File size: 30,094 Bytes
23804b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
"""
MLOps Experiment Tracking and Management System
Comprehensive experiment tracking, versioning, and analysis for cybersecurity AI models
"""

import json
import sqlite3
import hashlib
import uuid
import os
import pickle
from datetime import datetime
from typing import Dict, List, Optional, Any, Union, Tuple
from dataclasses import dataclass, asdict
from contextlib import contextmanager
import numpy as np
import logging

@dataclass
class ExperimentConfig:
    """Configuration for an ML experiment"""
    experiment_id: str
    name: str
    description: str
    tags: List[str]
    parameters: Dict[str, Any]
    model_type: str
    dataset_info: Dict[str, Any]
    environment_info: Dict[str, Any]
    created_at: str
    created_by: str

@dataclass
class ExperimentMetrics:
    """Metrics collected during experiment"""
    experiment_id: str
    step: int
    timestamp: str
    metrics: Dict[str, float]
    validation_metrics: Dict[str, float]
    custom_metrics: Dict[str, Any]

@dataclass
class ExperimentArtifact:
    """Artifact associated with an experiment"""
    artifact_id: str
    experiment_id: str
    name: str
    type: str  # model, dataset, plot, log, etc.
    path: str
    metadata: Dict[str, Any]
    checksum: str
    size_bytes: int
    created_at: str

@dataclass
class ModelVersion:
    """Model version information"""
    version_id: str
    experiment_id: str
    model_name: str
    version: str
    status: str  # training, validation, deployed, archived
    performance_metrics: Dict[str, float]
    model_path: str
    metadata: Dict[str, Any]
    created_at: str

class ExperimentTracker:
    """Comprehensive MLOps experiment tracking system"""
    
    def __init__(self, db_path: str = None):
        self.db_path = db_path or "/home/o1/Desktop/cyber_llm/data/mlops/experiments.db"
        self.logger = logging.getLogger(__name__)
        self._setup_database()
        
    def _setup_database(self):
        """Initialize the experiment tracking database"""
        os.makedirs(os.path.dirname(self.db_path), exist_ok=True)
        
        with sqlite3.connect(self.db_path) as conn:
            conn.execute('PRAGMA journal_mode=WAL')
            
            # Experiments table
            conn.execute('''
                CREATE TABLE IF NOT EXISTS experiments (
                    experiment_id TEXT PRIMARY KEY,
                    name TEXT NOT NULL,
                    description TEXT,
                    tags TEXT,  -- JSON array
                    parameters TEXT,  -- JSON object
                    model_type TEXT,
                    dataset_info TEXT,  -- JSON object
                    environment_info TEXT,  -- JSON object
                    status TEXT DEFAULT 'active',
                    created_at TEXT,
                    created_by TEXT,
                    updated_at TEXT
                )
            ''')
            
            # Experiment metrics table
            conn.execute('''
                CREATE TABLE IF NOT EXISTS experiment_metrics (
                    id INTEGER PRIMARY KEY AUTOINCREMENT,
                    experiment_id TEXT,
                    step INTEGER,
                    timestamp TEXT,
                    metrics TEXT,  -- JSON object
                    validation_metrics TEXT,  -- JSON object
                    custom_metrics TEXT,  -- JSON object
                    FOREIGN KEY (experiment_id) REFERENCES experiments (experiment_id)
                )
            ''')
            
            # Artifacts table
            conn.execute('''
                CREATE TABLE IF NOT EXISTS experiment_artifacts (
                    artifact_id TEXT PRIMARY KEY,
                    experiment_id TEXT,
                    name TEXT,
                    type TEXT,
                    path TEXT,
                    metadata TEXT,  -- JSON object
                    checksum TEXT,
                    size_bytes INTEGER,
                    created_at TEXT,
                    FOREIGN KEY (experiment_id) REFERENCES experiments (experiment_id)
                )
            ''')
            
            # Model versions table
            conn.execute('''
                CREATE TABLE IF NOT EXISTS model_versions (
                    version_id TEXT PRIMARY KEY,
                    experiment_id TEXT,
                    model_name TEXT,
                    version TEXT,
                    status TEXT,
                    performance_metrics TEXT,  -- JSON object
                    model_path TEXT,
                    metadata TEXT,  -- JSON object
                    created_at TEXT,
                    deployed_at TEXT,
                    FOREIGN KEY (experiment_id) REFERENCES experiments (experiment_id)
                )
            ''')
            
