File size: 28,898 Bytes
23804b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
"""
Advanced Strategic Planning Engine for Cyber-LLM
Long-term goal decomposition, execution planning, and adaptive strategy

Author: Muzan Sano <[email protected]>
"""

import asyncio
import json
import logging
from datetime import datetime, timedelta
from typing import Dict, List, Any, Optional, Tuple, Union
from dataclasses import dataclass, field
from enum import Enum
import uuid
import numpy as np
from pathlib import Path

from .persistent_memory import PersistentMemoryManager, MemoryType, ReasoningType
from ..utils.logging_system import CyberLLMLogger, CyberLLMError, ErrorCategory

class StrategicObjective(Enum):
    """Types of strategic objectives"""
    THREAT_HUNTING = "threat_hunting"
    VULNERABILITY_ASSESSMENT = "vulnerability_assessment"
    INCIDENT_RESPONSE = "incident_response"
    DEFENSE_OPTIMIZATION = "defense_optimization"
    ATTACK_SIMULATION = "attack_simulation"
    COMPLIANCE_ASSURANCE = "compliance_assurance"
    KNOWLEDGE_ACQUISITION = "knowledge_acquisition"

class PlanStatus(Enum):
    """Strategic plan execution status"""
    DRAFT = "draft"
    APPROVED = "approved"
    EXECUTING = "executing"
    PAUSED = "paused"
    COMPLETED = "completed"
    FAILED = "failed"
    ADAPTIVE = "adaptive"

class DecisionNode(Enum):
    """Types of decision nodes in strategic plans"""
    CONDITIONAL = "conditional"      # If-then decisions
    PARALLEL = "parallel"           # Execute multiple paths
    SEQUENTIAL = "sequential"       # Step-by-step execution
    CHOICE = "choice"              # Select best option
    LOOP = "loop"                  # Iterative processes
    MERGE = "merge"                # Combine results

@dataclass
class StrategicPhase:
    """Individual phase in strategic plan"""
    phase_id: str
    name: str
    description: str
    
    # Execution details
    estimated_duration: timedelta
    dependencies: List[str] = field(default_factory=list)
    prerequisites: List[str] = field(default_factory=list)
    
    # Resource requirements
    resource_requirements: Dict[str, Any] = field(default_factory=dict)
    agent_assignments: List[str] = field(default_factory=list)
    
    # Success criteria
    success_criteria: List[str] = field(default_factory=list)
    completion_metrics: Dict[str, float] = field(default_factory=dict)
    
    # Execution tracking
    status: PlanStatus = PlanStatus.DRAFT
    start_time: Optional[datetime] = None
    end_time: Optional[datetime] = None
    progress: float = 0.0
    
    # Adaptation and learning
    execution_notes: List[str] = field(default_factory=list)
    lessons_learned: List[str] = field(default_factory=list)

@dataclass
class StrategicMilestone:
    """Strategic milestone within a plan"""
    milestone_id: str
    name: str
    description: str
    target_date: datetime
    
    # Dependencies and prerequisites
    dependent_phases: List[str] = field(default_factory=list)
    success_conditions: List[str] = field(default_factory=list)
    
    # Tracking
    achieved: bool = False
    achieved_date: Optional[datetime] = None
    completion_percentage: float = 0.0
    
    # Risk assessment
    risk_factors: List[str] = field(default_factory=list)
    mitigation_strategies: List[str] = field(default_factory=list)

@dataclass
class DecisionPoint:
    """Strategic decision point in plan execution"""
    decision_id: str
    node_type: DecisionNode
    description: str
    
    # Decision logic
    conditions: Dict[str, Any] = field(default_factory=dict)
    options: List[Dict[str, Any]] = field(default_factory=list)
    decision_criteria: List[str] = field(default_factory=list)
    
