File size: 29,329 Bytes
23804b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 |
"""
Meta-Learning System for Cyber-LLM
Enables rapid adaptation to new attack patterns and defense strategies through meta-learning.
Author: Muzan Sano <[email protected]>
"""
import asyncio
import json
import logging
from datetime import datetime, timedelta
from typing import Dict, List, Optional, Tuple, Any, Callable
from dataclasses import dataclass, asdict
from enum import Enum
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader, Dataset
from transformers import AutoTokenizer, AutoModelForCausalLM
from collections import defaultdict
import random
from ..utils.logging_system import CyberLLMLogger
from .online_learning import LearningEvent, LearningEventType
# Configure logging
logger = CyberLLMLogger(__name__).get_logger()
class MetaLearningStrategy(Enum):
"""Types of meta-learning strategies"""
MAML = "model_agnostic_meta_learning" # Model-Agnostic Meta-Learning
REPTILE = "reptile" # Reptile algorithm
PROTOTYPICAL = "prototypical_networks" # Prototype-based learning
MEMORY_AUGMENTED = "memory_augmented" # Memory-augmented networks
GRADIENT_BASED = "gradient_based" # Gradient-based meta-learning
class TaskType(Enum):
"""Types of cybersecurity tasks for meta-learning"""
THREAT_CLASSIFICATION = "threat_classification"
ATTACK_PREDICTION = "attack_prediction"
IOC_DETECTION = "ioc_detection"
VULNERABILITY_ASSESSMENT = "vulnerability_assessment"
INCIDENT_RESPONSE = "incident_response"
OPSEC_EVALUATION = "opsec_evaluation"
@dataclass
class MetaTask:
"""Structure for meta-learning tasks"""
task_id: str
task_type: TaskType
name: str
description: str
support_set: List[Dict[str, Any]] # Few examples for learning
query_set: List[Dict[str, Any]] # Examples for evaluation
domain: str # Cybersecurity domain (malware, network, etc.)
difficulty: float # Task difficulty (0-1)
created_at: datetime
metadata: Dict[str, Any]
def __len__(self) -> int:
return len(self.support_set) + len(self.query_set)
class EpisodeBuffer:
"""Buffer for storing meta-learning episodes"""
def __init__(self, capacity: int = 1000):
self.capacity = capacity
self.episodes: List[MetaTask] = []
self.episode_index = 0
def add_episode(self, episode: MetaTask):
"""Add new episode to buffer"""
if len(self.episodes) >= self.capacity:
self.episodes[self.episode_index] = episode
self.episode_index = (self.episode_index + 1) % self.capacity
else:
self.episodes.append(episode)
def sample_episodes(self, batch_size: int) -> List[MetaTask]:
"""Sample batch of episodes for meta-training"""
if len(self.episodes) < batch_size:
return self.episodes.copy()
return random.sample(self.episodes, batch_size)
def get_episodes_by_domain(self, domain: str) -> List[MetaTask]:
"""Get episodes from specific domain"""
return [ep for ep in self.episodes if ep.domain == domain]
def get_episodes_by_type(self, task_type: TaskType) -> List[MetaTask]:
"""Get episodes of specific task type"""
return [ep for ep in self.episodes if ep.task_type == task_type]
class MAMLOptimizer:
"""Model-Agnostic Meta-Learning optimizer"""
def __init__(self,
model: nn.Module,
meta_lr: float = 1e-3,
inner_lr: float = 1e-2,
inner_steps: int = 5):
self.model = model
self.meta_lr = meta_lr
self.inner_lr = inner_lr
self.inner_steps = inner_steps
# Meta-optimizer
self.meta_optimizer = torch.optim.Adam(model.parameters(), lr=meta_lr)
def meta_train_step(self, episode_batch: List[MetaTask]) -> Dict[str, float]:
"""Perform one meta-training step"""
self.meta_optimizer.zero_grad()
total_loss = 0.0
total_accuracy = 0.0
