File size: 40,378 Bytes
23804b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 |
"""
Neuro-Symbolic AI for Cybersecurity
Combining neural networks with symbolic reasoning for explainable AI
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import json
from typing import Dict, List, Optional, Any, Tuple, Union, Set
from dataclasses import dataclass, asdict
from datetime import datetime, timedelta
import logging
from abc import ABC, abstractmethod
from collections import defaultdict
import sqlite3
import pickle
from enum import Enum
import networkx as nx
import ast
import re
from sympy import symbols, And, Or, Not, Implies, simplify
from sympy.logic.boolalg import to_cnf, to_dnf
class SymbolicRule:
"""Symbolic rule for cybersecurity reasoning"""
def __init__(self, rule_id: str, premise: str, conclusion: str,
confidence: float = 1.0, priority: int = 1):
self.rule_id = rule_id
self.premise = premise # Logical expression as string
self.conclusion = conclusion
self.confidence = confidence
self.priority = priority
self.usage_count = 0
self.success_count = 0
self.created_at = datetime.now().isoformat()
def __str__(self):
return f"Rule({self.rule_id}): IF {self.premise} THEN {self.conclusion} [conf={self.confidence:.2f}]"
@dataclass
class SymbolicFact:
"""Symbolic fact in the knowledge base"""
fact_id: str
predicate: str
arguments: List[str]
truth_value: bool
confidence: float
source: str
timestamp: str
metadata: Dict[str, Any]
@dataclass
class InferenceStep:
"""Single step in symbolic reasoning"""
step_id: str
rule_applied: str
premises_used: List[str]
conclusion_derived: str
confidence: float
timestamp: str
class SymbolicKnowledgeBase:
"""Knowledge base for symbolic reasoning"""
def __init__(self):
self.facts = {} # fact_id -> SymbolicFact
self.rules = {} # rule_id -> SymbolicRule
self.predicates = set()
self.entities = set()
# Initialize with cybersecurity domain knowledge
self._init_cybersecurity_knowledge()
def _init_cybersecurity_knowledge(self):
"""Initialize with domain-specific cybersecurity rules"""
# Basic cybersecurity rules
rules = [
# Network security rules
SymbolicRule("net_01", "external_connection(X) & suspicious_activity(X)", "potential_intrusion(X)", 0.8, 1),
SymbolicRule("net_02", "port_scan(X) & failed_login(X)", "reconnaissance(X)", 0.9, 2),
SymbolicRule("net_03", "large_data_transfer(X) & external_connection(X)", "potential_exfiltration(X)", 0.7, 2),
# Malware detection rules
SymbolicRule("mal_01", "unknown_process(X) & network_activity(X)", "suspicious_process(X)", 0.6, 1),
SymbolicRule("mal_02", "file_modification(X) & system_file(X)", "potential_malware(X)", 0.8, 2),
SymbolicRule("mal_03", "encrypted_communication(X) & c2_domain(X)", "malware_communication(X)", 0.9, 3),
# User behavior rules
SymbolicRule("usr_01", "off_hours_access(X) & privileged_account(X)", "suspicious_access(X)", 0.7, 2),
SymbolicRule("usr_02", "multiple_failed_logins(X) & admin_account(X)", "brute_force_attempt(X)", 0.9, 3),
SymbolicRule("usr_03", "data_access(X) & unusual_location(X)", "insider_threat(X)", 0.6, 2),
# Attack progression rules
SymbolicRule("att_01", "reconnaissance(X) & vulnerability_exploit(X)", "initial_compromise(X)", 0.8, 3),
SymbolicRule("att_02", "initial_compromise(X) & credential_theft(X)", "lateral_movement(X)", 0.9, 3),
SymbolicRule("att_03", "lateral_movement(X) & data_access(X)", "mission_completion(X)", 0.8, 3),
# Response rules
SymbolicRule("rsp_01", "potential_intrusion(X)", "alert_soc(X)", 1.0, 1),
SymbolicRule("rsp_02", "malware_communication(X)", "block_traffic(X)", 1.0, 2),
SymbolicRule("rsp_03", "brute_force_attempt(X)", "lock_account(X)", 1.0, 3),
]
for rule in rules:
self.add_rule(rule)
def add_fact(self, fact: SymbolicFact):
"""Add a fact to the knowledge base"""
self.facts[fact.fact_id] = fact
self.predicates.add(fact.predicate)
self.entities.update(fact.arguments)
