File size: 33,435 Bytes
23804b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
"""
Multimodal Learning System for Cybersecurity
Integration of text, network data, and visual security information
"""

import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import json
import cv2
from typing import Dict, List, Optional, Any, Tuple, Union
from dataclasses import dataclass, asdict
from datetime import datetime
import logging
from abc import ABC, abstractmethod
from PIL import Image
import base64
import io

@dataclass
class TextData:
    """Text-based security data"""
    content: str
    data_type: str  # log, alert, report, email, etc.
    metadata: Dict[str, Any]
    timestamp: str
    source: str

@dataclass
class NetworkData:
    """Network traffic data"""
    packet_data: bytes
    flow_features: Dict[str, float]
    protocol: str
    source_ip: str
    dest_ip: str
    timestamp: str
    metadata: Dict[str, Any]

@dataclass
class VisualData:
    """Visual security data"""
    image_data: np.ndarray
    image_type: str  # network_topology, malware_visualization, dashboard_screenshot
    features: Dict[str, Any]
    timestamp: str
    metadata: Dict[str, Any]

@dataclass
class MultimodalSample:
    """Combined multimodal sample"""
    sample_id: str
    text_data: Optional[TextData]
    network_data: Optional[NetworkData] 
    visual_data: Optional[VisualData]
    label: str
    confidence: float
    timestamp: str

class ModalityEncoder(nn.Module, ABC):
    """Abstract base class for modality encoders"""
    
    @abstractmethod
    def forward(self, data: Any) -> torch.Tensor:
        pass
    
    @abstractmethod
    def get_output_dim(self) -> int:
        pass

class TextEncoder(ModalityEncoder):
    """Encoder for text-based security data"""
    
    def __init__(self, vocab_size: int = 10000, embed_dim: int = 256, hidden_dim: int = 512):
        super().__init__()
        self.embed_dim = embed_dim
        self.hidden_dim = hidden_dim
        
        # Text processing layers
        self.embedding = nn.Embedding(vocab_size, embed_dim)
        self.lstm = nn.LSTM(embed_dim, hidden_dim, batch_first=True, bidirectional=True)
        self.attention = nn.MultiheadAttention(hidden_dim * 2, num_heads=8)
        self.output_proj = nn.Linear(hidden_dim * 2, hidden_dim)
        
        # Cybersecurity-specific text patterns
        self.threat_patterns = nn.Conv1d(hidden_dim * 2, 64, kernel_size=3, padding=1)
        self.temporal_patterns = nn.Conv1d(hidden_dim * 2, 64, kernel_size=5, padding=2)
        
    def forward(self, text_tokens: torch.Tensor) -> torch.Tensor:
        # text_tokens: [batch_size, seq_len]
        embedded = self.embedding(text_tokens)  # [batch_size, seq_len, embed_dim]
        
        # LSTM encoding
        lstm_out, (h_n, c_n) = self.lstm(embedded)  # [batch_size, seq_len, hidden_dim * 2]
        
        # Self-attention for important security keywords
        attn_out, _ = self.attention(
            lstm_out.transpose(0, 1),
            lstm_out.transpose(0, 1), 
            lstm_out.transpose(0, 1)
        )
        attn_out = attn_out.transpose(0, 1)  # [batch_size, seq_len, hidden_dim * 2]
        
        # Pattern detection
        lstm_transposed = lstm_out.transpose(1, 2)  # [batch_size, hidden_dim * 2, seq_len]
        threat_features = F.relu(self.threat_patterns(lstm_transposed))
        temporal_features = F.relu(self.temporal_patterns(lstm_transposed))
        
        # Global pooling
        threat_pooled = F.adaptive_avg_pool1d(threat_features, 1).squeeze(-1)
        temporal_pooled = F.adaptive_avg_pool1d(temporal_features, 1).squeeze(-1)
        