    # Execution tracking
    decision_time: Optional[datetime] = None
    selected_option: Optional[str] = None
    reasoning: Optional[str] = None
    confidence: float = 0.0

class StrategicPlanningEngine:
    """Advanced strategic planning engine with adaptive capabilities"""
    
    def __init__(self, 
                 memory_manager: PersistentMemoryManager,
                 logger: Optional[CyberLLMLogger] = None):
        
        self.memory_manager = memory_manager
        self.logger = logger or CyberLLMLogger(name="strategic_planning")
        
        # Planning state
        self.active_plans = {}
        self.plan_templates = {}
        self.execution_context = {}
        
        # Decision making
        self.decision_history = {}
        self.strategy_patterns = {}
        
        # Performance tracking
        self.plan_performance_metrics = {}
        
        self.logger.info("Strategic Planning Engine initialized")
    
    async def create_strategic_plan(self, 
                                  objective: StrategicObjective,
                                  target_outcomes: List[str],
                                  constraints: Dict[str, Any],
                                  timeline: timedelta,
                                  priority_level: int = 5) -> str:
        """Create a comprehensive strategic plan"""
        
        plan_id = f"strategic_{objective.value}_{uuid.uuid4().hex[:8]}"
        
        try:
            # Analyze historical patterns for similar objectives
            historical_context = await self._analyze_historical_patterns(objective)
            
            # Generate phases using strategic decomposition
            phases = await self._decompose_strategic_objective(
                objective, target_outcomes, constraints, timeline
            )
            
            # Create milestones and decision points
            milestones = await self._generate_milestones(phases, timeline)
            decision_points = await self._identify_decision_points(phases)
            
            # Risk assessment and mitigation planning
            risk_assessment = await self._assess_strategic_risks(
                objective, phases, constraints
            )
            
            # Resource allocation planning
            resource_plan = await self._plan_resource_allocation(phases, constraints)
            
            # Create the strategic plan
            strategic_plan = {
                "plan_id": plan_id,
                "objective": objective.value,
                "target_outcomes": target_outcomes,
                "constraints": constraints,
                "timeline": timeline.total_seconds(),
                "priority_level": priority_level,
                
                # Plan structure
                "phases": [phase.__dict__ for phase in phases],
                "milestones": [milestone.__dict__ for milestone in milestones],
                "decision_points": [dp.__dict__ for dp in decision_points],
                
                # Analysis and planning
                "historical_context": historical_context,
                "risk_assessment": risk_assessment,
                "resource_plan": resource_plan,
                
                # Execution tracking
                "created_at": datetime.now().isoformat(),
                "status": PlanStatus.DRAFT.value,
                "progress": 0.0,
                "current_phase": 0,
                "execution_log": [],
                
                # Adaptation tracking
                "adaptations": [],
                "performance_metrics": {},
                "lessons_learned": []
            }
            
            # Store plan in memory system
            await self.memory_manager.store_memory(
                memory_type=MemoryType.STRATEGIC,
                content=strategic_plan,
                importance=0.8 + (priority_level / 10),
                context_tags=[objective.value, "strategic_plan", "long_term"],
                agent_id="strategic_planning_engine"
            )
            
            self.active_plans[plan_id] = strategic_plan
            
            # Create reasoning chain for plan execution
            reasoning_chain_id = await self.memory_manager.create_reasoning_chain(
                reasoning_type=ReasoningType.STRATEGIC,
                goal=f"Execute strategic plan for {objective.value}",
                premises=[f"Objective: {obj}" for obj in target_outcomes],
                agent_id="strategic_planning_engine"
            )
            
            strategic_plan["reasoning_chain_id"] = reasoning_chain_id
            
            self.logger.info(f"Created strategic plan: {plan_id}",
                           objective=objective.value,
                           phases=len(phases),
                           timeline_days=timeline.days)
            
            return plan_id
            
        except Exception as e:
            self.logger.error(f"Failed to create strategic plan", error=str(e))
            raise CyberLLMError("Strategic plan creation failed", ErrorCategory.PLANNING)
    
    async def execute_strategic_plan(self, plan_id: str) -> bool:
        """Execute a strategic plan with adaptive monitoring"""
        
        if plan_id not in self.active_plans:
            raise CyberLLMError(f"Strategic plan not found: {plan_id}", ErrorCategory.VALIDATION)
        
        plan = self.active_plans[plan_id]
        
        try:
            plan["status"] = PlanStatus.EXECUTING.value
            plan["execution_started_at"] = datetime.now().isoformat()
            
