File size: 14,454 Bytes
23804b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
"""
Online Learning System for Cyber-LLM
Enables real-time model updates from operational feedback and new threat intelligence.

Author: Muzan Sano <[email protected]>
"""

import asyncio
import json
import logging
from datetime import datetime, timedelta
from typing import Dict, List, Optional, Tuple, Any
from dataclasses import dataclass, asdict
from enum import Enum
import numpy as np
import torch
from torch.utils.data import DataLoader, Dataset
from transformers import AutoTokenizer, AutoModelForCausalLM
import redis
from pydantic import BaseModel, Field

from ..utils.logging_system import CyberLLMLogger
from ..utils.secrets_manager import SecretsManager

# Configure logging
logger = CyberLLMLogger(__name__).get_logger()

class LearningEventType(Enum):
    """Types of learning events that can trigger model updates"""
    FEEDBACK_POSITIVE = "feedback_positive"
    FEEDBACK_NEGATIVE = "feedback_negative"
    NEW_THREAT_INTELLIGENCE = "new_threat_intel"
    SECURITY_INCIDENT = "security_incident"
    AGENT_SUCCESS = "agent_success"
    AGENT_FAILURE = "agent_failure"
    OPSEC_VIOLATION = "opsec_violation"
    FALSE_POSITIVE = "false_positive"

@dataclass
class LearningEvent:
    """Structure for learning events"""
    event_id: str
    event_type: LearningEventType
    timestamp: datetime
    source: str  # Which agent or system generated this event
    context: Dict[str, Any]  # Relevant context for learning
    feedback_score: Optional[float] = None  # Human feedback score (0-1)
    confidence: float = 1.0  # Confidence in this event
    priority: int = 1  # Priority level (1=low, 5=critical)
    
    def to_dict(self) -> Dict[str, Any]:
        data = asdict(self)
        data['timestamp'] = self.timestamp.isoformat()
        data['event_type'] = self.event_type.value
        return data

class OnlineDataset(Dataset):
    """Dataset for online learning from streaming events"""
    
    def __init__(self, events: List[LearningEvent], tokenizer, max_length: int = 512):
        self.events = events
        self.tokenizer = tokenizer
        self.max_length = max_length
        
    def __len__(self) -> int:
        return len(self.events)
        
    def __getitem__(self, idx: int) -> Dict[str, torch.Tensor]:
        event = self.events[idx]
        
        # Convert learning event to training sample
        context_text = self._event_to_text(event)
        
        # Tokenize
        encoding = self.tokenizer(
            context_text,
            truncation=True,
            padding='max_length',
            max_length=self.max_length,
            return_tensors='pt'
        )
        
        return {
            'input_ids': encoding['input_ids'].squeeze(),
            'attention_mask': encoding['attention_mask'].squeeze(),
            'labels': encoding['input_ids'].squeeze(),
            'event_weight': torch.tensor(event.confidence * event.priority, dtype=torch.float32)
        }
    
    def _event_to_text(self, event: LearningEvent) -> str:
        """Convert learning event to training text"""
        if event.event_type == LearningEventType.FEEDBACK_POSITIVE:
            return f"[POSITIVE_FEEDBACK] Context: {event.context.get('query', '')} Response: {event.context.get('response', '')} Score: {event.feedback_score}"
        elif event.event_type == LearningEventType.FEEDBACK_NEGATIVE:
            return f"[NEGATIVE_FEEDBACK] Context: {event.context.get('query', '')} Response: {event.context.get('response', '')} Score: {event.feedback_score}"
        elif event.event_type == LearningEventType.NEW_THREAT_INTELLIGENCE:
            return f"[THREAT_INTEL] {event.context.get('threat_description', '')} TTPs: {event.context.get('ttps', [])}"
        elif event.event_type == LearningEventType.SECURITY_INCIDENT:
            return f"[INCIDENT] {event.context.get('incident_description', '')} Response: {event.context.get('response_actions', [])}"
        else:
            return f"[{event.event_type.value.upper()}] {json.dumps(event.context)}"

class OnlineLearningManager:
    """Manages online learning process for Cyber-LLM"""
    
    def __init__(self, 
                 model_name: str = "microsoft/DialoGPT-medium",
                 redis_host: str = "localhost",
                 redis_port: int = 6379,
                 learning_rate: float = 1e-5,
                 batch_size: int = 4,
                 update_frequency: int = 100,  # Update after N events
                 max_events_memory: int = 10000):
        
        self.model_name = model_name
        self.learning_rate = learning_rate
        self.batch_size = batch_size
        self.update_frequency = update_frequency
        self.max_events_memory = max_events_memory
        
