File size: 30,094 Bytes
23804b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 |
"""
MLOps Experiment Tracking and Management System
Comprehensive experiment tracking, versioning, and analysis for cybersecurity AI models
"""
import json
import sqlite3
import hashlib
import uuid
import os
import pickle
from datetime import datetime
from typing import Dict, List, Optional, Any, Union, Tuple
from dataclasses import dataclass, asdict
from contextlib import contextmanager
import numpy as np
import logging
@dataclass
class ExperimentConfig:
"""Configuration for an ML experiment"""
experiment_id: str
name: str
description: str
tags: List[str]
parameters: Dict[str, Any]
model_type: str
dataset_info: Dict[str, Any]
environment_info: Dict[str, Any]
created_at: str
created_by: str
@dataclass
class ExperimentMetrics:
"""Metrics collected during experiment"""
experiment_id: str
step: int
timestamp: str
metrics: Dict[str, float]
validation_metrics: Dict[str, float]
custom_metrics: Dict[str, Any]
@dataclass
class ExperimentArtifact:
"""Artifact associated with an experiment"""
artifact_id: str
experiment_id: str
name: str
type: str # model, dataset, plot, log, etc.
path: str
metadata: Dict[str, Any]
checksum: str
size_bytes: int
created_at: str
@dataclass
class ModelVersion:
"""Model version information"""
version_id: str
experiment_id: str
model_name: str
version: str
status: str # training, validation, deployed, archived
performance_metrics: Dict[str, float]
model_path: str
metadata: Dict[str, Any]
created_at: str
class ExperimentTracker:
"""Comprehensive MLOps experiment tracking system"""
def __init__(self, db_path: str = None):
self.db_path = db_path or "/home/o1/Desktop/cyber_llm/data/mlops/experiments.db"
self.logger = logging.getLogger(__name__)
self._setup_database()
def _setup_database(self):
"""Initialize the experiment tracking database"""
os.makedirs(os.path.dirname(self.db_path), exist_ok=True)
with sqlite3.connect(self.db_path) as conn:
conn.execute('PRAGMA journal_mode=WAL')
# Experiments table
conn.execute('''
CREATE TABLE IF NOT EXISTS experiments (
experiment_id TEXT PRIMARY KEY,
name TEXT NOT NULL,
description TEXT,
tags TEXT, -- JSON array
parameters TEXT, -- JSON object
model_type TEXT,
dataset_info TEXT, -- JSON object
environment_info TEXT, -- JSON object
status TEXT DEFAULT 'active',
created_at TEXT,
created_by TEXT,
updated_at TEXT
)
''')
# Experiment metrics table
conn.execute('''
CREATE TABLE IF NOT EXISTS experiment_metrics (
id INTEGER PRIMARY KEY AUTOINCREMENT,
experiment_id TEXT,
step INTEGER,
timestamp TEXT,
metrics TEXT, -- JSON object
validation_metrics TEXT, -- JSON object
custom_metrics TEXT, -- JSON object
FOREIGN KEY (experiment_id) REFERENCES experiments (experiment_id)
)
''')
# Artifacts table
conn.execute('''
CREATE TABLE IF NOT EXISTS experiment_artifacts (
artifact_id TEXT PRIMARY KEY,
experiment_id TEXT,
name TEXT,
type TEXT,
path TEXT,
metadata TEXT, -- JSON object
checksum TEXT,
size_bytes INTEGER,
created_at TEXT,
FOREIGN KEY (experiment_id) REFERENCES experiments (experiment_id)
)
''')
# Model versions table
conn.execute('''
CREATE TABLE IF NOT EXISTS model_versions (
version_id TEXT PRIMARY KEY,
experiment_id TEXT,
model_name TEXT,
version TEXT,
status TEXT,
performance_metrics TEXT, -- JSON object
model_path TEXT,
metadata TEXT, -- JSON object
created_at TEXT,
deployed_at TEXT,
FOREIGN KEY (experiment_id) REFERENCES experiments (experiment_id)
)
''')
