
    
    # Learning parameters
    learning_rate_multiplier: float = 1.0
    adaptation_threshold: float = 0.8
    meta_learning_batch_size: int = 4
    collaboration_sensitivity_level: str = "consortium"
    
    # Safety parameters
    constitutional_strict_mode: bool = True
    human_oversight_threshold: float = 0.8
    max_autonomous_adaptations: int = 10
    
    # Performance parameters
    update_frequency_minutes: int = 60
    batch_processing_size: int = 100
    max_memory_usage_gb: float = 8.0
    
    def to_dict(self) -> Dict[str, Any]:
        """Convert to dictionary"""
        return asdict(self)

class ContinuousIntelligenceOrchestrator:
    """Main orchestrator for all continuous intelligence components"""
    
    def __init__(self, 
                 config: ContinuousIntelligenceConfig,
                 model,
                 tokenizer):
        
        self.config = config
        self.model = model
        self.tokenizer = tokenizer
        
        # Initialize components based on configuration
        self.components = {}
        self._initialize_components()
        
        # Operational state
        self.is_running = False
        self.last_update_time = None
        self.adaptation_count = 0
        self.performance_metrics = {
            'total_learning_events': 0,
            'successful_adaptations': 0,
            'constitutional_violations': 0,
            'collaboration_insights': 0,
            'meta_learning_episodes': 0
        }
        
        logger.info(f"ContinuousIntelligenceOrchestrator initialized in {config.mode.value} mode")
    
    def _initialize_components(self):
        """Initialize continuous intelligence components"""
        
        try:
            # Online Learning Manager
            if self.config.enable_online_learning:
                self.components['online_learning'] = OnlineLearningManager(
                    model=self.model,
                    tokenizer=self.tokenizer,
                    learning_rate=0.001 * self.config.learning_rate_multiplier,
                    batch_size=self.config.batch_processing_size
                )
                logger.info("Initialized OnlineLearningManager")
            
            # Federated Learning Coordinator
            if self.config.enable_federated_learning:
                self.components['federated_learning'] = FederatedLearningCoordinator(
                    coordinator_id=f"{self.config.organization_name}_coordinator",
                    model=self.model
                )
                logger.info("Initialized FederatedLearningCoordinator")
            
            # Meta Learning Manager
            if self.config.enable_meta_learning:
                self.components['meta_learning'] = MetaLearningManager(
                    model=self.model,
                    tokenizer=self.tokenizer,
                    strategy=MetaLearningStrategy.MAML,
                    meta_batch_size=self.config.meta_learning_batch_size
                )
                logger.info("Initialized MetaLearningManager")
            
            # Research Collaboration Manager
            if self.config.enable_research_collaboration:
                self.components['research_collaboration'] = ResearchCollaborationManager(
                    organization_name=self.config.organization_name
                )
                logger.info("Initialized ResearchCollaborationManager")
            
            # Constitutional AI Manager
            if self.config.enable_constitutional_ai:
                self.components['constitutional_ai'] = ConstitutionalAIManager()
                logger.info("Initialized ConstitutionalAIManager")
        
        except Exception as e:
            logger.error(f"Failed to initialize components: {str(e)}")
            raise
    
    async def start_continuous_intelligence(self):
        """Start the continuous intelligence system"""
        
        if self.is_running:
            logger.warning("Continuous intelligence system is already running")
            return
        
        self.is_running = True
        self.last_update_time = datetime.now()
        
        logger.info("Starting continuous intelligence system")
        
        # Start background tasks
        tasks = []
        
        if 'online_learning' in self.components:
            tasks.append(self._run_online_learning_loop())
        
        if 'meta_learning' in self.components:
            tasks.append(self._run_meta_learning_loop())
        
        if 'federated_learning' in self.components:
            tasks.append(self._run_federated_learning_loop())
        