num_tasks = len(episode_batch)
for task in episode_batch:
# Clone model for inner loop
model_copy = self._clone_model()
# Inner loop adaptation
adapted_model, adaptation_loss = self._inner_loop_adaptation(
model_copy, task.support_set
)
# Evaluate on query set
query_loss, query_accuracy = self._evaluate_on_query_set(
adapted_model, task.query_set
)
total_loss += query_loss
total_accuracy += query_accuracy
# Meta-gradient update
avg_loss = total_loss / num_tasks
avg_loss.backward()
# Gradient clipping
torch.nn.utils.clip_grad_norm_(self.model.parameters(), max_norm=1.0)
self.meta_optimizer.step()
return {
'meta_loss': avg_loss.item(),
'meta_accuracy': total_accuracy / num_tasks,
'num_tasks': num_tasks
}
def _clone_model(self) -> nn.Module:
"""Create a copy of the model for inner loop"""
model_copy = type(self.model)()
model_copy.load_state_dict(self.model.state_dict())
return model_copy
def _inner_loop_adaptation(self,
model: nn.Module,
support_set: List[Dict[str, Any]]) -> Tuple[nn.Module, float]:
"""Perform inner loop adaptation on support set"""
optimizer = torch.optim.SGD(model.parameters(), lr=self.inner_lr)
total_loss = 0.0
for step in range(self.inner_steps):
optimizer.zero_grad()
# Sample batch from support set
batch = random.sample(support_set, min(4, len(support_set)))
# Compute loss
loss = self._compute_task_loss(model, batch)
loss.backward()
optimizer.step()
total_loss += loss.item()
return model, total_loss / self.inner_steps
def _evaluate_on_query_set(self,
model: nn.Module,
query_set: List[Dict[str, Any]]) -> Tuple[torch.Tensor, float]:
"""Evaluate adapted model on query set"""
model.eval()
total_loss = 0.0
correct_predictions = 0
total_predictions = 0
with torch.no_grad():
for query_example in query_set:
loss = self._compute_task_loss(model, [query_example])
total_loss += loss.item()
# Compute accuracy (simplified)
prediction = self._get_prediction(model, query_example)
if prediction == query_example.get('label'):
correct_predictions += 1
total_predictions += 1
accuracy = correct_predictions / total_predictions if total_predictions > 0 else 0.0
return torch.tensor(total_loss / len(query_set)), accuracy
def _compute_task_loss(self, model: nn.Module, batch: List[Dict[str, Any]]) -> torch.Tensor:
"""Compute loss for a task batch"""
# Simplified loss computation - implement actual loss based on task type
return torch.tensor(0.1, requires_grad=True)
def _get_prediction(self, model: nn.Module, example: Dict[str, Any]) -> Any:
"""Get model prediction for an example"""
# Simplified prediction - implement actual inference
return "predicted_label"
class CyberSecurityTaskGenerator:
"""Generates meta-learning tasks from cybersecurity data"""
def __init__(self,
tokenizer,
min_support_size: int = 5,
max_support_size: int = 20,
min_query_size: int = 5,
max_query_size: int = 15):
self.tokenizer = tokenizer
self.min_support_size = min_support_size
self.max_support_size = max_support_size
self.min_query_size = min_query_size
self.max_query_size = max_query_size
# Task templates for different cybersecurity domains
self.task_templates = {
TaskType.THREAT_CLASSIFICATION: self._generate_threat_classification_task,
TaskType.ATTACK_PREDICTION: self._generate_attack_prediction_task,
TaskType.IOC_DETECTION: self._generate_ioc_detection_task,
TaskType.VULNERABILITY_ASSESSMENT: self._generate_vuln_assessment_task,
TaskType.INCIDENT_RESPONSE: self._generate_incident_response_task,
TaskType.OPSEC_EVALUATION: self._generate_opsec_evaluation_task
}
def generate_task_from_events(self,
events: List[LearningEvent],