def add_rule(self, rule: SymbolicRule):
"""Add a rule to the knowledge base"""
self.rules[rule.rule_id] = rule
def get_facts_by_predicate(self, predicate: str) -> List[SymbolicFact]:
"""Get all facts with a specific predicate"""
return [fact for fact in self.facts.values() if fact.predicate == predicate]
def evaluate_premise(self, premise: str, variable_bindings: Dict[str, str]) -> Tuple[bool, float]:
"""Evaluate a logical premise given variable bindings"""
try:
# Simple evaluation - replace variables and check facts
bound_premise = premise
for var, value in variable_bindings.items():
bound_premise = bound_premise.replace(var, f'"{value}"')
# Parse logical expression
terms = self._parse_logical_expression(bound_premise)
# Evaluate each term
term_results = []
for term in terms:
predicate, args, negated = term
fact_exists = self._fact_exists(predicate, args)
if negated:
term_results.append((not fact_exists, 1.0 if not fact_exists else 0.0))
else:
confidence = self._get_fact_confidence(predicate, args) if fact_exists else 0.0
term_results.append((fact_exists, confidence))
# Combine results (simplified - assume AND for now)
all_true = all(result[0] for result in term_results)
avg_confidence = np.mean([result[1] for result in term_results]) if term_results else 0.0
return all_true, avg_confidence
except Exception as e:
logging.error(f"Error evaluating premise {premise}: {e}")
return False, 0.0
def _parse_logical_expression(self, expression: str) -> List[Tuple[str, List[str], bool]]:
"""Parse logical expression into terms"""
# Simplified parsing - handles basic predicates with AND/OR
terms = []
# Split by & (AND) for now
clauses = expression.split(" & ")
for clause in clauses:
clause = clause.strip()
negated = clause.startswith("~") or clause.startswith("not ")
if negated:
clause = clause.replace("~", "").replace("not ", "").strip()
# Extract predicate and arguments
match = re.match(r'(\w+)\((.*)\)', clause)
if match:
predicate = match.group(1)
args_str = match.group(2)
args = [arg.strip().strip('"') for arg in args_str.split(",")]
terms.append((predicate, args, negated))
return terms
def _fact_exists(self, predicate: str, args: List[str]) -> bool:
"""Check if a fact exists in the knowledge base"""
for fact in self.facts.values():
if fact.predicate == predicate and fact.arguments == args and fact.truth_value:
return True
return False
def _get_fact_confidence(self, predicate: str, args: List[str]) -> float:
"""Get confidence of a fact"""
for fact in self.facts.values():
if fact.predicate == predicate and fact.arguments == args and fact.truth_value:
return fact.confidence
return 0.0
class NeuralSymbolicIntegrator(nn.Module):
"""Neural network component that interfaces with symbolic reasoning"""
def __init__(self, input_dim: int, symbol_dim: int = 128, hidden_dim: int = 256):
super().__init__()
self.input_dim = input_dim
self.symbol_dim = symbol_dim
self.hidden_dim = hidden_dim
# Neural feature extractor
self.feature_extractor = nn.Sequential(
nn.Linear(input_dim, hidden_dim),
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(hidden_dim, hidden_dim),
nn.ReLU(),
nn.Dropout(0.3)
)
# Symbolic concept embeddings
self.concept_embeddings = nn.Embedding(1000, symbol_dim) # Assume up to 1000 concepts
# Neural-symbolic fusion layers
self.fusion_attention = nn.MultiheadAttention(
embed_dim=symbol_dim, num_heads=8, batch_first=True
)
self.fusion_network = nn.Sequential(
nn.Linear(hidden_dim + symbol_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, hidden_dim)
)
# Concept activation predictor
self.concept_predictor = nn.Sequential(
nn.Linear(hidden_dim, hidden_dim // 2),
nn.ReLU(),
nn.Linear(hidden_dim // 2, 100), # Predict activation of top 100 concepts
nn.Sigmoid()
)
# Rule confidence predictor
self.rule_confidence_predictor = nn.Sequential(
nn.Linear(hidden_dim, hidden_dim // 2),
nn.ReLU(),