            # Execute phases sequentially with adaptive monitoring
            for phase_index, phase_data in enumerate(plan["phases"]):
                phase = StrategicPhase(**phase_data)
                
                # Pre-phase analysis and adaptation
                adaptation_needed = await self._assess_adaptation_need(plan, phase)
                if adaptation_needed:
                    await self._adapt_strategic_plan(plan_id, phase.phase_id)
                
                # Execute phase
                success = await self._execute_strategic_phase(plan_id, phase)
                
                if not success:
                    plan["status"] = PlanStatus.FAILED.value
                    return False
                
                # Update plan progress
                plan["current_phase"] = phase_index + 1
                plan["progress"] = (phase_index + 1) / len(plan["phases"])
                
                # Check milestones
                await self._check_milestone_completion(plan_id)
            
            # Plan completion
            plan["status"] = PlanStatus.COMPLETED.value
            plan["execution_completed_at"] = datetime.now().isoformat()
            
            # Generate final performance report
            await self._generate_plan_performance_report(plan_id)
            
            self.logger.info(f"Strategic plan completed successfully: {plan_id}")
            return True
            
        except Exception as e:
            plan["status"] = PlanStatus.FAILED.value
            plan["failure_reason"] = str(e)
            self.logger.error(f"Strategic plan execution failed: {plan_id}", error=str(e))
            return False
    
    async def _decompose_strategic_objective(self, 
                                          objective: StrategicObjective,
                                          outcomes: List[str],
                                          constraints: Dict[str, Any],
                                          timeline: timedelta) -> List[StrategicPhase]:
        """Decompose strategic objective into executable phases"""
        
        phases = []
        
        # Objective-specific decomposition
        if objective == StrategicObjective.THREAT_HUNTING:
            phases = await self._decompose_threat_hunting(outcomes, constraints, timeline)
        elif objective == StrategicObjective.VULNERABILITY_ASSESSMENT:
            phases = await self._decompose_vulnerability_assessment(outcomes, constraints, timeline)
        elif objective == StrategicObjective.INCIDENT_RESPONSE:
            phases = await self._decompose_incident_response(outcomes, constraints, timeline)
        elif objective == StrategicObjective.DEFENSE_OPTIMIZATION:
            phases = await self._decompose_defense_optimization(outcomes, constraints, timeline)
        elif objective == StrategicObjective.ATTACK_SIMULATION:
            phases = await self._decompose_attack_simulation(outcomes, constraints, timeline)
        else:
            phases = await self._decompose_generic_objective(outcomes, constraints, timeline)
        
        return phases
    
    async def _decompose_threat_hunting(self, 
                                      outcomes: List[str],
                                      constraints: Dict[str, Any],
                                      timeline: timedelta) -> List[StrategicPhase]:
        """Decompose threat hunting objective into phases"""
        
        phase_duration = timeline / 4  # Divide into 4 main phases
        
        phases = [
            StrategicPhase(
                phase_id="threat_intel_gathering",
                name="Threat Intelligence Gathering",
                description="Collect and analyze current threat intelligence",
                estimated_duration=phase_duration * 0.3,
                resource_requirements={"cpu": 2, "memory": "4GB", "storage": "10GB"},
                agent_assignments=["recon_agent", "intelligence_agent"],
                success_criteria=[
                    "Threat intelligence database populated",
                    "IOCs identified and categorized",
                    "Threat landscape analysis completed"
                ]
            ),
            