task_type: TaskType,
domain: str = "general") -> Optional[MetaTask]:
"""Generate meta-learning task from learning events"""
if len(events) < self.min_support_size + self.min_query_size:
logger.warning(f"Insufficient events for task generation: {len(events)}")
return None
try:
# Filter events by relevance to task type
relevant_events = self._filter_events_by_task_type(events, task_type)
if len(relevant_events) < self.min_support_size + self.min_query_size:
return None
# Split into support and query sets
random.shuffle(relevant_events)
support_size = random.randint(self.min_support_size,
min(self.max_support_size, len(relevant_events) // 2))
support_events = relevant_events[:support_size]
query_events = relevant_events[support_size:support_size + self.max_query_size]
# Convert events to task format
support_set = [self._event_to_task_example(event, task_type) for event in support_events]
query_set = [self._event_to_task_example(event, task_type) for event in query_events]
# Generate task using appropriate template
generator_func = self.task_templates[task_type]
return generator_func(support_set, query_set, domain)
except Exception as e:
logger.error(f"Error generating task: {str(e)}")
return None
def _filter_events_by_task_type(self,
events: List[LearningEvent],
task_type: TaskType) -> List[LearningEvent]:
"""Filter events relevant to specific task type"""
relevant_event_types = {
TaskType.THREAT_CLASSIFICATION: [
LearningEventType.NEW_THREAT_INTELLIGENCE,
LearningEventType.SECURITY_INCIDENT
],
TaskType.ATTACK_PREDICTION: [
LearningEventType.AGENT_SUCCESS,
LearningEventType.AGENT_FAILURE,
LearningEventType.SECURITY_INCIDENT
],
TaskType.IOC_DETECTION: [
LearningEventType.NEW_THREAT_INTELLIGENCE,
LearningEventType.FALSE_POSITIVE
],
TaskType.OPSEC_EVALUATION: [
LearningEventType.OPSEC_VIOLATION,
LearningEventType.AGENT_SUCCESS
]
}
target_types = relevant_event_types.get(task_type, [])
return [event for event in events if event.event_type in target_types]
def _event_to_task_example(self,
event: LearningEvent,
task_type: TaskType) -> Dict[str, Any]:
"""Convert learning event to task example"""
base_example = {
'id': event.event_id,
'input': self._extract_input_from_event(event, task_type),
'label': self._extract_label_from_event(event, task_type),
'metadata': {
'source': event.source,
'timestamp': event.timestamp.isoformat(),
'confidence': event.confidence,
'priority': event.priority
}
}
return base_example
def _extract_input_from_event(self, event: LearningEvent, task_type: TaskType) -> str:
"""Extract input text from event based on task type"""
if task_type == TaskType.THREAT_CLASSIFICATION:
return event.context.get('threat_description', '')
elif task_type == TaskType.ATTACK_PREDICTION:
return f"Context: {event.context.get('context', '')} Previous actions: {event.context.get('actions', [])}"
elif task_type == TaskType.IOC_DETECTION:
return event.context.get('network_data', '') + " " + event.context.get('log_data', '')
elif task_type == TaskType.OPSEC_EVALUATION:
return f"Query: {event.context.get('query', '')} Response: {event.context.get('response', '')}"
else:
return json.dumps(event.context)
def _extract_label_from_event(self, event: LearningEvent, task_type: TaskType) -> str:
"""Extract label from event based on task type"""
if task_type == TaskType.THREAT_CLASSIFICATION:
return event.context.get('threat_type', 'unknown')
elif task_type == TaskType.ATTACK_PREDICTION:
return "success" if event.event_type == LearningEventType.AGENT_SUCCESS else "failure"
elif task_type == TaskType.IOC_DETECTION:
return "positive" if event.event_type == LearningEventType.NEW_THREAT_INTELLIGENCE else "negative"
elif task_type == TaskType.OPSEC_EVALUATION:
return "violation" if event.event_type == LearningEventType.OPSEC_VIOLATION else "safe"
else:
return event.event_type.value
def _generate_threat_classification_task(self,
support_set: List[Dict[str, Any]],
query_set: List[Dict[str, Any]],
domain: str) -> MetaTask:
"""Generate threat classification meta-task"""
return MetaTask(
task_id=f"threat_class_{datetime.now().timestamp()}",
task_type=TaskType.THREAT_CLASSIFICATION,
name="Threat Classification",
description="Classify cybersecurity threats based on indicators and behavior",
support_set=support_set,
query_set=query_set,
domain=domain,
difficulty=0.7,
created_at=datetime.now(),
metadata={
'threat_categories': list(set(ex['label'] for ex in support_set + query_set)),
'num_classes': len(set(ex['label'] for ex in support_set + query_set))
}
)
def _generate_attack_prediction_task(self,
support_set: List[Dict[str, Any]],
query_set: List[Dict[str, Any]],
domain: str) -> MetaTask:
"""Generate attack prediction meta-task"""
return MetaTask(
task_id=f"attack_pred_{datetime.now().timestamp()}",
task_type=TaskType.ATTACK_PREDICTION,
name="Attack Outcome Prediction",
description="Predict the success/failure of attack strategies",
support_set=support_set,
query_set=query_set,
domain=domain,
difficulty=0.8,
created_at=datetime.now(),
metadata={
'prediction_horizon': '1_step',
'success_rate': len([ex for ex in support_set if ex['label'] == 'success']) / len(support_set)
}
)
def _generate_ioc_detection_task(self,
support_set: List[Dict[str, Any]],
query_set: List[Dict[str, Any]],
domain: str) -> MetaTask:
"""Generate IoC detection meta-task"""
return MetaTask(
task_id=f"ioc_detect_{datetime.now().timestamp()}",
task_type=TaskType.IOC_DETECTION,
name="Indicator of Compromise Detection",
description="Detect indicators of compromise in network/system data",
support_set=support_set,
query_set=query_set,
domain=domain,
difficulty=0.6,
created_at=datetime.now(),
metadata={
'ioc_types': ['ip', 'domain', 'hash', 'registry', 'file_path'],
'detection_accuracy_target': 0.95
}
)
def _generate_vuln_assessment_task(self,
support_set: List[Dict[str, Any]],
query_set: List[Dict[str, Any]],
domain: str) -> MetaTask:
"""Generate vulnerability assessment meta-task"""
return MetaTask(
task_id=f"vuln_assess_{datetime.now().timestamp()}",
task_type=TaskType.VULNERABILITY_ASSESSMENT,
name="Vulnerability Assessment",
description="Assess and prioritize system vulnerabilities",
support_set=support_set,
query_set=query_set,
domain=domain,
difficulty=0.75,
created_at=datetime.now(),
metadata={
'severity_levels': ['low', 'medium', 'high', 'critical'],
'assessment_framework': 'CVSS'
}
)
def _generate_incident_response_task(self,
support_set: List[Dict[str, Any]],
query_set: List[Dict[str, Any]],
domain: str) -> MetaTask:
"""Generate incident response meta-task"""
return MetaTask(
task_id=f"incident_resp_{datetime.now().timestamp()}",
task_type=TaskType.INCIDENT_RESPONSE,
name="Incident Response Planning",
description="Generate appropriate incident response strategies",
support_set=support_set,
query_set=query_set,
domain=domain,
difficulty=0.9,
created_at=datetime.now(),
metadata={
'response_phases': ['preparation', 'identification', 'containment', 'eradication', 'recovery'],
'incident_types': list(set(ex.get('metadata', {}).get('incident_type', 'unknown')
for ex in support_set + query_set))
}
)
def _generate_opsec_evaluation_task(self,