nn.Linear(hidden_dim // 2, 50), # Predict confidence for top 50 rules
nn.Sigmoid()
)
# Explanation generator
self.explanation_encoder = nn.LSTM(symbol_dim, hidden_dim // 2, batch_first=True)
self.explanation_decoder = nn.Sequential(
nn.Linear(hidden_dim // 2, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, symbol_dim)
)
def forward(self, neural_input: torch.Tensor,
symbolic_concepts: torch.Tensor = None,
concept_weights: torch.Tensor = None) -> Dict[str, torch.Tensor]:
"""Forward pass combining neural and symbolic processing"""
# Extract neural features
neural_features = self.feature_extractor(neural_input)
# Get symbolic concept embeddings
if symbolic_concepts is not None:
concept_embeds = self.concept_embeddings(symbolic_concepts)
# Apply attention between neural features and symbolic concepts
if concept_weights is not None:
# Weighted attention
attended_concepts, attention_weights = self.fusion_attention(
concept_embeds, concept_embeds, concept_embeds,
key_padding_mask=(concept_weights == 0)
)
else:
attended_concepts, attention_weights = self.fusion_attention(
concept_embeds, concept_embeds, concept_embeds
)
# Pool attended concepts
pooled_concepts = attended_concepts.mean(dim=1)
# Fuse neural and symbolic representations
fused_features = torch.cat([neural_features, pooled_concepts], dim=-1)
integrated_features = self.fusion_network(fused_features)
else:
integrated_features = neural_features
pooled_concepts = torch.zeros(neural_features.shape[0], self.symbol_dim,
device=neural_features.device)
# Predict concept activations
concept_activations = self.concept_predictor(integrated_features)
# Predict rule confidences
rule_confidences = self.rule_confidence_predictor(integrated_features)
# Generate explanation features
explanation_input = pooled_concepts.unsqueeze(1) # Add sequence dimension
explanation_features, _ = self.explanation_encoder(explanation_input)
explanation_output = self.explanation_decoder(explanation_features.squeeze(1))
return {
'neural_features': neural_features,
'integrated_features': integrated_features,
'concept_activations': concept_activations,
'rule_confidences': rule_confidences,
'explanation_features': explanation_output,
'attention_weights': attention_weights if symbolic_concepts is not None else None
}
class SymbolicReasoner:
"""Symbolic reasoning engine"""
def __init__(self, knowledge_base: SymbolicKnowledgeBase):
self.kb = knowledge_base
self.inference_history = []
self.logger = logging.getLogger(__name__)
def forward_chaining(self, max_iterations: int = 100) -> List[InferenceStep]:
"""Perform forward chaining inference"""
inference_steps = []
iteration = 0
while iteration < max_iterations:
new_facts_derived = False
iteration += 1
# Try to apply each rule
for rule in self.kb.rules.values():
# Find variable bindings that satisfy the premise
bindings = self._find_variable_bindings(rule.premise)
for binding in bindings:
# Check if premise is satisfied
premise_satisfied, premise_confidence = self.kb.evaluate_premise(
rule.premise, binding
)
if premise_satisfied and premise_confidence > 0.5:
# Derive conclusion
conclusion = self._apply_binding(rule.conclusion, binding)
# Check if conclusion is already known
if not self._conclusion_exists(conclusion):
# Add new fact
new_fact = self._create_fact_from_conclusion(
conclusion, premise_confidence * rule.confidence, rule.rule_id
)
if new_fact:
self.kb.add_fact(new_fact)
# Record inference step
step = InferenceStep(
step_id=f"step_{len(inference_steps)}",
rule_applied=rule.rule_id,
premises_used=[rule.premise],
conclusion_derived=conclusion,
confidence=premise_confidence * rule.confidence,
timestamp=datetime.now().isoformat()
)
inference_steps.append(step)
# Update rule usage
rule.usage_count += 1
rule.success_count += 1
new_facts_derived = True
# Stop if no new facts were derived
if not new_facts_derived:
break
self.inference_history.extend(inference_steps)
