File size: 29,033 Bytes
23804b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 |
"""
Advanced Transfer Learning System for Cybersecurity AI
Implements domain adaptation, multi-task learning, and knowledge transfer capabilities
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import json
import os
from typing import Dict, List, Optional, Any, Union, Tuple
from dataclasses import dataclass, asdict
from datetime import datetime
import logging
from abc import ABC, abstractmethod
from collections import defaultdict
@dataclass
class TransferLearningConfig:
"""Configuration for transfer learning setup"""
source_domain: str
target_domain: str
transfer_method: str
freeze_layers: List[str]
adaptation_layers: List[str]
learning_rates: Dict[str, float]
loss_weights: Dict[str, float]
@dataclass
class DomainAdaptationResult:
"""Results from domain adaptation"""
source_loss: float
target_loss: float
domain_loss: float
adaptation_score: float
transfer_effectiveness: float
class FeatureExtractor(nn.Module):
"""Base feature extractor for transfer learning"""
def __init__(self, input_size: int, hidden_sizes: List[int], output_size: int):
super().__init__()
layers = []
prev_size = input_size
for hidden_size in hidden_sizes:
layers.extend([
nn.Linear(prev_size, hidden_size),
nn.BatchNorm1d(hidden_size),
nn.ReLU(),
nn.Dropout(0.3)
])
prev_size = hidden_size
layers.append(nn.Linear(prev_size, output_size))
self.network = nn.Sequential(*layers)
def forward(self, x):
return self.network(x)
class DomainClassifier(nn.Module):
"""Domain classifier for adversarial domain adaptation"""
def __init__(self, feature_size: int, hidden_size: int = 128):
super().__init__()
self.classifier = nn.Sequential(
nn.Linear(feature_size, hidden_size),
nn.ReLU(),
nn.Dropout(0.5),
nn.Linear(hidden_size, hidden_size // 2),
nn.ReLU(),
nn.Dropout(0.5),
nn.Linear(hidden_size // 2, 2) # Binary: source vs target domain
)
def forward(self, x):
return self.classifier(x)
class TaskClassifier(nn.Module):
"""Task-specific classifier"""
def __init__(self, feature_size: int, num_classes: int, hidden_size: int = 128):
super().__init__()
self.classifier = nn.Sequential(
nn.Linear(feature_size, hidden_size),
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(hidden_size, num_classes)
)
def forward(self, x):
return self.classifier(x)
class GradientReversalLayer(torch.autograd.Function):
"""Gradient reversal layer for adversarial training"""
@staticmethod
def forward(ctx, x, alpha):
ctx.alpha = alpha
return x.view_as(x)
@staticmethod
def backward(ctx, grad_output):
return grad_output.neg() * ctx.alpha, None
class TransferLearningModel(nn.Module):
"""Multi-purpose transfer learning model for cybersecurity tasks"""
def __init__(self, config: Dict[str, Any]):
super().__init__()
self.config = config
self.feature_size = config.get('feature_size', 256)
# Feature extractor (shared across domains/tasks)
self.feature_extractor = FeatureExtractor(
input_size=config['input_size'],
hidden_sizes=config.get('hidden_sizes', [512, 256]),
output_size=self.feature_size
)
# Task-specific classifiers
self.task_classifiers = nn.ModuleDict()
for task_name, num_classes in config.get('tasks', {}).items():
self.task_classifiers[task_name] = TaskClassifier(
self.feature_size, num_classes
)
# Domain classifier for domain adaptation
self.domain_classifier = DomainClassifier(self.feature_size)
# Layer freezing setup
self.frozen_layers = set(config.get('frozen_layers', []))
def forward(self, x, task_name: str = None, alpha: float = 0.0):
# Extract features
features = self.feature_extractor(x)
results = {}
# Task classification
if task_name and task_name in self.task_classifiers:
results['task_output'] = self.task_classifiers[task_name](features)
# Domain classification (with gradient reversal)
if alpha > 0:
reversed_features = GradientReversalLayer.apply(features, alpha)
results['domain_output'] = self.domain_classifier(reversed_features)
results['features'] = features
return results
def freeze_layers(self, layer_names: List[str]):
"""Freeze specified layers"""
for name, param in self.named_parameters():
if any(layer_name in name for layer_name in layer_names):
param.requires_grad = False
self.frozen_layers.add(name)
def unfreeze_layers(self, layer_names: List[str]):
"""Unfreeze specified layers"""
for name, param in self.named_parameters():