        # Combine features
        combined = torch.cat([
            attn_out.mean(dim=1),  # Attention-weighted average
            threat_pooled,
            temporal_pooled
        ], dim=1)
        
        output = self.output_proj(combined[:, :self.hidden_dim * 2])
        return F.relu(output)
    
    def get_output_dim(self) -> int:
        return self.hidden_dim

class NetworkEncoder(ModalityEncoder):
    """Encoder for network traffic data"""
    
    def __init__(self, flow_feature_dim: int = 50, packet_embed_dim: int = 128, hidden_dim: int = 512):
        super().__init__()
        self.flow_feature_dim = flow_feature_dim
        self.packet_embed_dim = packet_embed_dim
        self.hidden_dim = hidden_dim
        
        # Flow feature processing
        self.flow_encoder = nn.Sequential(
            nn.Linear(flow_feature_dim, 256),
            nn.ReLU(),
            nn.Dropout(0.3),
            nn.Linear(256, 256),
            nn.ReLU()
        )
        
        # Packet sequence processing (treat packets as sequences)
        self.packet_embedding = nn.Embedding(256, packet_embed_dim)  # For packet bytes
        self.packet_conv1d = nn.Conv1d(packet_embed_dim, 128, kernel_size=3, padding=1)
        self.packet_conv2d = nn.Conv1d(128, 64, kernel_size=5, padding=2)
        
        # Protocol-specific layers
        self.protocol_embedding = nn.Embedding(10, 32)  # Common protocols
        
        # Temporal analysis
        self.temporal_conv = nn.Conv1d(256 + 64 + 32, 128, kernel_size=3, padding=1)
        
        # Output projection
        self.output_proj = nn.Linear(128 + 256, hidden_dim)
        
    def forward(self, network_data: Dict[str, torch.Tensor]) -> torch.Tensor:
        # Extract components
        flow_features = network_data['flow_features']  # [batch_size, flow_feature_dim]
        packet_bytes = network_data['packet_bytes']    # [batch_size, max_packet_len]
        protocol_ids = network_data['protocol_ids']    # [batch_size]
        
        # Process flow features
        flow_encoded = self.flow_encoder(flow_features)  # [batch_size, 256]
        
        # Process packet data
        packet_embedded = self.packet_embedding(packet_bytes)  # [batch_size, max_packet_len, packet_embed_dim]
        packet_transposed = packet_embedded.transpose(1, 2)    # [batch_size, packet_embed_dim, max_packet_len]
        
        packet_conv1 = F.relu(self.packet_conv1d(packet_transposed))
        packet_conv2 = F.relu(self.packet_conv2d(packet_conv1))
        packet_pooled = F.adaptive_avg_pool1d(packet_conv2, 1).squeeze(-1)  # [batch_size, 64]
        
        # Process protocol information
        protocol_embedded = self.protocol_embedding(protocol_ids)  # [batch_size, 32]
        
        # Combine features for temporal analysis
        combined_features = torch.cat([
            flow_encoded, packet_pooled, protocol_embedded
        ], dim=1).unsqueeze(-1)  # [batch_size, 256+64+32, 1]
        
        temporal_features = F.relu(self.temporal_conv(combined_features))
        temporal_pooled = temporal_features.squeeze(-1)  # [batch_size, 128]
        
        # Final combination
        final_features = torch.cat([temporal_pooled, flow_encoded], dim=1)
        output = self.output_proj(final_features)
        
        return F.relu(output)
    
    def get_output_dim(self) -> int:
        return self.hidden_dim

class VisualEncoder(ModalityEncoder):
    """Encoder for visual security data"""
    
    def __init__(self, hidden_dim: int = 512):
        super().__init__()
        self.hidden_dim = hidden_dim
        
        # Convolutional layers for image processing
        self.conv_layers = nn.Sequential(
            # First block
            nn.Conv2d(3, 64, kernel_size=3, padding=1),
            nn.BatchNorm2d(64),
            nn.ReLU(),
            nn.Conv2d(64, 64, kernel_size=3, padding=1),
            nn.BatchNorm2d(64),
            nn.ReLU(),
            nn.MaxPool2d(2, 2),
            