return inference_steps
def _find_variable_bindings(self, premise: str) -> List[Dict[str, str]]:
"""Find possible variable bindings for a premise"""
# Extract variables (uppercase single letters)
variables = re.findall(r'\b[A-Z]\b', premise)
if not variables:
return [{}] # No variables to bind
# Generate possible bindings from entities in KB
bindings = []
entities_list = list(self.kb.entities)
if len(variables) == 1:
# Single variable
var = variables[0]
for entity in entities_list:
bindings.append({var: entity})
else:
# Multiple variables - simplified approach
for entity in entities_list:
binding = {}
for var in variables:
binding[var] = entity
bindings.append(binding)
return bindings[:100] # Limit to prevent explosion
def _apply_binding(self, expression: str, binding: Dict[str, str]) -> str:
"""Apply variable binding to an expression"""
result = expression
for var, value in binding.items():
result = result.replace(var, value)
return result
def _conclusion_exists(self, conclusion: str) -> bool:
"""Check if a conclusion already exists as a fact"""
# Parse conclusion to extract predicate and arguments
match = re.match(r'(\w+)\((.*)\)', conclusion)
if match:
predicate = match.group(1)
args_str = match.group(2)
args = [arg.strip() for arg in args_str.split(",")]
return self.kb._fact_exists(predicate, args)
return False
def _create_fact_from_conclusion(self, conclusion: str, confidence: float, source: str) -> Optional[SymbolicFact]:
"""Create a SymbolicFact from a conclusion string"""
match = re.match(r'(\w+)\((.*)\)', conclusion)
if match:
predicate = match.group(1)
args_str = match.group(2)
args = [arg.strip() for arg in args_str.split(",")]
fact_id = f"derived_{len(self.kb.facts)}"
return SymbolicFact(
fact_id=fact_id,
predicate=predicate,
arguments=args,
truth_value=True,
confidence=confidence,
source=source,
timestamp=datetime.now().isoformat(),
metadata={'derived': True}
)
return None
class NeuroSymbolicCyberAI:
"""Complete Neuro-Symbolic AI system for cybersecurity"""
def __init__(self, input_dim: int = 100, database_path: str = "neurosymbolic.db"):
self.input_dim = input_dim
self.database_path = database_path
self.logger = logging.getLogger(__name__)
# Initialize components
self.knowledge_base = SymbolicKnowledgeBase()
self.symbolic_reasoner = SymbolicReasoner(self.knowledge_base)
self.neural_integrator = NeuralSymbolicIntegrator(input_dim)
# Device setup
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.neural_integrator.to(self.device)
# Training setup
self.optimizer = torch.optim.Adam(self.neural_integrator.parameters(), lr=1e-4)
# Concept mapping
self.concept_to_idx = {}
self.idx_to_concept = {}
self._build_concept_mapping()
# Initialize database
self._init_database()
def _build_concept_mapping(self):
"""Build mapping between concepts and indices"""
concepts = [
# Network concepts
'external_connection', 'port_scan', 'large_data_transfer', 'network_activity',
'suspicious_activity', 'encrypted_communication', 'c2_domain',
# System concepts
'unknown_process', 'file_modification', 'system_file', 'privileged_account',
'admin_account', 'failed_login', 'multiple_failed_logins',
# Security events
'potential_intrusion', 'reconnaissance', 'potential_exfiltration',
'suspicious_process', 'potential_malware', 'malware_communication',
'suspicious_access', 'brute_force_attempt', 'insider_threat',
# Attack stages
'initial_compromise', 'lateral_movement', 'credential_theft',
'vulnerability_exploit', 'mission_completion', 'data_access',
# Response actions
'alert_soc', 'block_traffic', 'lock_account'
]
for i, concept in enumerate(concepts):
self.concept_to_idx[concept] = i
self.idx_to_concept[i] = concept
def _init_database(self):
"""Initialize SQLite database"""
with sqlite3.connect(self.database_path) as conn:
conn.execute("""
CREATE TABLE IF NOT EXISTS inference_sessions (
id INTEGER PRIMARY KEY AUTOINCREMENT,