if any(layer_name in name for layer_name in layer_names):
param.requires_grad = True
self.frozen_layers.discard(name)
class CyberTransferLearning:
"""Advanced transfer learning system for cybersecurity applications"""
def __init__(self, config_path: str = None):
self.config = self._load_config(config_path)
self.models = {}
self.transfer_history = []
self.logger = logging.getLogger(__name__)
# Cybersecurity domain mappings
self.domain_mappings = {
'malware_detection': {
'features': ['file_size', 'entropy', 'api_calls', 'strings'],
'related_domains': ['threat_detection', 'anomaly_detection']
},
'network_intrusion': {
'features': ['packet_size', 'flow_duration', 'protocol', 'ports'],
'related_domains': ['anomaly_detection', 'traffic_analysis']
},
'phishing_detection': {
'features': ['url_features', 'content_features', 'metadata'],
'related_domains': ['malware_detection', 'fraud_detection']
},
'vulnerability_assessment': {
'features': ['code_metrics', 'dependencies', 'patterns'],
'related_domains': ['malware_detection', 'threat_detection']
},
'threat_intelligence': {
'features': ['iocs', 'ttps', 'attribution', 'context'],
'related_domains': ['malware_detection', 'network_intrusion']
}
}
def _load_config(self, config_path: str) -> Dict[str, Any]:
"""Load transfer learning configuration"""
if config_path and os.path.exists(config_path):
with open(config_path, 'r') as f:
return json.load(f)
# Default configuration
return {
'model_configs': {
'malware_detection': {
'input_size': 1024,
'hidden_sizes': [512, 256],
'tasks': {'malware_classification': 10, 'family_detection': 20}
},
'network_intrusion': {
'input_size': 128,
'hidden_sizes': [256, 128],
'tasks': {'intrusion_detection': 2, 'attack_type': 15}
}
},
'transfer_strategies': {
'fine_tuning': {'freeze_ratio': 0.5, 'learning_rate_ratio': 0.1},
'domain_adaptation': {'alpha_schedule': 'progressive', 'max_alpha': 1.0},
'multi_task': {'task_weights': 'adaptive', 'sharing_layers': ['feature_extractor']}
}
}
def create_transfer_model(self, source_domain: str, target_domain: str,
transfer_method: str = 'fine_tuning') -> str:
"""Create a transfer learning model"""
model_id = f"transfer_{source_domain}_to_{target_domain}_{transfer_method}"
# Get model configuration
if target_domain in self.config['model_configs']:
model_config = self.config['model_configs'][target_domain].copy()
else:
# Use source domain config as base
model_config = self.config['model_configs'].get(
source_domain, self.config['model_configs']['malware_detection']
).copy()
# Create model
model = TransferLearningModel(model_config)
# Load pre-trained source model if available
source_model_path = f"/models/{source_domain}_pretrained.pth"
if os.path.exists(source_model_path):
self._load_pretrained_weights(model, source_model_path, source_domain, target_domain)
# Apply transfer learning strategy
if transfer_method == 'fine_tuning':
self._setup_fine_tuning(model, source_domain, target_domain)
elif transfer_method == 'domain_adaptation':
self._setup_domain_adaptation(model, source_domain, target_domain)
elif transfer_method == 'multi_task':
self._setup_multi_task_learning(model, source_domain, target_domain)
self.models[model_id] = {
'model': model,
'source_domain': source_domain,
'target_domain': target_domain,
'transfer_method': transfer_method,
'created_at': datetime.now().isoformat()
}
self.logger.info(f"Created transfer model: {model_id}")
return model_id
def _load_pretrained_weights(self, model: TransferLearningModel,
source_path: str, source_domain: str, target_domain: str):
"""Load pre-trained weights with domain adaptation"""
try:
if os.path.exists(source_path):
checkpoint = torch.load(source_path, map_location='cpu')
# Load compatible weights
model_dict = model.state_dict()
pretrained_dict = {
k: v for k, v in checkpoint.items()
if k in model_dict and v.size() == model_dict[k].size()
}
model_dict.update(pretrained_dict)
model.load_state_dict(model_dict)
self.logger.info(f"Loaded {len(pretrained_dict)} pre-trained layers")
else:
self.logger.warning(f"Pre-trained model not found: {source_path}")
except Exception as e:
self.logger.error(f"Error loading pre-trained weights: {e}")
def _setup_fine_tuning(self, model: TransferLearningModel,
source_domain: str, target_domain: str):
"""Setup fine-tuning strategy"""
strategy = self.config['transfer_strategies']['fine_tuning']