        # Start monitoring task
        tasks.append(self._run_monitoring_loop())
        
        # Run all tasks concurrently
        try:
            await asyncio.gather(*tasks)
        except Exception as e:
            logger.error(f"Error in continuous intelligence system: {str(e)}")
            self.is_running = False
    
    async def stop_continuous_intelligence(self):
        """Stop the continuous intelligence system"""
        
        self.is_running = False
        logger.info("Stopping continuous intelligence system")
        
        # Save current state
        await self._save_system_state()
    
    async def process_learning_event(self, event: LearningEvent) -> Dict[str, Any]:
        """Process a single learning event through all applicable components"""
        
        results = {}
        
        try:
            # Constitutional AI evaluation first
            if 'constitutional_ai' in self.components:
                constitutional_result = await self.components['constitutional_ai'].evaluate_and_enforce(
                    content=json.dumps(event.context),
                    context={'event_type': event.event_type.value}
                )
                
                if not constitutional_result['allowed']:
                    logger.warning(f"Learning event blocked by constitutional AI: {event.event_id}")
                    self.performance_metrics['constitutional_violations'] += 1
                    return {'blocked': True, 'reason': 'constitutional_violation'}
                
                results['constitutional_check'] = constitutional_result
            
            # Process through online learning
            if 'online_learning' in self.components:
                online_result = await self.components['online_learning'].process_learning_event(event)
                results['online_learning'] = online_result
            
            # Add to meta-learning episodes
            if 'meta_learning' in self.components:
                episodes_created = await self.components['meta_learning'].add_learning_episodes([event])
                results['meta_learning_episodes'] = episodes_created
                self.performance_metrics['meta_learning_episodes'] += episodes_created
            
            # Update performance metrics
            self.performance_metrics['total_learning_events'] += 1
            
            logger.debug(f"Processed learning event: {event.event_id}")
            
        except Exception as e:
            logger.error(f"Error processing learning event {event.event_id}: {str(e)}")
            results['error'] = str(e)
        
        return results
    
    async def trigger_adaptation_cycle(self) -> Dict[str, Any]:
        """Trigger a complete adaptation cycle across all components"""
        
        if self.adaptation_count >= self.config.max_autonomous_adaptations:
            logger.warning("Maximum autonomous adaptations reached, requiring human oversight")
            return {'blocked': True, 'reason': 'max_adaptations_reached'}
        
        adaptation_results = {}
        
        try:
            # Online learning adaptation
            if 'online_learning' in self.components:
                online_result = await self.components['online_learning'].apply_accumulated_updates()
                adaptation_results['online_learning'] = online_result
            
            # Meta-learning adaptation
            if 'meta_learning' in self.components:
                meta_result = await self.components['meta_learning'].meta_train_step()
                adaptation_results['meta_learning'] = meta_result
            
            # Update adaptation count
            if any(result.get('success') for result in adaptation_results.values()):
                self.adaptation_count += 1
                self.performance_metrics['successful_adaptations'] += 1
            
            logger.info(f"Completed adaptation cycle {self.adaptation_count}")
            
        except Exception as e:
            logger.error(f"Error in adaptation cycle: {str(e)}")
            adaptation_results['error'] = str(e)
        
        return adaptation_results
    
    async def _run_online_learning_loop(self):
        """Background loop for online learning"""
        
        logger.info("Starting online learning loop")
        
        while self.is_running:
            try:
                # Check if adaptation threshold is met
                if 'online_learning' in self.components:
                    stats = self.components['online_learning'].get_learning_statistics()
                    
                    if stats['pending_updates'] > 0 and stats['confidence_score'] >= self.config.adaptation_threshold:
                        await self.trigger_adaptation_cycle()
                
                await asyncio.sleep(self.config.update_frequency_minutes * 60)
                
            except Exception as e:
                logger.error(f"Error in online learning loop: {str(e)}")
                await asyncio.sleep(300)  # Wait 5 minutes on error
    
    async def _run_meta_learning_loop(self):
        """Background loop for meta-learning"""
        
        logger.info("Starting meta-learning loop")
        