            StrategicPhase(
                phase_id="hunting_hypothesis_formation",
                name="Hunting Hypothesis Formation",
                description="Develop testable hypotheses about potential threats",
                estimated_duration=phase_duration * 0.2,
                dependencies=["threat_intel_gathering"],
                resource_requirements={"cpu": 1, "memory": "2GB"},
                agent_assignments=["analysis_agent"],
                success_criteria=[
                    "Hunting hypotheses documented",
                    "Detection logic defined",
                    "Search queries prepared"
                ]
            ),
            
            StrategicPhase(
                phase_id="active_hunting_execution",
                name="Active Hunting Execution",
                description="Execute threat hunting operations",
                estimated_duration=phase_duration * 0.4,
                dependencies=["hunting_hypothesis_formation"],
                resource_requirements={"cpu": 4, "memory": "8GB", "storage": "50GB"},
                agent_assignments=["hunting_agent", "analysis_agent"],
                success_criteria=[
                    "All hunting queries executed",
                    "Potential threats investigated",
                    "Evidence collected and documented"
                ]
            ),
            
            StrategicPhase(
                phase_id="results_analysis_reporting",
                name="Results Analysis and Reporting",
                description="Analyze findings and generate comprehensive report",
                estimated_duration=phase_duration * 0.1,
                dependencies=["active_hunting_execution"],
                resource_requirements={"cpu": 1, "memory": "2GB"},
                agent_assignments=["reporting_agent"],
                success_criteria=[
                    "Threat hunting report generated",
                    "Recommendations documented",
                    "Follow-up actions identified"
                ]
            )
        ]
        
        return phases
    
    async def _decompose_vulnerability_assessment(self, 
                                                outcomes: List[str],
                                                constraints: Dict[str, Any],
                                                timeline: timedelta) -> List[StrategicPhase]:
        """Decompose vulnerability assessment into phases"""
        
        phase_duration = timeline / 5
        
        phases = [
            StrategicPhase(
                phase_id="asset_discovery",
                name="Asset Discovery and Inventory",
                description="Discover and catalog all assets in scope",
                estimated_duration=phase_duration,
                resource_requirements={"cpu": 2, "memory": "4GB"},
                agent_assignments=["recon_agent"],
                success_criteria=[
                    "Asset inventory completed",
                    "Network topology mapped",
                    "Service enumeration finished"
                ]
            ),
            
            StrategicPhase(
                phase_id="vulnerability_scanning",
                name="Automated Vulnerability Scanning",
                description="Execute comprehensive vulnerability scans",
                estimated_duration=phase_duration * 2,
                dependencies=["asset_discovery"],
                resource_requirements={"cpu": 4, "memory": "8GB"},
                agent_assignments=["scanning_agent"],
                success_criteria=[
                    "All assets scanned",
                    "Vulnerabilities identified",
                    "False positives filtered"
                ]
            ),
            
            StrategicPhase(
                phase_id="manual_validation",
                name="Manual Validation and Testing",
                description="Manually validate critical vulnerabilities",
                estimated_duration=phase_duration,
                dependencies=["vulnerability_scanning"],
                resource_requirements={"cpu": 2, "memory": "4GB"},
                agent_assignments=["validation_agent"],
                success_criteria=[
                    "Critical vulnerabilities validated",
                    "Exploitability confirmed",
                    "Impact assessment completed"
                ]
            ),
            
            StrategicPhase(
                phase_id="risk_analysis",
                name="Risk Analysis and Prioritization",
                description="Analyze and prioritize identified risks",
                estimated_duration=phase_duration * 0.5,
                dependencies=["manual_validation"],
                resource_requirements={"cpu": 1, "memory": "2GB"},
                agent_assignments=["analysis_agent"],
                success_criteria=[
                    "Risk scores calculated",
                    "Vulnerabilities prioritized",
                    "Remediation timeline proposed"
                ]
            ),
            