# Freeze lower layers
all_params = list(model.named_parameters())
freeze_count = int(len(all_params) * strategy['freeze_ratio'])
freeze_layers = []
for i, (name, param) in enumerate(all_params):
if i < freeze_count:
freeze_layers.append(name.split('.')[0])
model.freeze_layers(freeze_layers)
def _setup_domain_adaptation(self, model: TransferLearningModel,
source_domain: str, target_domain: str):
"""Setup domain adaptation strategy"""
# Domain adaptation typically doesn't freeze layers initially
# but uses adversarial training instead
pass
def _setup_multi_task_learning(self, model: TransferLearningModel,
source_domain: str, target_domain: str):
"""Setup multi-task learning strategy"""
# Multi-task learning keeps all layers unfrozen
# and learns multiple tasks simultaneously
pass
def adapt_domain(self, model_id: str, source_data: torch.Tensor,
target_data: torch.Tensor, source_labels: torch.Tensor,
target_labels: torch.Tensor = None,
epochs: int = 50) -> DomainAdaptationResult:
"""Perform domain adaptation training"""
if model_id not in self.models:
raise ValueError(f"Model {model_id} not found")
model = self.models[model_id]['model']
model.train()
# Optimizers
feature_optimizer = torch.optim.Adam(
model.feature_extractor.parameters(), lr=1e-4
)
task_optimizer = torch.optim.Adam(
model.task_classifiers.parameters(), lr=1e-4
)
domain_optimizer = torch.optim.Adam(
model.domain_classifier.parameters(), lr=1e-3
)
# Loss functions
task_criterion = nn.CrossEntropyLoss()
domain_criterion = nn.CrossEntropyLoss()
# Training metrics
results = {
'source_losses': [],
'target_losses': [],
'domain_losses': [],
'adaptation_scores': []
}
for epoch in range(epochs):
epoch_source_loss = 0.0
epoch_target_loss = 0.0
epoch_domain_loss = 0.0
# Progressive alpha schedule for gradient reversal
alpha = min(1.0, 2.0 / (1.0 + np.exp(-10 * epoch / epochs)) - 1.0)
# Batch training
batch_size = 32
n_batches = max(len(source_data) // batch_size, len(target_data) // batch_size)
for batch_idx in range(n_batches):
# Get batches
source_start = (batch_idx * batch_size) % len(source_data)
target_start = (batch_idx * batch_size) % len(target_data)
source_batch = source_data[source_start:source_start + batch_size]
source_label_batch = source_labels[source_start:source_start + batch_size]
target_batch = target_data[target_start:target_start + batch_size]
# Create domain labels
source_domain_labels = torch.zeros(len(source_batch), dtype=torch.long)
target_domain_labels = torch.ones(len(target_batch), dtype=torch.long)
# Forward pass - source data
source_results = model(source_batch, task_name='task_classification', alpha=alpha)
# Task loss on source data
if 'task_classification' in model.task_classifiers:
task_loss = task_criterion(
source_results['task_output'], source_label_batch
)
else:
# Use first available task
first_task = next(iter(model.task_classifiers.keys()))
source_results = model(source_batch, task_name=first_task, alpha=alpha)
task_loss = task_criterion(
source_results['task_output'], source_label_batch
)
# Domain loss on both source and target
combined_features = torch.cat([
source_results['features'],
model(target_batch, alpha=alpha)['features']
])
combined_domain_labels = torch.cat([
source_domain_labels, target_domain_labels
])
reversed_features = GradientReversalLayer.apply(combined_features, alpha)
domain_output = model.domain_classifier(reversed_features)
domain_loss = domain_criterion(domain_output, combined_domain_labels)
# Backward pass
feature_optimizer.zero_grad()
task_optimizer.zero_grad()
domain_optimizer.zero_grad()
total_loss = task_loss + domain_loss
total_loss.backward()
feature_optimizer.step()
task_optimizer.step()
domain_optimizer.step()
epoch_source_loss += task_loss.item()
epoch_domain_loss += domain_loss.item()
# Target loss (if target labels available)
if target_labels is not None:
target_start_label = (batch_idx * batch_size) % len(target_labels)
target_label_batch = target_labels[target_start_label:target_start_label + batch_size]
target_results = model(target_batch, task_name=first_task)
target_loss = task_criterion(
target_results['task_output'], target_label_batch
)
epoch_target_loss += target_loss.item()
# Record epoch metrics
avg_source_loss = epoch_source_loss / n_batches
avg_target_loss = epoch_target_loss / n_batches if target_labels is not None else 0.0
avg_domain_loss = epoch_domain_loss / n_batches