            # Second block
            nn.Conv2d(64, 128, kernel_size=3, padding=1),
            nn.BatchNorm2d(128),
            nn.ReLU(),
            nn.Conv2d(128, 128, kernel_size=3, padding=1),
            nn.BatchNorm2d(128),
            nn.ReLU(),
            nn.MaxPool2d(2, 2),
            
            # Third block
            nn.Conv2d(128, 256, kernel_size=3, padding=1),
            nn.BatchNorm2d(256),
            nn.ReLU(),
            nn.Conv2d(256, 256, kernel_size=3, padding=1),
            nn.BatchNorm2d(256),
            nn.ReLU(),
            nn.MaxPool2d(2, 2),
            
            # Fourth block
            nn.Conv2d(256, 512, kernel_size=3, padding=1),
            nn.BatchNorm2d(512),
            nn.ReLU(),
            nn.AdaptiveAvgPool2d((7, 7))
        )
        
        # Specialized layers for security visualization patterns
        self.topology_detector = nn.Conv2d(512, 64, kernel_size=1)
        self.anomaly_detector = nn.Conv2d(512, 64, kernel_size=1)
        self.threat_indicator_detector = nn.Conv2d(512, 64, kernel_size=1)
        
        # Final projection
        self.global_pool = nn.AdaptiveAvgPool2d((1, 1))
        self.output_proj = nn.Linear(512 + 64 * 3, hidden_dim)
        
    def forward(self, image_data: torch.Tensor) -> torch.Tensor:
        # image_data: [batch_size, 3, height, width]
        
        # Convolutional feature extraction
        conv_features = self.conv_layers(image_data)  # [batch_size, 512, 7, 7]
        
        # Security-specific pattern detection
        topology_features = F.relu(self.topology_detector(conv_features))
        anomaly_features = F.relu(self.anomaly_detector(conv_features))
        threat_features = F.relu(self.threat_indicator_detector(conv_features))
        
        # Global pooling for all features
        conv_pooled = self.global_pool(conv_features).view(conv_features.size(0), -1)
        topology_pooled = self.global_pool(topology_features).view(topology_features.size(0), -1)
        anomaly_pooled = self.global_pool(anomaly_features).view(anomaly_features.size(0), -1)
        threat_pooled = self.global_pool(threat_features).view(threat_features.size(0), -1)
        
        # Combine all features
        combined_features = torch.cat([
            conv_pooled, topology_pooled, anomaly_pooled, threat_pooled
        ], dim=1)
        
        output = self.output_proj(combined_features)
        return F.relu(output)
    
    def get_output_dim(self) -> int:
        return self.hidden_dim

class MultimodalFusionLayer(nn.Module):
    """Fusion layer for combining multimodal features"""
    
    def __init__(self, text_dim: int, network_dim: int, visual_dim: int, 
                 fusion_dim: int = 512, num_heads: int = 8):
        super().__init__()
        self.text_dim = text_dim
        self.network_dim = network_dim
        self.visual_dim = visual_dim
        self.fusion_dim = fusion_dim
        
        # Projection layers to common dimension
        self.text_proj = nn.Linear(text_dim, fusion_dim) if text_dim != fusion_dim else nn.Identity()
        self.network_proj = nn.Linear(network_dim, fusion_dim) if network_dim != fusion_dim else nn.Identity()
        self.visual_proj = nn.Linear(visual_dim, fusion_dim) if visual_dim != fusion_dim else nn.Identity()
        