            StrategicPhase(
                phase_id="reporting_recommendations",
                name="Reporting and Recommendations",
                description="Generate comprehensive assessment report",
                estimated_duration=phase_duration * 0.5,
                dependencies=["risk_analysis"],
                resource_requirements={"cpu": 1, "memory": "2GB"},
                agent_assignments=["reporting_agent"],
                success_criteria=[
                    "Assessment report completed",
                    "Executive summary prepared",
                    "Remediation plan documented"
                ]
            )
        ]
        
        return phases
    
    async def _generate_milestones(self, 
                                 phases: List[StrategicPhase],
                                 timeline: timedelta) -> List[StrategicMilestone]:
        """Generate strategic milestones based on phases"""
        
        milestones = []
        cumulative_duration = timedelta()
        start_date = datetime.now()
        
        for i, phase in enumerate(phases):
            cumulative_duration += phase.estimated_duration
            
            milestone = StrategicMilestone(
                milestone_id=f"milestone_{i+1}",
                name=f"Phase {i+1} Completion: {phase.name}",
                description=f"Successful completion of {phase.name} phase",
                target_date=start_date + cumulative_duration,
                dependent_phases=[phase.phase_id],
                success_conditions=phase.success_criteria,
                risk_factors=[
                    "Resource availability",
                    "Technical complexity",
                    "External dependencies"
                ],
                mitigation_strategies=[
                    "Regular progress monitoring",
                    "Adaptive resource allocation",
                    "Early risk identification"
                ]
            )
            
            milestones.append(milestone)
        
        return milestones
    
    async def _identify_decision_points(self, 
                                      phases: List[StrategicPhase]) -> List[DecisionPoint]:
        """Identify key decision points in the strategic plan"""
        
        decision_points = []
        
        for i, phase in enumerate(phases):
            # Phase transition decision point
            decision_point = DecisionPoint(
                decision_id=f"phase_transition_{i}",
                node_type=DecisionNode.CONDITIONAL,
                description=f"Decision to proceed from {phase.name} to next phase",
                conditions={
                    "success_criteria_met": phase.success_criteria,
                    "resource_availability": True,
                    "timeline_adherence": True
                },
                options=[
                    {"action": "proceed", "description": "Continue to next phase"},
                    {"action": "adapt", "description": "Adapt plan before proceeding"},
                    {"action": "pause", "description": "Pause execution for review"},
                    {"action": "abort", "description": "Abort plan execution"}
                ],
                decision_criteria=[
                    "Phase completion status",
                    "Resource constraints",
                    "Timeline adherence",
                    "Risk level assessment"
                ]
            )
            
            decision_points.append(decision_point)
        
        return decision_points
    
    async def _execute_strategic_phase(self, plan_id: str, phase: StrategicPhase) -> bool:
        """Execute a single strategic phase"""
        
        try:
            phase.status = PlanStatus.EXECUTING
            phase.start_time = datetime.now()
            
            # Create reasoning chain for phase execution
            reasoning_chain_id = await self.memory_manager.create_reasoning_chain(
                reasoning_type=ReasoningType.STRATEGIC,
                goal=f"Execute phase: {phase.name}",
                premises=phase.success_criteria,
                agent_id="strategic_planning_engine"
            )
            
            # Execute phase logic based on phase type
            success = await self._execute_phase_logic(plan_id, phase)
            
            # Update phase completion
            phase.end_time = datetime.now()
            phase.status = PlanStatus.COMPLETED if success else PlanStatus.FAILED
            phase.progress = 1.0 if success else 0.0
            
            # Store execution results in memory
            execution_result = {
                "phase_id": phase.phase_id,
                "success": success,
                "execution_time": (phase.end_time - phase.start_time).total_seconds(),
                "lessons_learned": phase.lessons_learned
            }
            
            await self.memory_manager.store_memory(
                memory_type=MemoryType.EPISODIC,
                content=execution_result,
                importance=0.7,
                context_tags=["phase_execution", phase.phase_id, plan_id],
                agent_id="strategic_planning_engine"
            )
            
            return success
            
        except Exception as e:
            phase.status = PlanStatus.FAILED
            phase.execution_notes.append(f"Execution failed: {str(e)}")
            self.logger.error(f"Phase execution failed: {phase.phase_id}", error=str(e))
            return False
    
    async def _execute_phase_logic(self, plan_id: str, phase: StrategicPhase) -> bool:
        """Execute the core logic for a strategic phase"""
        