results['source_losses'].append(avg_source_loss)
results['target_losses'].append(avg_target_loss)
results['domain_losses'].append(avg_domain_loss)
# Calculate adaptation score (domain confusion)
adaptation_score = 1.0 - (avg_domain_loss / np.log(2)) # Normalized by random chance
results['adaptation_scores'].append(adaptation_score)
if epoch % 10 == 0:
self.logger.info(
f"Epoch {epoch}: Source Loss {avg_source_loss:.4f}, "
f"Domain Loss {avg_domain_loss:.4f}, "
f"Adaptation Score {adaptation_score:.4f}"
)
# Calculate final results
final_result = DomainAdaptationResult(
source_loss=np.mean(results['source_losses'][-5:]),
target_loss=np.mean(results['target_losses'][-5:]) if results['target_losses'] else 0.0,
domain_loss=np.mean(results['domain_losses'][-5:]),
adaptation_score=np.mean(results['adaptation_scores'][-5:]),
transfer_effectiveness=self._calculate_transfer_effectiveness(results)
)
# Store adaptation history
self.transfer_history.append({
'model_id': model_id,
'adaptation_result': asdict(final_result),
'training_curves': results,
'timestamp': datetime.now().isoformat()
})
return final_result
def _calculate_transfer_effectiveness(self, results: Dict[str, List[float]]) -> float:
"""Calculate transfer learning effectiveness score"""
if not results['source_losses']:
return 0.0
# Measure improvement over training
initial_loss = np.mean(results['source_losses'][:5])
final_loss = np.mean(results['source_losses'][-5:])
# Measure domain adaptation quality
final_adaptation = np.mean(results['adaptation_scores'][-5:])
# Combine metrics (higher is better)
improvement_ratio = max(0, (initial_loss - final_loss) / initial_loss)
effectiveness = (improvement_ratio + final_adaptation) / 2.0
return min(1.0, max(0.0, effectiveness))
def get_transfer_recommendations(self, target_domain: str,
available_domains: List[str] = None) -> List[Dict[str, Any]]:
"""Get recommendations for transfer learning sources"""
if available_domains is None:
available_domains = list(self.domain_mappings.keys())
recommendations = []
if target_domain not in self.domain_mappings:
return recommendations
target_info = self.domain_mappings[target_domain]
for source_domain in available_domains:
if source_domain == target_domain:
continue
if source_domain not in self.domain_mappings:
continue
source_info = self.domain_mappings[source_domain]
# Calculate similarity score
feature_overlap = len(
set(target_info['features']) & set(source_info['features'])
) / len(set(target_info['features']) | set(source_info['features']))
domain_relatedness = 1.0 if source_domain in target_info['related_domains'] else 0.5
similarity_score = (feature_overlap + domain_relatedness) / 2.0
# Recommend transfer method based on similarity
if similarity_score > 0.7:
recommended_method = 'fine_tuning'
expected_improvement = '20-40%'
elif similarity_score > 0.4:
recommended_method = 'domain_adaptation'
expected_improvement = '10-25%'
else:
recommended_method = 'multi_task'
expected_improvement = '5-15%'
recommendations.append({
'source_domain': source_domain,
'similarity_score': similarity_score,
'recommended_method': recommended_method,
'expected_improvement': expected_improvement,
'feature_overlap': feature_overlap,
'domain_relatedness': domain_relatedness
})
# Sort by similarity score
recommendations.sort(key=lambda x: x['similarity_score'], reverse=True)
return recommendations
def evaluate_transfer_performance(self, model_id: str, test_data: torch.Tensor,
test_labels: torch.Tensor, task_name: str = None) -> Dict[str, float]:
"""Evaluate transfer learning model performance"""
if model_id not in self.models:
raise ValueError(f"Model {model_id} not found")
model = self.models[model_id]['model']
model.eval()
metrics = {}
with torch.no_grad():
# Get predictions
if task_name is None:
task_name = next(iter(model.task_classifiers.keys()))
results = model(test_data, task_name=task_name)
predictions = torch.argmax(results['task_output'], dim=1)
# Calculate metrics
accuracy = (predictions == test_labels).float().mean().item()
# Convert to numpy for sklearn metrics
predictions_np = predictions.cpu().numpy()
labels_np = test_labels.cpu().numpy()
# Calculate additional metrics
from sklearn.metrics import precision_score, recall_score, f1_score, classification_report
precision = precision_score(labels_np, predictions_np, average='weighted', zero_division=0)