        # Cross-modal attention
        self.cross_attention = nn.MultiheadAttention(fusion_dim, num_heads, batch_first=True)
        
        # Fusion strategies
        self.attention_weights = nn.Parameter(torch.ones(3) / 3)  # Learnable weights
        
        # Gate mechanisms
        self.text_gate = nn.Sequential(
            nn.Linear(fusion_dim, fusion_dim // 4),
            nn.ReLU(),
            nn.Linear(fusion_dim // 4, 1),
            nn.Sigmoid()
        )
        self.network_gate = nn.Sequential(
            nn.Linear(fusion_dim, fusion_dim // 4),
            nn.ReLU(),
            nn.Linear(fusion_dim // 4, 1),
            nn.Sigmoid()
        )
        self.visual_gate = nn.Sequential(
            nn.Linear(fusion_dim, fusion_dim // 4),
            nn.ReLU(),
            nn.Linear(fusion_dim // 4, 1),
            nn.Sigmoid()
        )
        
        # Final fusion
        self.fusion_network = nn.Sequential(
            nn.Linear(fusion_dim, fusion_dim),
            nn.ReLU(),
            nn.Dropout(0.3),
            nn.Linear(fusion_dim, fusion_dim)
        )
        
    def forward(self, text_features: Optional[torch.Tensor] = None,
                network_features: Optional[torch.Tensor] = None,
                visual_features: Optional[torch.Tensor] = None) -> torch.Tensor:
        
        available_modalities = []
        projected_features = []
        
        # Project features to common dimension
        if text_features is not None:
            text_proj = self.text_proj(text_features)
            available_modalities.append(('text', text_proj))
            projected_features.append(text_proj)
        
        if network_features is not None:
            network_proj = self.network_proj(network_features)
            available_modalities.append(('network', network_proj))
            projected_features.append(network_proj)
        
        if visual_features is not None:
            visual_proj = self.visual_proj(visual_features)
            available_modalities.append(('visual', visual_proj))
            projected_features.append(visual_proj)
        
        if not projected_features:
            raise ValueError("At least one modality must be provided")
        
        if len(projected_features) == 1:
            # Single modality
            return self.fusion_network(projected_features[0])
        
        # Stack features for cross-attention
        stacked_features = torch.stack(projected_features, dim=1)  # [batch_size, num_modalities, fusion_dim]
        
        # Cross-modal attention
        attended_features, attention_weights = self.cross_attention(
            stacked_features, stacked_features, stacked_features
        )
        
        # Apply modality-specific gates
        gated_features = []
        for i, (modality, features) in enumerate(available_modalities):
            if modality == 'text' and text_features is not None:
                gate = self.text_gate(features)
                gated_features.append(attended_features[:, i] * gate)
            elif modality == 'network' and network_features is not None:
                gate = self.network_gate(features)
                gated_features.append(attended_features[:, i] * gate)
            elif modality == 'visual' and visual_features is not None:
                gate = self.visual_gate(features)
                gated_features.append(attended_features[:, i] * gate)
        
        # Weighted fusion
        if len(gated_features) == 2:
            weights = F.softmax(self.attention_weights[:2], dim=0)
            fused = weights[0] * gated_features[0] + weights[1] * gated_features[1]
        elif len(gated_features) == 3:
            weights = F.softmax(self.attention_weights, dim=0)
            fused = (weights[0] * gated_features[0] + 
                    weights[1] * gated_features[1] + 
                    weights[2] * gated_features[2])
        else:
            fused = torch.stack(gated_features, dim=1).mean(dim=1)
        
        # Final processing
        output = self.fusion_network(fused)
        return output

class MultimodalSecurityClassifier(nn.Module):
    """Complete multimodal cybersecurity classifier"""
    
    def __init__(self, num_classes: int, vocab_size: int = 10000, 
                 flow_feature_dim: int = 50, fusion_dim: int = 512):
        super().__init__()
        self.num_classes = num_classes
        
        # Modality encoders
        self.text_encoder = TextEncoder(vocab_size=vocab_size, hidden_dim=fusion_dim)
        self.network_encoder = NetworkEncoder(flow_feature_dim=flow_feature_dim, hidden_dim=fusion_dim)
        self.visual_encoder = VisualEncoder(hidden_dim=fusion_dim)
        
        # Fusion layer
        self.fusion_layer = MultimodalFusionLayer(
            text_dim=fusion_dim,
            network_dim=fusion_dim, 
            visual_dim=fusion_dim,
            fusion_dim=fusion_dim
        )
        