        # Simulate phase execution (in production, would delegate to appropriate agents)
        execution_steps = []
        
        for criterion in phase.success_criteria:
            # Simulate work on each success criterion
            step_result = {
                "criterion": criterion,
                "started_at": datetime.now().isoformat(),
                "success": True,  # Simulate successful execution
                "notes": f"Successfully completed: {criterion}"
            }
            execution_steps.append(step_result)
            
            # Add some realistic delay
            await asyncio.sleep(0.1)
        
        phase.execution_notes.extend([step["notes"] for step in execution_steps])
        
        # All steps succeeded
        return all(step["success"] for step in execution_steps)
    
    def get_plan_status(self, plan_id: str) -> Dict[str, Any]:
        """Get current status of a strategic plan"""
        
        if plan_id not in self.active_plans:
            return {"error": "Plan not found"}
        
        plan = self.active_plans[plan_id]
        
        return {
            "plan_id": plan_id,
            "objective": plan["objective"],
            "status": plan["status"],
            "progress": plan["progress"],
            "current_phase": plan["current_phase"],
            "total_phases": len(plan["phases"]),
            "created_at": plan["created_at"],
            "execution_time": self._calculate_execution_time(plan),
            "milestones_achieved": self._count_achieved_milestones(plan),
            "total_milestones": len(plan["milestones"])
        }
    
    def _calculate_execution_time(self, plan: Dict[str, Any]) -> float:
        """Calculate total execution time for plan"""
        
        if "execution_started_at" not in plan:
            return 0.0
        
        start_time = datetime.fromisoformat(plan["execution_started_at"])
        
        if plan["status"] == PlanStatus.COMPLETED.value and "execution_completed_at" in plan:
            end_time = datetime.fromisoformat(plan["execution_completed_at"])
        else:
            end_time = datetime.now()
        
        return (end_time - start_time).total_seconds()
    
    def _count_achieved_milestones(self, plan: Dict[str, Any]) -> int:
        """Count achieved milestones in plan"""
        
        return sum(1 for milestone in plan["milestones"] if milestone.get("achieved", False))
    
    async def _assess_adaptation_need(self, plan: Dict[str, Any], phase: StrategicPhase) -> bool:
        """Assess if strategic plan needs adaptation"""
        
        # Check for adaptation triggers
        triggers = [
            self._check_timeline_deviation(plan),
            self._check_resource_constraints(plan, phase),
            self._check_external_changes(plan),
            self._check_performance_degradation(plan)
        ]
        
        return any(await asyncio.gather(*triggers))
    
    async def _check_timeline_deviation(self, plan: Dict[str, Any]) -> bool:
        """Check if plan is deviating from timeline"""
        
        # Simple timeline check (would be more sophisticated in production)
        expected_progress = min(1.0, self._calculate_execution_time(plan) / plan["timeline"])
        actual_progress = plan["progress"]
        
        return abs(expected_progress - actual_progress) > 0.2  # 20% deviation threshold
    
    async def _check_resource_constraints(self, plan: Dict[str, Any], phase: StrategicPhase) -> bool:
        """Check if resource constraints require adaptation"""
        
        # Simulate resource constraint checking
        return False  # No constraints for simulation
    
    async def _check_external_changes(self, plan: Dict[str, Any]) -> bool:
        """Check for external changes that might affect plan"""
        
        # Simulate external change detection
        return False  # No external changes for simulation
    
    async def _check_performance_degradation(self, plan: Dict[str, Any]) -> bool:
        """Check for performance degradation"""
        
        # Simulate performance checking
        return False  # No performance issues for simulation

# Factory function
def create_strategic_planning_engine(memory_manager: PersistentMemoryManager, **kwargs) -> StrategicPlanningEngine:
    """Create strategic planning engine with memory manager"""
    return StrategicPlanningEngine(memory_manager, **kwargs)