# Experiment comparisons table
conn.execute('''
CREATE TABLE IF NOT EXISTS experiment_comparisons (
comparison_id TEXT PRIMARY KEY,
name TEXT,
experiment_ids TEXT, -- JSON array
comparison_metrics TEXT, -- JSON object
notes TEXT,
created_at TEXT
)
''')
# Create indices for performance
indices = [
'CREATE INDEX IF NOT EXISTS idx_experiments_created_at ON experiments(created_at)',
'CREATE INDEX IF NOT EXISTS idx_experiments_model_type ON experiments(model_type)',
'CREATE INDEX IF NOT EXISTS idx_experiments_tags ON experiments(tags)',
'CREATE INDEX IF NOT EXISTS idx_metrics_experiment_id ON experiment_metrics(experiment_id)',
'CREATE INDEX IF NOT EXISTS idx_metrics_step ON experiment_metrics(step)',
'CREATE INDEX IF NOT EXISTS idx_artifacts_experiment_id ON experiment_artifacts(experiment_id)',
'CREATE INDEX IF NOT EXISTS idx_artifacts_type ON experiment_artifacts(type)',
'CREATE INDEX IF NOT EXISTS idx_model_versions_experiment_id ON model_versions(experiment_id)',
'CREATE INDEX IF NOT EXISTS idx_model_versions_status ON model_versions(status)'
]
for index_sql in indices:
conn.execute(index_sql)
conn.commit()
@contextmanager
def get_db_connection(self):
"""Get database connection with proper cleanup"""
conn = sqlite3.connect(self.db_path)
try:
yield conn
finally:
conn.close()
def create_experiment(self, name: str, description: str = None,
tags: List[str] = None, parameters: Dict[str, Any] = None,
model_type: str = None, dataset_info: Dict[str, Any] = None) -> str:
"""Create a new experiment"""
experiment_id = str(uuid.uuid4())
tags = tags or []
parameters = parameters or {}
dataset_info = dataset_info or {}
# Gather environment information
environment_info = {
"python_version": "3.8+",
"platform": "linux",
"timestamp": datetime.now().isoformat(),
"working_directory": os.getcwd()
}
config = ExperimentConfig(
experiment_id=experiment_id,
name=name,
description=description or "",
tags=tags,
parameters=parameters,
model_type=model_type or "unknown",
dataset_info=dataset_info,
environment_info=environment_info,
created_at=datetime.now().isoformat(),
created_by="cyber_llm_user"
)
with self.get_db_connection() as conn:
conn.execute('''
INSERT INTO experiments
(experiment_id, name, description, tags, parameters, model_type,
dataset_info, environment_info, created_at, created_by, updated_at)
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)
''', (
config.experiment_id,
config.name,
config.description,
json.dumps(config.tags),
json.dumps(config.parameters),
config.model_type,
json.dumps(config.dataset_info),
json.dumps(config.environment_info),
config.created_at,
config.created_by,
config.created_at
))
conn.commit()
self.logger.info(f"Created experiment: {experiment_id} - {name}")
return experiment_id
def log_metrics(self, experiment_id: str, metrics: Dict[str, float],
validation_metrics: Dict[str, float] = None,
custom_metrics: Dict[str, Any] = None,
step: int = None) -> None:
"""Log metrics for an experiment"""
if step is None:
# Auto-increment step
with self.get_db_connection() as conn:
cursor = conn.execute(
'SELECT MAX(step) FROM experiment_metrics WHERE experiment_id = ?',
(experiment_id,)
)
max_step = cursor.fetchone()[0]
step = (max_step or 0) + 1
validation_metrics = validation_metrics or {}
custom_metrics = custom_metrics or {}
with self.get_db_connection() as conn:
conn.execute('''
INSERT INTO experiment_metrics
(experiment_id, step, timestamp, metrics, validation_metrics, custom_metrics)
VALUES (?, ?, ?, ?, ?, ?)