        # Classification head
        self.classifier = nn.Sequential(
            nn.Linear(fusion_dim, fusion_dim // 2),
            nn.ReLU(),
            nn.Dropout(0.4),
            nn.Linear(fusion_dim // 2, fusion_dim // 4),
            nn.ReLU(),
            nn.Dropout(0.3),
            nn.Linear(fusion_dim // 4, num_classes)
        )
        
        # Auxiliary classifiers for individual modalities (for training)
        self.text_classifier = nn.Linear(fusion_dim, num_classes)
        self.network_classifier = nn.Linear(fusion_dim, num_classes)
        self.visual_classifier = nn.Linear(fusion_dim, num_classes)
        
    def forward(self, text_tokens: Optional[torch.Tensor] = None,
                network_data: Optional[Dict[str, torch.Tensor]] = None,
                visual_data: Optional[torch.Tensor] = None,
                return_individual_outputs: bool = False) -> Dict[str, torch.Tensor]:
        
        outputs = {}
        
        # Encode individual modalities
        text_features = None
        network_features = None
        visual_features = None
        
        if text_tokens is not None:
            text_features = self.text_encoder(text_tokens)
            if return_individual_outputs:
                outputs['text_logits'] = self.text_classifier(text_features)
        
        if network_data is not None:
            network_features = self.network_encoder(network_data)
            if return_individual_outputs:
                outputs['network_logits'] = self.network_classifier(network_features)
        
        if visual_data is not None:
            visual_features = self.visual_encoder(visual_data)
            if return_individual_outputs:
                outputs['visual_logits'] = self.visual_classifier(visual_features)
        
        # Multimodal fusion
        if text_features is not None or network_features is not None or visual_features is not None:
            fused_features = self.fusion_layer(text_features, network_features, visual_features)
            outputs['fused_logits'] = self.classifier(fused_features)
        
        return outputs

class MultimodalSecuritySystem:
    """Complete multimodal learning system for cybersecurity"""
    
    def __init__(self, num_classes: int = 10, device: str = "cpu"):
        self.num_classes = num_classes
        self.device = device
        
        # Initialize model
        self.model = MultimodalSecurityClassifier(num_classes=num_classes)
        self.model.to(device)
        
        # Data processors
        self.text_processor = self._create_text_processor()
        self.network_processor = self._create_network_processor()
        self.visual_processor = self._create_visual_processor()
        
        # Training state
        self.optimizer = None
        self.criterion = nn.CrossEntropyLoss()
        self.logger = logging.getLogger(__name__)
        
    def _create_text_processor(self):
        """Create text data processor"""
        # Simple tokenizer (in production, use proper tokenizer)
        def process_text(text_data: TextData) -> torch.Tensor:
            # Simple word-based tokenization
            words = text_data.content.lower().split()
            # Convert to token IDs (simplified)
            token_ids = [hash(word) % 10000 for word in words[:512]]  # Max 512 tokens
            
            # Pad or truncate
            if len(token_ids) < 512:
                token_ids.extend([0] * (512 - len(token_ids)))
            else:
                token_ids = token_ids[:512]
            
            return torch.tensor(token_ids, dtype=torch.long)
        
        return process_text
    
    def _create_network_processor(self):
        """Create network data processor"""
        def process_network(network_data: NetworkData) -> Dict[str, torch.Tensor]:
            # Process flow features
            flow_features = torch.tensor([
                network_data.flow_features.get('packet_count', 0),
                network_data.flow_features.get('byte_count', 0),
                network_data.flow_features.get('duration', 0),
                network_data.flow_features.get('avg_packet_size', 0),
                network_data.flow_features.get('packets_per_second', 0)
            ] + [0] * 45, dtype=torch.float32)[:50]  # Ensure exactly 50 features
            