        while self.is_running:
            try:
                if 'meta_learning' in self.components:
                    # Perform meta-training if enough episodes available
                    await self.components['meta_learning'].meta_train_step()
                
                await asyncio.sleep(self.config.update_frequency_minutes * 60 * 2)  # Less frequent
                
            except Exception as e:
                logger.error(f"Error in meta-learning loop: {str(e)}")
                await asyncio.sleep(600)  # Wait 10 minutes on error
    
    async def _run_federated_learning_loop(self):
        """Background loop for federated learning"""
        
        logger.info("Starting federated learning loop")
        
        while self.is_running:
            try:
                if 'federated_learning' in self.components:
                    # Check for federated learning opportunities
                    await self.components['federated_learning'].coordinate_federated_round()
                
                await asyncio.sleep(self.config.update_frequency_minutes * 60 * 4)  # Even less frequent
                
            except Exception as e:
                logger.error(f"Error in federated learning loop: {str(e)}")
                await asyncio.sleep(900)  # Wait 15 minutes on error
    
    async def _run_monitoring_loop(self):
        """Background loop for system monitoring"""
        
        logger.info("Starting monitoring loop")
        
        while self.is_running:
            try:
                # Log system status
                status = await self.get_system_status()
                
                # Check for any critical issues
                if status['memory_usage_gb'] > self.config.max_memory_usage_gb:
                    logger.warning(f"High memory usage: {status['memory_usage_gb']:.2f}GB")
                
                if status['constitutional_violations_rate'] > 0.1:
                    logger.warning(f"High constitutional violation rate: {status['constitutional_violations_rate']:.2f}")
                
                await asyncio.sleep(300)  # Monitor every 5 minutes
                
            except Exception as e:
                logger.error(f"Error in monitoring loop: {str(e)}")
                await asyncio.sleep(300)
    
    async def get_system_status(self) -> Dict[str, Any]:
        """Get comprehensive system status"""
        
        status = {
            'is_running': self.is_running,
            'mode': self.config.mode.value,
            'uptime_hours': (datetime.now() - (self.last_update_time or datetime.now())).total_seconds() / 3600,
            'adaptation_count': self.adaptation_count,
            'performance_metrics': self.performance_metrics.copy()
        }
        
        # Component-specific status
        component_status = {}
        
        if 'online_learning' in self.components:
            component_status['online_learning'] = self.components['online_learning'].get_learning_statistics()
        
        if 'meta_learning' in self.components:
            component_status['meta_learning'] = self.components['meta_learning'].get_meta_learning_statistics()
        
        if 'constitutional_ai' in self.components:
            component_status['constitutional_ai'] = self.components['constitutional_ai'].get_constitutional_statistics()
        
        if 'research_collaboration' in self.components:
            component_status['research_collaboration'] = self.components['research_collaboration'].get_collaboration_statistics()
        
        status['components'] = component_status
        
        # Calculate derived metrics
        total_events = self.performance_metrics['total_learning_events']
        if total_events > 0:
            status['constitutional_violations_rate'] = self.performance_metrics['constitutional_violations'] / total_events
            status['adaptation_success_rate'] = self.performance_metrics['successful_adaptations'] / self.adaptation_count if self.adaptation_count > 0 else 0.0
        else:
            status['constitutional_violations_rate'] = 0.0
            status['adaptation_success_rate'] = 0.0
        
        # Estimate memory usage (simplified)
        status['memory_usage_gb'] = 2.0  # Base estimate, would use actual monitoring in production
        
        return status
    
    async def _save_system_state(self):
        """Save current system state to disk"""
        
        try:
            state_data = {
                'config': self.config.to_dict(),
                'performance_metrics': self.performance_metrics,
                'adaptation_count': self.adaptation_count,
                'last_update_time': self.last_update_time.isoformat() if self.last_update_time else None,
                'timestamp': datetime.now().isoformat()
            }
            
            state_file = Path("data/system_state/continuous_intelligence_state.json")
            state_file.parent.mkdir(parents=True, exist_ok=True)
            
            with open(state_file, 'w') as f:
                json.dump(state_data, f, indent=2)
            
            logger.info(f"Saved system state to {state_file}")
            
        except Exception as e:
            logger.error(f"Failed to save system state: {str(e)}")
    
    async def load_system_state(self, state_file: Optional[str] = None) -> bool:
        """Load system state from disk"""
        
        try:
            if state_file is None:
                state_file = "data/system_state/continuous_intelligence_state.json"
            
            state_path = Path(state_file)
            
            if not state_path.exists():
                logger.info("No previous system state found")
                return False
            
            with open(state_path, 'r') as f:
                state_data = json.load(f)
            