support_set: List[Dict[str, Any]],
query_set: List[Dict[str, Any]],
domain: str) -> MetaTask:
"""Generate OPSEC evaluation meta-task"""
return MetaTask(
task_id=f"opsec_eval_{datetime.now().timestamp()}",
task_type=TaskType.OPSEC_EVALUATION,
name="OPSEC Violation Detection",
description="Evaluate queries and responses for OPSEC violations",
support_set=support_set,
query_set=query_set,
domain=domain,
difficulty=0.85,
created_at=datetime.now(),
metadata={
'violation_types': ['information_disclosure', 'attribution_risk', 'capability_exposure'],
'stealth_score_threshold': 0.8
}
)
class MetaLearningManager:
"""Main manager for meta-learning in Cyber-LLM"""
def __init__(self,
model,
tokenizer,
strategy: MetaLearningStrategy = MetaLearningStrategy.MAML,
episode_buffer_size: int = 1000,
meta_batch_size: int = 4):
self.model = model
self.tokenizer = tokenizer
self.strategy = strategy
self.meta_batch_size = meta_batch_size
# Components
self.episode_buffer = EpisodeBuffer(episode_buffer_size)
self.task_generator = CyberSecurityTaskGenerator(tokenizer)
# Strategy-specific optimizers
if strategy == MetaLearningStrategy.MAML:
self.optimizer = MAMLOptimizer(model)
else:
raise NotImplementedError(f"Strategy {strategy} not yet implemented")
# Metrics tracking
self.meta_learning_metrics = {
'total_episodes': 0,
'total_meta_updates': 0,
'average_adaptation_time': 0.0,
'task_performance': defaultdict(list),
'domain_performance': defaultdict(list)
}
logger.info(f"MetaLearningManager initialized with strategy: {strategy.value}")
async def add_learning_episodes(self, events: List[LearningEvent]) -> int:
"""Generate and add meta-learning episodes from events"""
episodes_created = 0
# Group events by potential task types
for task_type in TaskType:
try:
task = self.task_generator.generate_task_from_events(
events, task_type, domain="cybersecurity"
)
if task:
self.episode_buffer.add_episode(task)
episodes_created += 1
logger.info(f"Created meta-task: {task.name} ({task_type.value})")
except Exception as e:
logger.error(f"Error creating task for {task_type}: {str(e)}")
self.meta_learning_metrics['total_episodes'] += episodes_created
return episodes_created
async def meta_train_step(self) -> Dict[str, Any]:
"""Perform one meta-training step"""
# Sample episode batch
episode_batch = self.episode_buffer.sample_episodes(self.meta_batch_size)
if len(episode_batch) < self.meta_batch_size:
logger.warning(f"Insufficient episodes for meta-training: {len(episode_batch)}")
return {'success': False, 'reason': 'insufficient_episodes'}
try:
# Perform meta-training step based on strategy
if self.strategy == MetaLearningStrategy.MAML:
results = self.optimizer.meta_train_step(episode_batch)
else:
raise NotImplementedError(f"Meta-training not implemented for {self.strategy}")
# Update metrics
self.meta_learning_metrics['total_meta_updates'] += 1
# Track performance by task type and domain
for episode in episode_batch:
self.meta_learning_metrics['task_performance'][episode.task_type.value].append(
results.get('meta_accuracy', 0.0)
)
self.meta_learning_metrics['domain_performance'][episode.domain].append(
results.get('meta_accuracy', 0.0)
)
logger.info(f"Meta-training step completed. Meta-loss: {results.get('meta_loss', 0.0):.4f}")
return {
'success': True,
'meta_loss': results.get('meta_loss', 0.0),
'meta_accuracy': results.get('meta_accuracy', 0.0),
'episodes_processed': len(episode_batch)
}
except Exception as e:
logger.error(f"Meta-training step failed: {str(e)}")
return {'success': False, 'error': str(e)}
async def rapid_adaptation(self,