            # Process packet bytes (simplified)
            packet_bytes = list(network_data.packet_data[:1024])  # First 1024 bytes
            if len(packet_bytes) < 1024:
                packet_bytes.extend([0] * (1024 - len(packet_bytes)))
            packet_tensor = torch.tensor(packet_bytes, dtype=torch.long)
            
            # Protocol mapping (simplified)
            protocol_map = {'tcp': 0, 'udp': 1, 'icmp': 2, 'http': 3, 'https': 4}
            protocol_id = torch.tensor(
                protocol_map.get(network_data.protocol.lower(), 5), 
                dtype=torch.long
            )
            
            return {
                'flow_features': flow_features,
                'packet_bytes': packet_tensor,
                'protocol_ids': protocol_id
            }
        
        return process_network
    
    def _create_visual_processor(self):
        """Create visual data processor"""
        def process_visual(visual_data: VisualData) -> torch.Tensor:
            # Convert numpy array to tensor
            if visual_data.image_data.shape[-1] == 3:  # RGB
                image_tensor = torch.from_numpy(visual_data.image_data).float()
                image_tensor = image_tensor.permute(2, 0, 1)  # HWC to CHW
            else:
                # Handle grayscale or other formats
                image_tensor = torch.from_numpy(visual_data.image_data).float()
                if len(image_tensor.shape) == 2:
                    image_tensor = image_tensor.unsqueeze(0).repeat(3, 1, 1)  # Convert to RGB
            
            # Resize to standard size (simplified)
            if image_tensor.shape[1] != 224 or image_tensor.shape[2] != 224:
                image_tensor = F.interpolate(
                    image_tensor.unsqueeze(0), size=(224, 224), mode='bilinear'
                ).squeeze(0)
            
            # Normalize
            image_tensor = image_tensor / 255.0
            
            return image_tensor
        
        return process_visual
    
    def prepare_batch(self, samples: List[MultimodalSample]) -> Dict[str, torch.Tensor]:
        """Prepare a batch of multimodal samples"""
        batch = {
            'text_tokens': [],
            'network_data': {'flow_features': [], 'packet_bytes': [], 'protocol_ids': []},
            'visual_data': [],
            'labels': [],
            'sample_ids': []
        }
        
        for sample in samples:
            batch['sample_ids'].append(sample.sample_id)
            
            # Process text
            if sample.text_data:
                text_tokens = self.text_processor(sample.text_data)
                batch['text_tokens'].append(text_tokens)
            else:
                batch['text_tokens'].append(None)
            
            # Process network data
            if sample.network_data:
                network_processed = self.network_processor(sample.network_data)
                batch['network_data']['flow_features'].append(network_processed['flow_features'])
                batch['network_data']['packet_bytes'].append(network_processed['packet_bytes'])
                batch['network_data']['protocol_ids'].append(network_processed['protocol_ids'])
            else:
                batch['network_data']['flow_features'].append(None)
                batch['network_data']['packet_bytes'].append(None)
                batch['network_data']['protocol_ids'].append(None)
            
            # Process visual data
            if sample.visual_data:
                visual_processed = self.visual_processor(sample.visual_data)
                batch['visual_data'].append(visual_processed)
            else:
                batch['visual_data'].append(None)
            
            # Labels
            batch['labels'].append(sample.label)
        
        # Convert to tensors
        result = {}
        
        # Text tokens
        valid_text = [t for t in batch['text_tokens'] if t is not None]
        if valid_text:
            result['text_tokens'] = torch.stack(valid_text).to(self.device)
        
        # Network data
        valid_flow = [f for f in batch['network_data']['flow_features'] if f is not None]
        valid_packets = [p for p in batch['network_data']['packet_bytes'] if p is not None]
        valid_protocols = [p for p in batch['network_data']['protocol_ids'] if p is not None]
        
        if valid_flow:
            result['network_data'] = {
                'flow_features': torch.stack(valid_flow).to(self.device),
                'packet_bytes': torch.stack(valid_packets).to(self.device),
                'protocol_ids': torch.stack(valid_protocols).to(self.device)
            }
        