            # Restore state
            self.performance_metrics = state_data.get('performance_metrics', {})
            self.adaptation_count = state_data.get('adaptation_count', 0)
            
            if state_data.get('last_update_time'):
                self.last_update_time = datetime.fromisoformat(state_data['last_update_time'])
            
            logger.info(f"Loaded system state from {state_path}")
            return True
            
        except Exception as e:
            logger.error(f"Failed to load system state: {str(e)}")
            return False
    
    def create_learning_event(self,
                            event_type: LearningEventType,
                            source: str,
                            context: Dict[str, Any],
                            confidence: float = 1.0,
                            priority: int = 1) -> LearningEvent:
        """Helper method to create learning events"""
        
        return LearningEvent(
            event_id=f"evt_{datetime.now().timestamp()}",
            event_type=event_type,
            source=source,
            timestamp=datetime.now(),
            context=context,
            confidence=confidence,
            priority=priority
        )

# Factory functions
def create_continuous_intelligence_config(mode: ContinuousIntelligenceMode = ContinuousIntelligenceMode.BALANCED,
                                        **kwargs) -> ContinuousIntelligenceConfig:
    """Create continuous intelligence configuration"""
    
    # Mode-specific defaults
    mode_defaults = {
        ContinuousIntelligenceMode.CONSERVATIVE: {
            'learning_rate_multiplier': 0.5,
            'constitutional_strict_mode': True,
            'human_oversight_threshold': 0.6,
            'max_autonomous_adaptations': 5,
            'update_frequency_minutes': 120
        },
        ContinuousIntelligenceMode.BALANCED: {
            'learning_rate_multiplier': 1.0,
            'constitutional_strict_mode': True,
            'human_oversight_threshold': 0.8,
            'max_autonomous_adaptations': 10,
            'update_frequency_minutes': 60
        },
        ContinuousIntelligenceMode.AGGRESSIVE: {
            'learning_rate_multiplier': 2.0,
            'constitutional_strict_mode': False,
            'human_oversight_threshold': 0.9,
            'max_autonomous_adaptations': 20,
            'update_frequency_minutes': 30
        },
        ContinuousIntelligenceMode.RESEARCH: {
            'enable_research_collaboration': True,
            'learning_rate_multiplier': 1.5,
            'constitutional_strict_mode': False,
            'collaboration_sensitivity_level': 'consortium',
            'update_frequency_minutes': 45
        },
        ContinuousIntelligenceMode.PRODUCTION: {
            'learning_rate_multiplier': 0.8,
            'constitutional_strict_mode': True,
            'human_oversight_threshold': 0.7,
            'max_autonomous_adaptations': 8,
            'update_frequency_minutes': 90
        }
    }
    
    # Start with mode defaults
    config_dict = mode_defaults.get(mode, {})
    
    # Override with user-provided kwargs
    config_dict.update(kwargs)
    config_dict['mode'] = mode
    
    return ContinuousIntelligenceConfig(**config_dict)

def create_continuous_intelligence_orchestrator(model,
                                              tokenizer, 
                                              config: Optional[ContinuousIntelligenceConfig] = None,
                                              **kwargs) -> ContinuousIntelligenceOrchestrator:
    """Create continuous intelligence orchestrator"""
    
    if config is None:
        config = create_continuous_intelligence_config(**kwargs)
    
    return ContinuousIntelligenceOrchestrator(config, model, tokenizer)