session_id TEXT NOT NULL,
neural_input BLOB,
symbolic_facts TEXT,
inference_steps TEXT,
conclusions TEXT,
explanation TEXT,
confidence_score REAL,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
)
""")
conn.execute("""
CREATE TABLE IF NOT EXISTS rule_performance (
id INTEGER PRIMARY KEY AUTOINCREMENT,
rule_id TEXT NOT NULL,
usage_count INTEGER DEFAULT 0,
success_count INTEGER DEFAULT 0,
avg_confidence REAL DEFAULT 0.0,
last_used TIMESTAMP,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
)
""")
conn.execute("""
CREATE TABLE IF NOT EXISTS concept_activations (
id INTEGER PRIMARY KEY AUTOINCREMENT,
session_id TEXT NOT NULL,
concept_name TEXT NOT NULL,
activation_score REAL NOT NULL,
neural_confidence REAL,
symbolic_confidence REAL,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
)
""")
def add_observations(self, observations: List[Dict[str, Any]]):
"""Add observed facts to the knowledge base"""
for obs in observations:
fact = SymbolicFact(
fact_id=f"obs_{len(self.knowledge_base.facts)}",
predicate=obs['predicate'],
arguments=obs['arguments'],
truth_value=obs.get('truth_value', True),
confidence=obs.get('confidence', 1.0),
source="observation",
timestamp=datetime.now().isoformat(),
metadata=obs.get('metadata', {})
)
self.knowledge_base.add_fact(fact)
def analyze_with_explanation(self, neural_input: np.ndarray,
observations: List[Dict[str, Any]] = None) -> Dict[str, Any]:
"""Perform neuro-symbolic analysis with detailed explanation"""
session_id = f"session_{datetime.now().strftime('%Y%m%d_%H%M%S_%f')}"
# Add new observations
if observations:
self.add_observations(observations)
# Neural processing
neural_tensor = torch.FloatTensor(neural_input).unsqueeze(0).to(self.device)
# Extract symbolic concepts from current facts
active_concepts = []
for fact in self.knowledge_base.facts.values():
if fact.predicate in self.concept_to_idx:
active_concepts.append(self.concept_to_idx[fact.predicate])
concept_tensor = torch.LongTensor(active_concepts).to(self.device) if active_concepts else None
concept_weights = torch.ones(len(active_concepts)).to(self.device) if active_concepts else None
if concept_tensor is not None:
concept_tensor = concept_tensor.unsqueeze(0)
concept_weights = concept_weights.unsqueeze(0)
# Forward pass through neural integrator
self.neural_integrator.eval()
with torch.no_grad():
neural_output = self.neural_integrator(
neural_tensor, concept_tensor, concept_weights
)
# Symbolic reasoning
inference_steps = self.symbolic_reasoner.forward_chaining()
# Extract results
concept_activations = neural_output['concept_activations'].cpu().numpy()[0]
rule_confidences = neural_output['rule_confidences'].cpu().numpy()[0]
# Get top activated concepts
top_concepts = []
for i, activation in enumerate(concept_activations):
if i < len(self.idx_to_concept) and activation > 0.1:
top_concepts.append({
'concept': self.idx_to_concept[i],
'activation': float(activation),
'source': 'neural'
})
top_concepts.sort(key=lambda x: x['activation'], reverse=True)
# Get conclusions from symbolic reasoning
conclusions = []
for step in inference_steps:
conclusions.append({
'conclusion': step.conclusion_derived,
'rule_used': step.rule_applied,
'confidence': step.confidence,
'source': 'symbolic'
})
# Generate explanation
explanation = self._generate_explanation(
neural_output, inference_steps, top_concepts, conclusions
)
# Calculate overall confidence
neural_confidence = float(np.mean(concept_activations[concept_activations > 0.1])) if len(concept_activations[concept_activations > 0.1]) > 0 else 0.0
symbolic_confidence = float(np.mean([step.confidence for step in inference_steps])) if inference_steps else 0.0
overall_confidence = (neural_confidence + symbolic_confidence) / 2
# Prepare results
analysis_result = {
'session_id': session_id,
'timestamp': datetime.now().isoformat(),
'neural_analysis': {
'top_concepts': top_concepts[:10],