        # Visual data
        valid_visual = [v for v in batch['visual_data'] if v is not None]
        if valid_visual:
            result['visual_data'] = torch.stack(valid_visual).to(self.device)
        
        # Labels (convert string labels to indices)
        label_map = {
            'benign': 0, 'malware': 1, 'phishing': 2, 'ddos': 3, 'intrusion': 4,
            'lateral_movement': 5, 'data_exfiltration': 6, 'ransomware': 7,
            'insider_threat': 8, 'unknown': 9
        }
        label_indices = [label_map.get(label, 9) for label in batch['labels']]
        result['labels'] = torch.tensor(label_indices, dtype=torch.long).to(self.device)
        
        return result
    
    def train_step(self, batch: Dict[str, torch.Tensor]) -> Dict[str, float]:
        """Single training step"""
        if self.optimizer is None:
            self.optimizer = torch.optim.AdamW(self.model.parameters(), lr=1e-4)
        
        self.model.train()
        self.optimizer.zero_grad()
        
        # Forward pass
        outputs = self.model(
            text_tokens=batch.get('text_tokens'),
            network_data=batch.get('network_data'),
            visual_data=batch.get('visual_data'),
            return_individual_outputs=True
        )
        
        # Calculate losses
        losses = {}
        total_loss = 0
        
        labels = batch['labels']
        
        # Main fusion loss
        if 'fused_logits' in outputs:
            fusion_loss = self.criterion(outputs['fused_logits'], labels)
            losses['fusion_loss'] = fusion_loss.item()
            total_loss += fusion_loss
        
        # Auxiliary losses for individual modalities
        aux_weight = 0.3
        if 'text_logits' in outputs:
            text_loss = self.criterion(outputs['text_logits'], labels)
            losses['text_loss'] = text_loss.item()
            total_loss += aux_weight * text_loss
        
        if 'network_logits' in outputs:
            network_loss = self.criterion(outputs['network_logits'], labels)
            losses['network_loss'] = network_loss.item()
            total_loss += aux_weight * network_loss
        
        if 'visual_logits' in outputs:
            visual_loss = self.criterion(outputs['visual_logits'], labels)
            losses['visual_loss'] = visual_loss.item()
            total_loss += aux_weight * visual_loss
        
        # Backward pass
        total_loss.backward()
        self.optimizer.step()
        
        losses['total_loss'] = total_loss.item()
        return losses
    
    def predict(self, samples: List[MultimodalSample]) -> List[Dict[str, Any]]:
        """Make predictions on multimodal samples"""
        self.model.eval()
        
        batch = self.prepare_batch(samples)
        predictions = []
        
        with torch.no_grad():
            outputs = self.model(
                text_tokens=batch.get('text_tokens'),
                network_data=batch.get('network_data'),
                visual_data=batch.get('visual_data'),
                return_individual_outputs=True
            )
            
            # Get predictions from fusion layer
            if 'fused_logits' in outputs:
                probs = F.softmax(outputs['fused_logits'], dim=1)
                pred_classes = torch.argmax(probs, dim=1)
                confidence_scores = torch.max(probs, dim=1)[0]
                
                # Class mapping
                class_names = [
                    'benign', 'malware', 'phishing', 'ddos', 'intrusion',
                    'lateral_movement', 'data_exfiltration', 'ransomware',
                    'insider_threat', 'unknown'
                ]
                
                for i, sample in enumerate(samples):
                    predictions.append({
                        'sample_id': sample.sample_id,
                        'predicted_class': class_names[pred_classes[i].item()],
                        'confidence': confidence_scores[i].item(),
                        'class_probabilities': {
                            class_names[j]: probs[i][j].item() 
                            for j in range(len(class_names))
                        }
                    })
        
        return predictions

# Example usage and testing
if __name__ == "__main__":
    print("๐Ÿ”€ Multimodal Learning System Testing:")
    print("=" * 50)
    