            # Experiment comparisons table
            conn.execute('''
                CREATE TABLE IF NOT EXISTS experiment_comparisons (
                    comparison_id TEXT PRIMARY KEY,
                    name TEXT,
                    experiment_ids TEXT,  -- JSON array
                    comparison_metrics TEXT,  -- JSON object
                    notes TEXT,
                    created_at TEXT
                )
            ''')
            
            # Create indices for performance
            indices = [
                'CREATE INDEX IF NOT EXISTS idx_experiments_created_at ON experiments(created_at)',
                'CREATE INDEX IF NOT EXISTS idx_experiments_model_type ON experiments(model_type)',
                'CREATE INDEX IF NOT EXISTS idx_experiments_tags ON experiments(tags)',
                'CREATE INDEX IF NOT EXISTS idx_metrics_experiment_id ON experiment_metrics(experiment_id)',
                'CREATE INDEX IF NOT EXISTS idx_metrics_step ON experiment_metrics(step)',
                'CREATE INDEX IF NOT EXISTS idx_artifacts_experiment_id ON experiment_artifacts(experiment_id)',
                'CREATE INDEX IF NOT EXISTS idx_artifacts_type ON experiment_artifacts(type)',
                'CREATE INDEX IF NOT EXISTS idx_model_versions_experiment_id ON model_versions(experiment_id)',
                'CREATE INDEX IF NOT EXISTS idx_model_versions_status ON model_versions(status)'
            ]
            
            for index_sql in indices:
                conn.execute(index_sql)
            
            conn.commit()
    
    @contextmanager
    def get_db_connection(self):
        """Get database connection with proper cleanup"""
        conn = sqlite3.connect(self.db_path)
        try:
            yield conn
        finally:
            conn.close()
    
    def create_experiment(self, name: str, description: str = None, 
                         tags: List[str] = None, parameters: Dict[str, Any] = None,
                         model_type: str = None, dataset_info: Dict[str, Any] = None) -> str:
        """Create a new experiment"""
        experiment_id = str(uuid.uuid4())
        tags = tags or []
        parameters = parameters or {}
        dataset_info = dataset_info or {}
        
        # Gather environment information
        environment_info = {
            "python_version": "3.8+",
            "platform": "linux",
            "timestamp": datetime.now().isoformat(),
            "working_directory": os.getcwd()
        }
        
        config = ExperimentConfig(
            experiment_id=experiment_id,
            name=name,
            description=description or "",
            tags=tags,
            parameters=parameters,
            model_type=model_type or "unknown",
            dataset_info=dataset_info,
            environment_info=environment_info,
            created_at=datetime.now().isoformat(),
            created_by="cyber_llm_user"
        )
        
        with self.get_db_connection() as conn:
            conn.execute('''
                INSERT INTO experiments 
                (experiment_id, name, description, tags, parameters, model_type, 
                 dataset_info, environment_info, created_at, created_by, updated_at)
                VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)
            ''', (
                config.experiment_id,
                config.name,
                config.description,
                json.dumps(config.tags),
                json.dumps(config.parameters),
                config.model_type,
                json.dumps(config.dataset_info),
                json.dumps(config.environment_info),
                config.created_at,
                config.created_by,
                config.created_at
            ))
            conn.commit()
        
        self.logger.info(f"Created experiment: {experiment_id} - {name}")
        return experiment_id
    
    def log_metrics(self, experiment_id: str, metrics: Dict[str, float],
                   validation_metrics: Dict[str, float] = None,
                   custom_metrics: Dict[str, Any] = None,
                   step: int = None) -> None:
        """Log metrics for an experiment"""
        if step is None:
            # Auto-increment step
            with self.get_db_connection() as conn:
                cursor = conn.execute(
                    'SELECT MAX(step) FROM experiment_metrics WHERE experiment_id = ?',
                    (experiment_id,)
                )
                max_step = cursor.fetchone()[0]
                step = (max_step or 0) + 1
        
        validation_metrics = validation_metrics or {}
        custom_metrics = custom_metrics or {}
        
        with self.get_db_connection() as conn:
            conn.execute('''
                INSERT INTO experiment_metrics 
                (experiment_id, step, timestamp, metrics, validation_metrics, custom_metrics)
                VALUES (?, ?, ?, ?, ?, ?)
            ''', (
                experiment_id,
                step,
                datetime.now().isoformat(),
                json.dumps(metrics),
                json.dumps(validation_metrics),
                json.dumps(custom_metrics)
            ))
            conn.commit()
    
    def log_artifact(self, experiment_id: str, name: str, path: str, 
                    artifact_type: str = "file", metadata: Dict[str, Any] = None) -> str:
        """Log an artifact for an experiment"""
        artifact_id = str(uuid.uuid4())
        metadata = metadata or {}
        