'confidence': neural_confidence
},
'symbolic_analysis': {
'inference_steps': len(inference_steps),
'conclusions': conclusions,
'confidence': symbolic_confidence
},
'integrated_analysis': {
'overall_confidence': overall_confidence,
'explanation': explanation,
'recommendations': self._generate_recommendations(conclusions, top_concepts)
},
'metadata': {
'facts_in_kb': len(self.knowledge_base.facts),
'rules_applied': len(set(step.rule_applied for step in inference_steps)),
'processing_time': 'simulated'
}
}
# Save to database
self._save_analysis(session_id, analysis_result, neural_input)
return analysis_result
def _generate_explanation(self, neural_output: Dict[str, torch.Tensor],
inference_steps: List[InferenceStep],
top_concepts: List[Dict[str, Any]],
conclusions: List[Dict[str, Any]]) -> str:
"""Generate human-readable explanation"""
explanation_parts = []
# Neural analysis explanation
if top_concepts:
explanation_parts.append("Neural Analysis:")
explanation_parts.append(f" The neural network identified {len(top_concepts)} relevant cybersecurity concepts:")
for concept in top_concepts[:5]:
explanation_parts.append(f" - {concept['concept']}: {concept['activation']:.2f} confidence")
explanation_parts.append("")
# Symbolic reasoning explanation
if inference_steps:
explanation_parts.append("Symbolic Reasoning:")
explanation_parts.append(f" Applied {len(inference_steps)} inference rules to derive new knowledge:")
for step in inference_steps[:3]:
rule = self.knowledge_base.rules[step.rule_applied]
explanation_parts.append(f" - Applied rule {step.rule_applied}: {rule.premise} β {rule.conclusion}")
explanation_parts.append(f" Derived: {step.conclusion_derived} (confidence: {step.confidence:.2f})")
if len(inference_steps) > 3:
explanation_parts.append(f" ... and {len(inference_steps) - 3} more inferences")
explanation_parts.append("")
# Conclusions explanation
if conclusions:
explanation_parts.append("Key Findings:")
for conclusion in conclusions[:3]:
explanation_parts.append(f" - {conclusion['conclusion']} (confidence: {conclusion['confidence']:.2f})")
explanation_parts.append("")
# Integration explanation
explanation_parts.append("Integration:")
explanation_parts.append(" The neuro-symbolic system combined neural pattern recognition")
explanation_parts.append(" with symbolic logical reasoning to provide explainable conclusions")
explanation_parts.append(" based on both learned patterns and expert-defined rules.")
return "\n".join(explanation_parts)
def _generate_recommendations(self, conclusions: List[Dict[str, Any]],
top_concepts: List[Dict[str, Any]]) -> List[str]:
"""Generate actionable recommendations"""
recommendations = []
# Based on conclusions
threat_indicators = [c for c in conclusions if 'potential' in c['conclusion'] or 'suspicious' in c['conclusion']]
if threat_indicators:
recommendations.append("π¨ Potential security threats detected - immediate investigation recommended")
for threat in threat_indicators[:3]:
if 'intrusion' in threat['conclusion']:
recommendations.append(" - Implement network isolation measures")
recommendations.append(" - Review network access logs")
elif 'malware' in threat['conclusion']:
recommendations.append(" - Perform full system scan")
recommendations.append(" - Isolate affected systems")
elif 'exfiltration' in threat['conclusion']:
recommendations.append(" - Monitor outbound network traffic")
recommendations.append(" - Review data access patterns")
# Based on neural concepts
high_risk_concepts = [c for c in top_concepts if c['activation'] > 0.7]
if high_risk_concepts:
recommendations.append("π High-confidence neural detections require attention:")
for concept in high_risk_concepts[:2]:
recommendations.append(f" - Investigate {concept['concept']} (confidence: {concept['activation']:.2f})")
# General recommendations
if not recommendations:
recommendations.append("β