    # Initialize system
    multimodal_system = MultimodalSecuritySystem(num_classes=10, device="cpu")
    
    # Create sample multimodal data
    print("\n๐Ÿ“Š Creating sample multimodal data...")
    
    # Text data sample
    text_sample = TextData(
        content="suspicious network activity detected from ip 192.168.1.100 attempting connection to external server",
        data_type="security_log",
        metadata={"source": "ids", "severity": "high"},
        timestamp=datetime.now().isoformat(),
        source="security_system"
    )
    
    # Network data sample
    network_sample = NetworkData(
        packet_data=b'\x45\x00\x00\x3c\x1c\x46\x40\x00\x40\x06\x00\x00\xc0\xa8\x01\x64' * 64,  # Sample packet
        flow_features={
            "packet_count": 150,
            "byte_count": 9600,
            "duration": 30.5,
            "avg_packet_size": 64,
            "packets_per_second": 4.9
        },
        protocol="tcp",
        source_ip="192.168.1.100",
        dest_ip="external_server",
        timestamp=datetime.now().isoformat(),
        metadata={"port": 443, "flags": ["SYN", "ACK"]}
    )
    
    # Visual data sample (synthetic network topology)
    visual_sample = VisualData(
        image_data=np.random.randint(0, 256, (224, 224, 3), dtype=np.uint8),
        image_type="network_topology",
        features={"nodes": 15, "edges": 23, "anomalous_connections": 2},
        timestamp=datetime.now().isoformat(),
        metadata={"generated": True, "tool": "network_visualizer"}
    )
    
    # Create multimodal samples
    samples = [
        MultimodalSample(
            sample_id="sample_001",
            text_data=text_sample,
            network_data=network_sample,
            visual_data=visual_sample,
            label="intrusion",
            confidence=0.85,
            timestamp=datetime.now().isoformat()
        ),
        MultimodalSample(
            sample_id="sample_002",
            text_data=text_sample,
            network_data=None,  # Missing network data
            visual_data=visual_sample,
            label="malware",
            confidence=0.92,
            timestamp=datetime.now().isoformat()
        ),
        MultimodalSample(
            sample_id="sample_003",
            text_data=None,  # Missing text data
            network_data=network_sample,
            visual_data=None,  # Missing visual data
            label="benign",
            confidence=0.78,
            timestamp=datetime.now().isoformat()
        )
    ]
    
    # Test batch preparation
    print("๐Ÿ”ง Testing batch preparation...")
    batch = multimodal_system.prepare_batch(samples)
    print(f"  Batch components: {list(batch.keys())}")
    if 'text_tokens' in batch:
        print(f"  Text tokens shape: {batch['text_tokens'].shape}")
    if 'network_data' in batch:
        print(f"  Network flow features shape: {batch['network_data']['flow_features'].shape}")
    if 'visual_data' in batch:
        print(f"  Visual data shape: {batch['visual_data'].shape}")
    
    # Test inference
    print("\n๐Ÿ”ฎ Testing multimodal inference...")
    predictions = multimodal_system.predict(samples)
    
    for pred in predictions:
        print(f"\n  Sample: {pred['sample_id']}")
        print(f"    Predicted: {pred['predicted_class']}")
        print(f"    Confidence: {pred['confidence']:.3f}")
        print(f"    Top 3 probabilities:")
        sorted_probs = sorted(pred['class_probabilities'].items(), 
                            key=lambda x: x[1], reverse=True)[:3]
        for class_name, prob in sorted_probs:
            print(f"      {class_name}: {prob:.3f}")
    
    # Test training step
    print("\n๐ŸŽ“ Testing training step...")
    losses = multimodal_system.train_step(batch)
    print(f"  Training losses: {losses}")
    
    print("\nโœ… Multimodal Learning System implemented and tested")
    print(f"  Model parameters: {sum(p.numel() for p in multimodal_system.model.parameters()):,}")
    print(f"  Supported modalities: Text, Network, Visual")
    print(f"  Fusion strategy: Cross-modal attention with learnable gates")