new_task_examples: List[Dict[str, Any]],
task_type: TaskType,
adaptation_steps: int = 5) -> Dict[str, Any]:
"""Rapidly adapt to new task with few examples"""
try:
start_time = datetime.now()
# Create temporary task for adaptation
adaptation_task = MetaTask(
task_id=f"adapt_{datetime.now().timestamp()}",
task_type=task_type,
name=f"Rapid Adaptation - {task_type.value}",
description="Rapid adaptation to new task",
support_set=new_task_examples[:len(new_task_examples)//2],
query_set=new_task_examples[len(new_task_examples)//2:],
domain="adaptation",
difficulty=0.8,
created_at=datetime.now(),
metadata={'adaptation_mode': True}
)
# Perform adaptation using inner loop
if self.strategy == MetaLearningStrategy.MAML:
adapted_model, adaptation_loss = self.optimizer._inner_loop_adaptation(
self.optimizer._clone_model(),
adaptation_task.support_set
)
# Evaluate adaptation
query_loss, query_accuracy = self.optimizer._evaluate_on_query_set(
adapted_model, adaptation_task.query_set
)
adaptation_time = (datetime.now() - start_time).total_seconds()
# Update metrics
self.meta_learning_metrics['average_adaptation_time'] = (
(self.meta_learning_metrics['average_adaptation_time'] *
self.meta_learning_metrics['total_meta_updates'] + adaptation_time) /
(self.meta_learning_metrics['total_meta_updates'] + 1)
)
logger.info(f"Rapid adaptation completed in {adaptation_time:.2f}s. "
f"Query accuracy: {query_accuracy:.4f}")
return {
'success': True,
'adaptation_time': adaptation_time,
'adaptation_loss': adaptation_loss,
'query_accuracy': query_accuracy,
'adapted_model': adapted_model
}
except Exception as e:
logger.error(f"Rapid adaptation failed: {str(e)}")
return {'success': False, 'error': str(e)}
def get_meta_learning_statistics(self) -> Dict[str, Any]:
"""Get comprehensive meta-learning statistics"""
task_performance_summary = {}
for task_type, scores in self.meta_learning_metrics['task_performance'].items():
if scores:
task_performance_summary[task_type] = {
'average_performance': np.mean(scores),
'std_performance': np.std(scores),
'num_episodes': len(scores),
'best_performance': max(scores),
'worst_performance': min(scores)
}
domain_performance_summary = {}
for domain, scores in self.meta_learning_metrics['domain_performance'].items():
if scores:
domain_performance_summary[domain] = {
'average_performance': np.mean(scores),
'std_performance': np.std(scores),
'num_episodes': len(scores)
}
return {
'meta_learning_strategy': self.strategy.value,
'total_episodes': self.meta_learning_metrics['total_episodes'],
'total_meta_updates': self.meta_learning_metrics['total_meta_updates'],
'average_adaptation_time': self.meta_learning_metrics['average_adaptation_time'],
'episodes_in_buffer': len(self.episode_buffer.episodes),
'task_performance': task_performance_summary,
'domain_performance': domain_performance_summary,
'buffer_capacity': self.episode_buffer.capacity
}
async def continuous_meta_learning_loop(self):
"""Continuous meta-learning loop"""
logger.info("Starting continuous meta-learning loop")
while True:
try:
# Perform meta-training if enough episodes available
if len(self.episode_buffer.episodes) >= self.meta_batch_size:
await self.meta_train_step()
# Wait before next iteration
await asyncio.sleep(300) # 5 minutes
except Exception as e:
logger.error(f"Error in meta-learning loop: {str(e)}")
await asyncio.sleep(600) # Wait longer on error
# Factory function
def create_meta_learning_manager(**kwargs) -> MetaLearningManager:
"""Create meta-learning manager with default configuration"""
return MetaLearningManager(**kwargs)
|