''', (
experiment_id,
step,
datetime.now().isoformat(),
json.dumps(metrics),
json.dumps(validation_metrics),
json.dumps(custom_metrics)
))
conn.commit()
def log_artifact(self, experiment_id: str, name: str, path: str,
artifact_type: str = "file", metadata: Dict[str, Any] = None) -> str:
"""Log an artifact for an experiment"""
artifact_id = str(uuid.uuid4())
metadata = metadata or {}
# Calculate file checksum and size if path exists
checksum = ""
size_bytes = 0
if os.path.exists(path):
with open(path, 'rb') as f:
content = f.read()
checksum = hashlib.sha256(content).hexdigest()
size_bytes = len(content)
artifact = ExperimentArtifact(
artifact_id=artifact_id,
experiment_id=experiment_id,
name=name,
type=artifact_type,
path=path,
metadata=metadata,
checksum=checksum,
size_bytes=size_bytes,
created_at=datetime.now().isoformat()
)
with self.get_db_connection() as conn:
conn.execute('''
INSERT INTO experiment_artifacts
(artifact_id, experiment_id, name, type, path, metadata, checksum, size_bytes, created_at)
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?)
''', (
artifact.artifact_id,
artifact.experiment_id,
artifact.name,
artifact.type,
artifact.path,
json.dumps(artifact.metadata),
artifact.checksum,
artifact.size_bytes,
artifact.created_at
))
conn.commit()
return artifact_id
def log_model_version(self, experiment_id: str, model_name: str,
model_path: str, performance_metrics: Dict[str, float],
version: str = None, metadata: Dict[str, Any] = None) -> str:
"""Log a model version"""
version_id = str(uuid.uuid4())
version = version or "v1.0"
metadata = metadata or {}
model_version = ModelVersion(
version_id=version_id,
experiment_id=experiment_id,
model_name=model_name,
version=version,
status="training",
performance_metrics=performance_metrics,
model_path=model_path,
metadata=metadata,
created_at=datetime.now().isoformat()
)
with self.get_db_connection() as conn:
conn.execute('''
INSERT INTO model_versions
(version_id, experiment_id, model_name, version, status,
performance_metrics, model_path, metadata, created_at)
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?)
''', (
model_version.version_id,
model_version.experiment_id,
model_version.model_name,
model_version.version,
model_version.status,
json.dumps(model_version.performance_metrics),
model_version.model_path,
json.dumps(model_version.metadata),
model_version.created_at
))
conn.commit()
return version_id
def get_experiment(self, experiment_id: str) -> Optional[Dict[str, Any]]:
"""Get experiment details"""
with self.get_db_connection() as conn:
cursor = conn.execute('''
SELECT * FROM experiments WHERE experiment_id = ?
''', (experiment_id,))
row = cursor.fetchone()
if not row:
return None
columns = [desc[0] for desc in cursor.description]
experiment = dict(zip(columns, row))
# Parse JSON fields
experiment['tags'] = json.loads(experiment.get('tags', '[]'))
experiment['parameters'] = json.loads(experiment.get('parameters', '{}'))
experiment['dataset_info'] = json.loads(experiment.get('dataset_info', '{}'))
experiment['environment_info'] = json.loads(experiment.get('environment_info', '{}'))
return experiment
def get_experiment_metrics(self, experiment_id: str) -> List[Dict[str, Any]]:
"""Get all metrics for an experiment"""
with self.get_db_connection() as conn:
cursor = conn.execute('''
SELECT * FROM experiment_metrics
WHERE experiment_id = ?
ORDER BY step
''', (experiment_id,))
metrics = []
for row in cursor.fetchall():
columns = [desc[0] for desc in cursor.description]
metric = dict(zip(columns, row))
# Parse JSON fields
metric['metrics'] = json.loads(metric.get('metrics', '{}'))
metric['validation_metrics'] = json.loads(metric.get('validation_metrics', '{}'))
metric['custom_metrics'] = json.loads(metric.get('custom_metrics', '{}'))
metrics.append(metric)
return metrics
def get_experiment_artifacts(self, experiment_id: str) -> List[Dict[str, Any]]:
"""Get all artifacts for an experiment"""
with self.get_db_connection() as conn:
cursor = conn.execute('''
SELECT * FROM experiment_artifacts
WHERE experiment_id = ?