        # Initialize components
        self.secrets_manager = SecretsManager()
        self.redis_client = redis.Redis(host=redis_host, port=redis_port, decode_responses=True)
        
        # Load model and tokenizer
        self.tokenizer = AutoTokenizer.from_pretrained(model_name)
        self.model = AutoModelForCausalLM.from_pretrained(model_name)
        
        if self.tokenizer.pad_token is None:
            self.tokenizer.pad_token = self.tokenizer.eos_token
            
        # Learning state
        self.learning_events: List[LearningEvent] = []
        self.total_events_processed = 0
        self.last_update_time = datetime.now()
        
        # Performance tracking
        self.learning_metrics = {
            'total_updates': 0,
            'successful_updates': 0,
            'failed_updates': 0,
            'average_loss': 0.0,
            'learning_rate_history': []
        }
        
        logger.info(f"OnlineLearningManager initialized with model: {model_name}")
    
    async def add_learning_event(self, event: LearningEvent) -> None:
        """Add a new learning event to the queue"""
        try:
            # Store event in memory
            self.learning_events.append(event)
            
            # Store event in Redis for persistence
            event_key = f"learning_event:{event.event_id}"
            await self._store_event_redis(event_key, event)
            
            # Maintain memory limit
            if len(self.learning_events) > self.max_events_memory:
                self.learning_events.pop(0)
            
            self.total_events_processed += 1
            
            logger.info(f"Added learning event: {event.event_type.value} from {event.source}")
            
            # Trigger update if threshold reached
            if len(self.learning_events) >= self.update_frequency:
                await self.trigger_model_update()
                
        except Exception as e:
            logger.error(f"Error adding learning event: {str(e)}")
    
    async def trigger_model_update(self) -> Dict[str, Any]:
        """Trigger an online model update based on accumulated events"""
        if not self.learning_events:
            logger.warning("No learning events available for model update")
            return {'success': False, 'reason': 'no_events'}
        
        try:
            logger.info(f"Starting online model update with {len(self.learning_events)} events")
            
            # Prepare dataset
            dataset = OnlineDataset(self.learning_events, self.tokenizer)
            dataloader = DataLoader(dataset, batch_size=self.batch_size, shuffle=True)
            
            # Configure optimizer
            optimizer = torch.optim.AdamW(self.model.parameters(), lr=self.learning_rate)
            
            # Training loop
            self.model.train()
            total_loss = 0.0
            num_batches = 0
            
            for batch in dataloader:
                optimizer.zero_grad()
                
                outputs = self.model(
                    input_ids=batch['input_ids'],
                    attention_mask=batch['attention_mask'],
                    labels=batch['labels']
                )
                
                # Apply event weights to loss
                loss = outputs.loss * batch['event_weight'].mean()
                
                loss.backward()
                torch.nn.utils.clip_grad_norm_(self.model.parameters(), 1.0)
                optimizer.step()
                
                total_loss += loss.item()
                num_batches += 1
            
            avg_loss = total_loss / num_batches if num_batches > 0 else 0.0
            
            # Update metrics
            self.learning_metrics['total_updates'] += 1
            self.learning_metrics['successful_updates'] += 1
            self.learning_metrics['average_loss'] = avg_loss
            self.learning_metrics['learning_rate_history'].append(self.learning_rate)
            
            # Clear processed events
            self.learning_events.clear()
            self.last_update_time = datetime.now()
            
            logger.info(f"Online model update completed. Average loss: {avg_loss:.4f}")
            