        # Calculate file checksum and size if path exists
        checksum = ""
        size_bytes = 0
        if os.path.exists(path):
            with open(path, 'rb') as f:
                content = f.read()
                checksum = hashlib.sha256(content).hexdigest()
                size_bytes = len(content)
        
        artifact = ExperimentArtifact(
            artifact_id=artifact_id,
            experiment_id=experiment_id,
            name=name,
            type=artifact_type,
            path=path,
            metadata=metadata,
            checksum=checksum,
            size_bytes=size_bytes,
            created_at=datetime.now().isoformat()
        )
        
        with self.get_db_connection() as conn:
            conn.execute('''
                INSERT INTO experiment_artifacts 
                (artifact_id, experiment_id, name, type, path, metadata, checksum, size_bytes, created_at)
                VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?)
            ''', (
                artifact.artifact_id,
                artifact.experiment_id,
                artifact.name,
                artifact.type,
                artifact.path,
                json.dumps(artifact.metadata),
                artifact.checksum,
                artifact.size_bytes,
                artifact.created_at
            ))
            conn.commit()
        
        return artifact_id
    
    def log_model_version(self, experiment_id: str, model_name: str, 
                         model_path: str, performance_metrics: Dict[str, float],
                         version: str = None, metadata: Dict[str, Any] = None) -> str:
        """Log a model version"""
        version_id = str(uuid.uuid4())
        version = version or "v1.0"
        metadata = metadata or {}
        
        model_version = ModelVersion(
            version_id=version_id,
            experiment_id=experiment_id,
            model_name=model_name,
            version=version,
            status="training",
            performance_metrics=performance_metrics,
            model_path=model_path,
            metadata=metadata,
            created_at=datetime.now().isoformat()
        )
        
        with self.get_db_connection() as conn:
            conn.execute('''
                INSERT INTO model_versions 
                (version_id, experiment_id, model_name, version, status, 
                 performance_metrics, model_path, metadata, created_at)
                VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?)
            ''', (
                model_version.version_id,
                model_version.experiment_id,
                model_version.model_name,
                model_version.version,
                model_version.status,
                json.dumps(model_version.performance_metrics),
                model_version.model_path,
                json.dumps(model_version.metadata),
                model_version.created_at
            ))
            conn.commit()
        
        return version_id
    
    def get_experiment(self, experiment_id: str) -> Optional[Dict[str, Any]]:
        """Get experiment details"""
        with self.get_db_connection() as conn:
            cursor = conn.execute('''
                SELECT * FROM experiments WHERE experiment_id = ?
            ''', (experiment_id,))
            row = cursor.fetchone()
            
            if not row:
                return None
            
            columns = [desc[0] for desc in cursor.description]
            experiment = dict(zip(columns, row))
            
            # Parse JSON fields
            experiment['tags'] = json.loads(experiment.get('tags', '[]'))
            experiment['parameters'] = json.loads(experiment.get('parameters', '{}'))
            experiment['dataset_info'] = json.loads(experiment.get('dataset_info', '{}'))
            experiment['environment_info'] = json.loads(experiment.get('environment_info', '{}'))
            
            return experiment
    
    def get_experiment_metrics(self, experiment_id: str) -> List[Dict[str, Any]]:
        """Get all metrics for an experiment"""
        with self.get_db_connection() as conn:
            cursor = conn.execute('''
                SELECT * FROM experiment_metrics 
                WHERE experiment_id = ? 
                ORDER BY step
            ''', (experiment_id,))
            
            metrics = []
            for row in cursor.fetchall():
                columns = [desc[0] for desc in cursor.description]
                metric = dict(zip(columns, row))
                