recall = recall_score(labels_np, predictions_np, average='weighted', zero_division=0)
f1 = f1_score(labels_np, predictions_np, average='weighted', zero_division=0)
metrics = {
'accuracy': accuracy,
'precision': precision,
'recall': recall,
'f1_score': f1,
'num_samples': len(test_labels)
}
return metrics
def save_model(self, model_id: str, path: str):
"""Save transfer learning model"""
if model_id not in self.models:
raise ValueError(f"Model {model_id} not found")
model_info = self.models[model_id]
checkpoint = {
'model_state_dict': model_info['model'].state_dict(),
'model_config': model_info,
'transfer_history': [
h for h in self.transfer_history if h['model_id'] == model_id
]
}
os.makedirs(os.path.dirname(path), exist_ok=True)
torch.save(checkpoint, path)
self.logger.info(f"Saved transfer model to {path}")
def get_transfer_summary(self) -> Dict[str, Any]:
"""Get summary of transfer learning activities"""
summary = {
'total_models': len(self.models),
'transfer_methods_used': set(),
'domain_pairs': set(),
'average_effectiveness': 0.0,
'successful_transfers': 0,
'generated_at': datetime.now().isoformat()
}
effectiveness_scores = []
for model_id, model_info in self.models.items():
summary['transfer_methods_used'].add(model_info['transfer_method'])
summary['domain_pairs'].add(
f"{model_info['source_domain']} β {model_info['target_domain']}"
)
# Find effectiveness scores from history
for history in self.transfer_history:
if history['model_id'] == model_id:
effectiveness = history['adaptation_result'].get('transfer_effectiveness', 0.0)
effectiveness_scores.append(effectiveness)
if effectiveness > 0.3: # Threshold for success
summary['successful_transfers'] += 1
if effectiveness_scores:
summary['average_effectiveness'] = np.mean(effectiveness_scores)
# Convert sets to lists for JSON serialization
summary['transfer_methods_used'] = list(summary['transfer_methods_used'])
summary['domain_pairs'] = list(summary['domain_pairs'])
return summary
# Example usage and testing
if __name__ == "__main__":
print("π Transfer Learning System Testing:")
print("=" * 50)
# Initialize transfer learning system
transfer_system = CyberTransferLearning()
# Get transfer recommendations
print("\nπ Transfer Learning Recommendations:")
recommendations = transfer_system.get_transfer_recommendations('phishing_detection')
for rec in recommendations[:3]:
print(f" Source: {rec['source_domain']}")
print(f" Similarity: {rec['similarity_score']:.3f}")
print(f" Method: {rec['recommended_method']}")
print(f" Expected Improvement: {rec['expected_improvement']}")
print()
# Create transfer models
print("ποΈ Creating transfer models...")
model_id = transfer_system.create_transfer_model(
'malware_detection',
'phishing_detection',
'domain_adaptation'
)
# Generate synthetic data for testing
print("\nπ§ͺ Testing with synthetic data...")
source_data = torch.randn(1000, 1024)
source_labels = torch.randint(0, 10, (1000,))
target_data = torch.randn(500, 1024)
target_labels = torch.randint(0, 10, (500,))
# Perform domain adaptation
print("π― Performing domain adaptation...")
adaptation_result = transfer_system.adapt_domain(
model_id, source_data, target_data, source_labels, target_labels, epochs=20
)
print(f" Source Loss: {adaptation_result.source_loss:.4f}")
print(f" Domain Loss: {adaptation_result.domain_loss:.4f}")
print(f" Adaptation Score: {adaptation_result.adaptation_score:.4f}")
print(f" Transfer Effectiveness: {adaptation_result.transfer_effectiveness:.4f}")
# Evaluate performance
print("\nπ Evaluating model performance...")
test_data = torch.randn(200, 1024)
test_labels = torch.randint(0, 10, (200,))
performance = transfer_system.evaluate_transfer_performance(
model_id, test_data, test_labels
)
print(f" Accuracy: {performance['accuracy']:.3f}")
print(f" F1 Score: {performance['f1_score']:.3f}")
print(f" Precision: {performance['precision']:.3f}")
print(f" Recall: {performance['recall']:.3f}")
# Get transfer summary
print("\nπ Transfer Learning Summary:")
summary = transfer_system.get_transfer_summary()
print(f" Total Models: {summary['total_models']}")
print(f" Successful Transfers: {summary['successful_transfers']}")
print(f" Average Effectiveness: {summary['average_effectiveness']:.3f}")
print(f" Methods Used: {', '.join(summary['transfer_methods_used'])}")
print("\nβ
Transfer Learning System implemented and tested")
|