            # Store updated model (in production, would save to model registry)
            await self._save_model_checkpoint()
            
            return {
                'success': True,
                'average_loss': avg_loss,
                'events_processed': num_batches * self.batch_size,
                'timestamp': self.last_update_time.isoformat()
            }
            
        except Exception as e:
            self.learning_metrics['failed_updates'] += 1
            logger.error(f"Online model update failed: {str(e)}")
            return {'success': False, 'error': str(e)}
    
    async def process_feedback(self, 
                             query: str, 
                             response: str, 
                             feedback_score: float,
                             source: str = "human_feedback") -> None:
        """Process human feedback for online learning"""
        event_type = LearningEventType.FEEDBACK_POSITIVE if feedback_score > 0.5 else LearningEventType.FEEDBACK_NEGATIVE
        
        event = LearningEvent(
            event_id=f"feedback_{datetime.now().timestamp()}",
            event_type=event_type,
            timestamp=datetime.now(),
            source=source,
            context={
                'query': query,
                'response': response,
                'feedback_score': feedback_score
            },
            feedback_score=feedback_score,
            priority=3 if abs(feedback_score - 0.5) > 0.3 else 2  # Higher priority for strong feedback
        )
        
        await self.add_learning_event(event)
    
    async def process_threat_intelligence(self, 
                                        threat_data: Dict[str, Any],
                                        source: str = "threat_intel") -> None:
        """Process new threat intelligence for online learning"""
        event = LearningEvent(
            event_id=f"threat_{datetime.now().timestamp()}",
            event_type=LearningEventType.NEW_THREAT_INTELLIGENCE,
            timestamp=datetime.now(),
            source=source,
            context=threat_data,
            priority=4,  # High priority for new threats
            confidence=threat_data.get('confidence', 0.8)
        )
        
        await self.add_learning_event(event)
    
    async def process_agent_performance(self,
                                      agent_name: str,
                                      task: str,
                                      success: bool,
                                      performance_data: Dict[str, Any]) -> None:
        """Process agent performance data for online learning"""
        event_type = LearningEventType.AGENT_SUCCESS if success else LearningEventType.AGENT_FAILURE
        
        event = LearningEvent(
            event_id=f"agent_{agent_name}_{datetime.now().timestamp()}",
            event_type=event_type,
            timestamp=datetime.now(),
            source=agent_name,
            context={
                'task': task,
                'performance_data': performance_data,
                'success': success
            },
            priority=2 if success else 3,  # Higher priority for failures to learn from
            confidence=performance_data.get('confidence', 0.9)
        )
        
        await self.add_learning_event(event)
    
    async def get_learning_statistics(self) -> Dict[str, Any]:
        """Get comprehensive learning statistics"""
        return {
            'total_events_processed': self.total_events_processed,
            'current_events_in_memory': len(self.learning_events),
            'last_update_time': self.last_update_time.isoformat(),
            'metrics': self.learning_metrics,
            'event_type_distribution': self._get_event_type_distribution(),
            'learning_rate': self.learning_rate,
            'update_frequency': self.update_frequency
        }
    
    def _get_event_type_distribution(self) -> Dict[str, int]:
        """Get distribution of event types in current memory"""
        distribution = {}
        for event in self.learning_events:
            event_type = event.event_type.value
            distribution[event_type] = distribution.get(event_type, 0) + 1
        return distribution
    
    async def _store_event_redis(self, key: str, event: LearningEvent) -> None:
        """Store learning event in Redis for persistence"""
        try:
            event_data = json.dumps(event.to_dict())
            self.redis_client.setex(key, timedelta(days=7), event_data)
        except Exception as e:
            logger.warning(f"Failed to store event in Redis: {str(e)}")
    
    async def _save_model_checkpoint(self) -> None:
        """Save model checkpoint after online learning update"""
        try:
            checkpoint_path = f"models/online_learning_checkpoint_{datetime.now().strftime('%Y%m%d_%H%M%S')}"
            self.model.save_pretrained(checkpoint_path)
            self.tokenizer.save_pretrained(checkpoint_path)
            logger.info(f"Model checkpoint saved to {checkpoint_path}")
        except Exception as e:
            logger.error(f"Failed to save model checkpoint: {str(e)}")

# Factory function for easy instantiation
def create_online_learning_manager(**kwargs) -> OnlineLearningManager:
    """Factory function to create OnlineLearningManager with default configuration"""
    return OnlineLearningManager(**kwargs)