No immediate threats detected")
recommendations.append(" - Continue normal monitoring")
recommendations.append(" - Regular security updates recommended")
return recommendations
def _save_analysis(self, session_id: str, analysis_result: Dict[str, Any], neural_input: np.ndarray):
"""Save analysis results to database"""
with sqlite3.connect(self.database_path) as conn:
# Save main analysis
conn.execute(
"""INSERT INTO inference_sessions
(session_id, neural_input, symbolic_facts, inference_steps, conclusions, explanation, confidence_score)
VALUES (?, ?, ?, ?, ?, ?, ?)""",
(session_id, pickle.dumps(neural_input),
json.dumps([asdict(fact) for fact in self.knowledge_base.facts.values()]),
json.dumps(analysis_result['symbolic_analysis']),
json.dumps(analysis_result['symbolic_analysis']['conclusions']),
analysis_result['integrated_analysis']['explanation'],
analysis_result['integrated_analysis']['overall_confidence'])
)
# Save concept activations
for concept in analysis_result['neural_analysis']['top_concepts']:
conn.execute(
"""INSERT INTO concept_activations
(session_id, concept_name, activation_score, neural_confidence)
VALUES (?, ?, ?, ?)""",
(session_id, concept['concept'], concept['activation'],
analysis_result['neural_analysis']['confidence'])
)
def get_knowledge_base_summary(self) -> Dict[str, Any]:
"""Get summary of current knowledge base"""
# Fact statistics
fact_stats = {
'total_facts': len(self.knowledge_base.facts),
'predicates': len(self.knowledge_base.predicates),
'entities': len(self.knowledge_base.entities)
}
# Rule statistics
rule_stats = {
'total_rules': len(self.knowledge_base.rules),
'rule_usage': {rule.rule_id: rule.usage_count for rule in self.knowledge_base.rules.values()},
'rule_success': {rule.rule_id: rule.success_count for rule in self.knowledge_base.rules.values()}
}
# Recent inference history
recent_inferences = self.symbolic_reasoner.inference_history[-10:]
return {
'fact_statistics': fact_stats,
'rule_statistics': rule_stats,
'recent_inferences': [asdict(inf) for inf in recent_inferences],
'predicates': list(self.knowledge_base.predicates),
'entities': list(self.knowledge_base.entities)
}
# Example usage and testing
if __name__ == "__main__":
print("π§ π Neuro-Symbolic AI for Cybersecurity Testing:")
print("=" * 60)
# Initialize the system
neurosymbolic_ai = NeuroSymbolicCyberAI(input_dim=50)
print(f" Initialized neuro-symbolic system")
print(f" Knowledge base: {len(neurosymbolic_ai.knowledge_base.facts)} facts, {len(neurosymbolic_ai.knowledge_base.rules)} rules")
# Test knowledge base summary
print("\nπ Knowledge base summary:")
kb_summary = neurosymbolic_ai.get_knowledge_base_summary()
print(f" Total facts: {kb_summary['fact_statistics']['total_facts']}")
print(f" Total rules: {kb_summary['rule_statistics']['total_rules']}")
print(f" Predicates: {kb_summary['fact_statistics']['predicates']}")
print(f" Sample predicates: {list(kb_summary['predicates'])[:5]}")
# Add sample observations
print("\nπ Adding sample cybersecurity observations...")
sample_observations = [
{
'predicate': 'external_connection',
'arguments': ['host_001'],
'confidence': 0.9,
'metadata': {'ip': '192.168.1.10', 'dest': '8.8.8.8'}
},
{
'predicate': 'suspicious_activity',
'arguments': ['host_001'],
'confidence': 0.7,
'metadata': {'activity_type': 'unusual_traffic'}
},
{
'predicate': 'port_scan',
'arguments': ['host_002'],
'confidence': 0.8,
'metadata': {'ports_scanned': [22, 80, 443]}
},
{
'predicate': 'failed_login',
'arguments': ['host_002'],
'confidence': 0.9,
'metadata': {'attempts': 5, 'user': 'admin'}
},
{
'predicate': 'large_data_transfer',
'arguments': ['host_003'],
'confidence': 0.6,
'metadata': {'bytes_transferred': 10485760}
}
]
neurosymbolic_ai.add_observations(sample_observations)
print(f" Added {len(sample_observations)} observations")
# Generate sample neural input
print("\nπ§ Generating sample neural input...")