                # Parse JSON fields
                metric['metrics'] = json.loads(metric.get('metrics', '{}'))
                metric['validation_metrics'] = json.loads(metric.get('validation_metrics', '{}'))
                metric['custom_metrics'] = json.loads(metric.get('custom_metrics', '{}'))
                
                metrics.append(metric)
            
            return metrics
    
    def get_experiment_artifacts(self, experiment_id: str) -> List[Dict[str, Any]]:
        """Get all artifacts for an experiment"""
        with self.get_db_connection() as conn:
            cursor = conn.execute('''
                SELECT * FROM experiment_artifacts 
                WHERE experiment_id = ? 
                ORDER BY created_at
            ''', (experiment_id,))
            
            artifacts = []
            for row in cursor.fetchall():
                columns = [desc[0] for desc in cursor.description]
                artifact = dict(zip(columns, row))
                artifact['metadata'] = json.loads(artifact.get('metadata', '{}'))
                artifacts.append(artifact)
            
            return artifacts
    
    def list_experiments(self, tags: List[str] = None, model_type: str = None,
                        limit: int = None) -> List[Dict[str, Any]]:
        """List experiments with optional filtering"""
        query = 'SELECT * FROM experiments WHERE 1=1'
        params = []
        
        if tags:
            # Simple tag filtering (could be improved with proper JSON querying)
            for tag in tags:
                query += ' AND tags LIKE ?'
                params.append(f'%"{tag}"%')
        
        if model_type:
            query += ' AND model_type = ?'
            params.append(model_type)
        
        query += ' ORDER BY created_at DESC'
        
        if limit:
            query += ' LIMIT ?'
            params.append(limit)
        
        with self.get_db_connection() as conn:
            cursor = conn.execute(query, params)
            
            experiments = []
            for row in cursor.fetchall():
                columns = [desc[0] for desc in cursor.description]
                experiment = dict(zip(columns, row))
                
                # Parse JSON fields
                experiment['tags'] = json.loads(experiment.get('tags', '[]'))
                experiment['parameters'] = json.loads(experiment.get('parameters', '{}'))
                experiment['dataset_info'] = json.loads(experiment.get('dataset_info', '{}'))
                experiment['environment_info'] = json.loads(experiment.get('environment_info', '{}'))
                
                experiments.append(experiment)
            
            return experiments
    
    def compare_experiments(self, experiment_ids: List[str], 
                          comparison_metrics: List[str] = None) -> Dict[str, Any]:
        """Compare multiple experiments"""
        comparison_id = str(uuid.uuid4())
        comparison_metrics = comparison_metrics or ['accuracy', 'loss', 'f1_score']
        
        comparison_data = {
            "comparison_id": comparison_id,
            "experiment_ids": experiment_ids,
            "experiments": {},
            "metric_comparison": {},
            "summary": {}
        }
        
        # Get experiment details
        for exp_id in experiment_ids:
            experiment = self.get_experiment(exp_id)
            if experiment:
                metrics = self.get_experiment_metrics(exp_id)
                comparison_data["experiments"][exp_id] = {
                    "name": experiment["name"],
                    "parameters": experiment["parameters"],
                    "metrics": metrics
                }
        
        # Compare metrics
        for metric_name in comparison_metrics:
            metric_values = {}
            for exp_id in experiment_ids:
                if exp_id in comparison_data["experiments"]:
                    exp_metrics = comparison_data["experiments"][exp_id]["metrics"]
                    if exp_metrics:
                        # Get the latest metric value
                        latest_metric = exp_metrics[-1]
                        if metric_name in latest_metric.get("metrics", {}):
                            metric_values[exp_id] = latest_metric["metrics"][metric_name]
                        elif metric_name in latest_metric.get("validation_metrics", {}):
                            metric_values[exp_id] = latest_metric["validation_metrics"][metric_name]
            
            if metric_values:
                comparison_data["metric_comparison"][metric_name] = {
                    "values": metric_values,
                    "best_experiment": max(metric_values, key=metric_values.get) if metric_name != 'loss' else min(metric_values, key=metric_values.get),
                    "worst_experiment": min(metric_values, key=metric_values.get) if metric_name != 'loss' else max(metric_values, key=metric_values.get),
                    "range": max(metric_values.values()) - min(metric_values.values()) if metric_values else 0
                }
        
        # Generate summary
        if comparison_data["metric_comparison"]:
            best_experiments = {}
            for metric_name, metric_data in comparison_data["metric_comparison"].items():
                best_exp = metric_data["best_experiment"]
                if best_exp not in best_experiments:
                    best_experiments[best_exp] = 0
                best_experiments[best_exp] += 1
            
            if best_experiments:
                overall_best = max(best_experiments, key=best_experiments.get)
                comparison_data["summary"]["overall_best_experiment"] = overall_best
                comparison_data["summary"]["best_experiment_name"] = comparison_data["experiments"][overall_best]["name"]
        
        # Store comparison in database
        with self.get_db_connection() as conn:
            conn.execute('''
                INSERT INTO experiment_comparisons 
                (comparison_id, name, experiment_ids, comparison_metrics, created_at)
                VALUES (?, ?, ?, ?, ?)
            ''', (
                comparison_id,
                f"Comparison of {len(experiment_ids)} experiments",
                json.dumps(experiment_ids),
                json.dumps(comparison_data),
                datetime.now().isoformat()
            ))
            conn.commit()
        
        return comparison_data
    
    def get_model_leaderboard(self, model_type: str = None, 
                             metric_name: str = "accuracy", 
                             limit: int = 10) -> List[Dict[str, Any]]:
        """Get model leaderboard based on performance metrics"""
        query = '''
            SELECT e.experiment_id, e.name, e.model_type, e.created_at,
                   mv.version_id, mv.model_name, mv.version, mv.performance_metrics
            FROM experiments e
            JOIN model_versions mv ON e.experiment_id = mv.experiment_id
            WHERE mv.status != 'archived'
        '''
        params = []
        
        if model_type:
            query += ' AND e.model_type = ?'
            params.append(model_type)
        
        query += ' ORDER BY e.created_at DESC'
        
        with self.get_db_connection() as conn:
            cursor = conn.execute(query, params)
            
            models = []
            for row in cursor.fetchall():
                columns = [desc[0] for desc in cursor.description]
                model = dict(zip(columns, row))
                
                # Parse performance metrics
                performance_metrics = json.loads(model.get('performance_metrics', '{}'))
                model['performance_metrics'] = performance_metrics
                
                # Extract target metric for sorting
                model['target_metric_value'] = performance_metrics.get(metric_name, 0)
                
                models.append(model)
            
            # Sort by target metric (descending for most metrics, ascending for loss)
            reverse_sort = metric_name.lower() != 'loss'
            models.sort(key=lambda x: x['target_metric_value'], reverse=reverse_sort)
            
            return models[:limit] if limit else models
    
    def update_experiment_status(self, experiment_id: str, status: str) -> None:
        """Update experiment status"""
        with self.get_db_connection() as conn:
            conn.execute('''
                UPDATE experiments 
                SET status = ?, updated_at = ?
                WHERE experiment_id = ?
            ''', (status, datetime.now().isoformat(), experiment_id))
            conn.commit()
    
    def archive_experiment(self, experiment_id: str) -> None:
        """Archive an experiment"""
        self.update_experiment_status(experiment_id, 'archived')
        
        # Archive associated model versions
        with self.get_db_connection() as conn:
            conn.execute('''
                UPDATE model_versions 
                SET status = 'archived'
                WHERE experiment_id = ?
            ''', (experiment_id,))
            conn.commit()
    
    def get_experiment_stats(self) -> Dict[str, Any]:
        """Get overall experiment tracking statistics"""
        with self.get_db_connection() as conn:
            # Total experiments
            cursor = conn.execute('SELECT COUNT(*) FROM experiments')
            total_experiments = cursor.fetchone()[0]
            
            # Experiments by status
            cursor = conn.execute('''
                SELECT status, COUNT(*) 
                FROM experiments 
                GROUP BY status
            ''')
            status_counts = dict(cursor.fetchall())
            
            # Experiments by model type
            cursor = conn.execute('''
                SELECT model_type, COUNT(*) 
                FROM experiments 
                GROUP BY model_type
            ''')
            model_type_counts = dict(cursor.fetchall())
            
            # Total artifacts
            cursor = conn.execute('SELECT COUNT(*) FROM experiment_artifacts')
            total_artifacts = cursor.fetchone()[0]
            
            # Total model versions
            cursor = conn.execute('SELECT COUNT(*) FROM model_versions')
            total_model_versions = cursor.fetchone()[0]
            
            # Recent activity
            cursor = conn.execute('''
                SELECT COUNT(*) FROM experiments 
                WHERE created_at >= datetime('now', '-7 days')
            ''')
            experiments_last_week = cursor.fetchone()[0]
            
            return {
                "total_experiments": total_experiments,
                "status_distribution": status_counts,
                "model_type_distribution": model_type_counts,
                "total_artifacts": total_artifacts,
                "total_model_versions": total_model_versions,
                "experiments_last_week": experiments_last_week,
                "generated_at": datetime.now().isoformat()
            }