neural_input = np.random.rand(50)
neural_input[:10] = np.array([0.8, 0.3, 0.9, 0.7, 0.2, 0.6, 0.4, 0.8, 0.1, 0.5]) # Simulate network features
# Perform neuro-symbolic analysis
print("\nπ Performing neuro-symbolic analysis...")
analysis_result = neurosymbolic_ai.analyze_with_explanation(neural_input)
# Display results
print(f"\nπ Analysis Results (Session: {analysis_result['session_id']}):")
print(f" Overall confidence: {analysis_result['integrated_analysis']['overall_confidence']:.3f}")
print(f"\nπ§ Neural Analysis:")
print(f" Confidence: {analysis_result['neural_analysis']['confidence']:.3f}")
print(f" Top concepts detected:")
for concept in analysis_result['neural_analysis']['top_concepts'][:5]:
print(f" - {concept['concept']}: {concept['activation']:.3f}")
print(f"\nπ Symbolic Analysis:")
print(f" Inference steps: {analysis_result['symbolic_analysis']['inference_steps']}")
print(f" Confidence: {analysis_result['symbolic_analysis']['confidence']:.3f}")
print(f" Conclusions derived:")
for conclusion in analysis_result['symbolic_analysis']['conclusions'][:3]:
print(f" - {conclusion['conclusion']} (conf: {conclusion['confidence']:.3f})")
print(f"\nπ‘ Recommendations:")
for rec in analysis_result['integrated_analysis']['recommendations'][:5]:
print(f" {rec}")
print(f"\nπ Explanation Preview:")
explanation_lines = analysis_result['integrated_analysis']['explanation'].split('\n')[:10]
for line in explanation_lines:
print(f" {line}")
if len(analysis_result['integrated_analysis']['explanation'].split('\n')) > 10:
print(f" ... (full explanation available)")
# Test another analysis with different observations
print("\nπ Testing with different scenario...")
additional_observations = [
{
'predicate': 'unknown_process',
'arguments': ['host_004'],
'confidence': 0.8,
'metadata': {'process_name': 'suspicious.exe'}
},
{
'predicate': 'network_activity',
'arguments': ['host_004'],
'confidence': 0.9,
'metadata': {'connections': 15}
},
{
'predicate': 'off_hours_access',
'arguments': ['user_admin'],
'confidence': 0.7,
'metadata': {'time': '02:30:00'}
},
{
'predicate': 'privileged_account',
'arguments': ['user_admin'],
'confidence': 1.0,
'metadata': {'role': 'administrator'}
}
]
analysis_result_2 = neurosymbolic_ai.analyze_with_explanation(
neural_input * 0.8, additional_observations
)
print(f" New conclusions:")
for conclusion in analysis_result_2['symbolic_analysis']['conclusions'][:3]:
print(f" - {conclusion['conclusion']} (conf: {conclusion['confidence']:.3f})")
# Final knowledge base summary
print("\nπ Final knowledge base status:")
final_summary = neurosymbolic_ai.get_knowledge_base_summary()
print(f" Total facts: {final_summary['fact_statistics']['total_facts']}")
print(f" Recent inferences: {len(final_summary['recent_inferences'])}")
if final_summary['recent_inferences']:
print(f" Last inference: {final_summary['recent_inferences'][-1]['conclusion_derived']}")
print("\nβ
Neuro-Symbolic AI system implemented and tested")
print(f" Database: {neurosymbolic_ai.database_path}")
print(f" Concept vocabulary: {len(neurosymbolic_ai.concept_to_idx)} concepts")
print(f" Architecture: Neural-Symbolic Integration with Attention-based Fusion")
print(f" Capabilities: Explainable AI with logical reasoning and neural pattern recognition")
|