# Example usage and testing
if __name__ == "__main__":
    # Initialize experiment tracker
    tracker = ExperimentTracker()
    
    print("πŸ§ͺ MLOps Experiment Tracker Testing:")
    print("=" * 50)
    
    # Create sample experiments
    exp1_id = tracker.create_experiment(
        name="Cybersecurity Threat Detection - CNN",
        description="Convolutional Neural Network for malware detection",
        tags=["malware", "cnn", "classification"],
        parameters={"learning_rate": 0.001, "batch_size": 32, "epochs": 50},
        model_type="cnn",
        dataset_info={"name": "malware_samples", "size": 10000, "features": 128}
    )
    
    exp2_id = tracker.create_experiment(
        name="Network Anomaly Detection - LSTM",
        description="LSTM network for network traffic anomaly detection",
        tags=["anomaly", "lstm", "network"],
        parameters={"learning_rate": 0.0001, "batch_size": 64, "epochs": 30},
        model_type="lstm",
        dataset_info={"name": "network_traffic", "size": 50000, "features": 64}
    )
    
    # Log metrics for experiments
    print(f"\nπŸ“Š Logging metrics for experiments...")
    for step in range(1, 6):
        # CNN experiment metrics
        tracker.log_metrics(exp1_id, {
            "accuracy": 0.7 + step * 0.05,
            "loss": 0.5 - step * 0.05,
            "precision": 0.75 + step * 0.03,
            "recall": 0.72 + step * 0.04
        }, validation_metrics={
            "val_accuracy": 0.68 + step * 0.04,
            "val_loss": 0.52 - step * 0.04
        }, step=step)
        
        # LSTM experiment metrics
        tracker.log_metrics(exp2_id, {
            "accuracy": 0.65 + step * 0.06,
            "loss": 0.6 - step * 0.06,
            "f1_score": 0.7 + step * 0.05
        }, validation_metrics={
            "val_accuracy": 0.62 + step * 0.05,
            "val_loss": 0.65 - step * 0.05
        }, step=step)
    
    # Log model versions
    print("πŸ€– Logging model versions...")
    model1_id = tracker.log_model_version(
        exp1_id, 
        "ThreatDetectionCNN", 
        "/models/threat_cnn_v1.pkl",
        {"accuracy": 0.95, "precision": 0.93, "recall": 0.92},
        version="v1.0"
    )
    
    model2_id = tracker.log_model_version(
        exp2_id,
        "AnomalyDetectionLSTM",
        "/models/anomaly_lstm_v1.pkl", 
        {"accuracy": 0.91, "f1_score": 0.89},
        version="v1.0"
    )
    
    # Log artifacts
    print("πŸ“ Logging artifacts...")
    tracker.log_artifact(exp1_id, "training_plot.png", "/artifacts/training_plot.png", "plot")
    tracker.log_artifact(exp2_id, "confusion_matrix.png", "/artifacts/confusion_matrix.png", "plot")
    
    # List experiments
    print("\nπŸ“‹ Listing experiments:")
    experiments = tracker.list_experiments(limit=5)
    for exp in experiments:
        print(f"  - {exp['name']} ({exp['model_type']}) - {len(exp['tags'])} tags")
    
    # Compare experiments
    print("\nβš–οΈ Comparing experiments:")
    comparison = tracker.compare_experiments([exp1_id, exp2_id], ["accuracy", "loss"])
    if comparison["summary"]:
        best_exp_name = comparison["summary"]["best_experiment_name"]
        print(f"  Best overall experiment: {best_exp_name}")
    
    # Get leaderboard
    print("\nπŸ† Model Leaderboard (by accuracy):")
    leaderboard = tracker.get_model_leaderboard(metric_name="accuracy", limit=5)
    for i, model in enumerate(leaderboard, 1):
        accuracy = model.get('target_metric_value', 0)
        print(f"  {i}. {model['model_name']} - Accuracy: {accuracy:.3f}")
    
    # Get statistics
    print("\nπŸ“ˆ Experiment Statistics:")
    stats = tracker.get_experiment_stats()
    print(f"  Total Experiments: {stats['total_experiments']}")
    print(f"  Total Model Versions: {stats['total_model_versions']}")
    print(f"  Total Artifacts: {stats['total_artifacts']}")
    print(f"  Experiments Last Week: {stats['experiments_last_week']}")
    
    print("\nβœ… MLOps Experiment Tracker implemented and tested")