ORDER BY created_at
''', (experiment_id,))
artifacts = []
for row in cursor.fetchall():
columns = [desc[0] for desc in cursor.description]
artifact = dict(zip(columns, row))
artifact['metadata'] = json.loads(artifact.get('metadata', '{}'))
artifacts.append(artifact)
return artifacts
def list_experiments(self, tags: List[str] = None, model_type: str = None,
limit: int = None) -> List[Dict[str, Any]]:
"""List experiments with optional filtering"""
query = 'SELECT * FROM experiments WHERE 1=1'
params = []
if tags:
# Simple tag filtering (could be improved with proper JSON querying)
for tag in tags:
query += ' AND tags LIKE ?'
params.append(f'%"{tag}"%')
if model_type:
query += ' AND model_type = ?'
params.append(model_type)
query += ' ORDER BY created_at DESC'
if limit:
query += ' LIMIT ?'
params.append(limit)
with self.get_db_connection() as conn:
cursor = conn.execute(query, params)
experiments = []
for row in cursor.fetchall():
columns = [desc[0] for desc in cursor.description]
experiment = dict(zip(columns, row))
# Parse JSON fields
experiment['tags'] = json.loads(experiment.get('tags', '[]'))
experiment['parameters'] = json.loads(experiment.get('parameters', '{}'))
experiment['dataset_info'] = json.loads(experiment.get('dataset_info', '{}'))
experiment['environment_info'] = json.loads(experiment.get('environment_info', '{}'))
experiments.append(experiment)
return experiments
def compare_experiments(self, experiment_ids: List[str],
comparison_metrics: List[str] = None) -> Dict[str, Any]:
"""Compare multiple experiments"""
comparison_id = str(uuid.uuid4())
comparison_metrics = comparison_metrics or ['accuracy', 'loss', 'f1_score']
comparison_data = {
"comparison_id": comparison_id,
"experiment_ids": experiment_ids,
"experiments": {},
"metric_comparison": {},
"summary": {}
}
# Get experiment details
for exp_id in experiment_ids:
experiment = self.get_experiment(exp_id)
if experiment:
metrics = self.get_experiment_metrics(exp_id)
comparison_data["experiments"][exp_id] = {
"name": experiment["name"],
"parameters": experiment["parameters"],
"metrics": metrics
}
# Compare metrics
for metric_name in comparison_metrics:
metric_values = {}
for exp_id in experiment_ids:
if exp_id in comparison_data["experiments"]:
exp_metrics = comparison_data["experiments"][exp_id]["metrics"]
if exp_metrics:
# Get the latest metric value
latest_metric = exp_metrics[-1]
if metric_name in latest_metric.get("metrics", {}):
metric_values[exp_id] = latest_metric["metrics"][metric_name]
elif metric_name in latest_metric.get("validation_metrics", {}):
metric_values[exp_id] = latest_metric["validation_metrics"][metric_name]
if metric_values:
comparison_data["metric_comparison"][metric_name] = {
"values": metric_values,
"best_experiment": max(metric_values, key=metric_values.get) if metric_name != 'loss' else min(metric_values, key=metric_values.get),
"worst_experiment": min(metric_values, key=metric_values.get) if metric_name != 'loss' else max(metric_values, key=metric_values.get),
"range": max(metric_values.values()) - min(metric_values.values()) if metric_values else 0
}
# Generate summary
if comparison_data["metric_comparison"]:
best_experiments = {}
for metric_name, metric_data in comparison_data["metric_comparison"].items():
best_exp = metric_data["best_experiment"]
if best_exp not in best_experiments:
best_experiments[best_exp] = 0
best_experiments[best_exp] += 1
if best_experiments:
overall_best = max(best_experiments, key=best_experiments.get)
comparison_data["summary"]["overall_best_experiment"] = overall_best
comparison_data["summary"]["best_experiment_name"] = comparison_data["experiments"][overall_best]["name"]
# Store comparison in database
with self.get_db_connection() as conn:
conn.execute('''
INSERT INTO experiment_comparisons
(comparison_id, name, experiment_ids, comparison_metrics, created_at)
VALUES (?, ?, ?, ?, ?)
''', (
comparison_id,
f"Comparison of {len(experiment_ids)} experiments",
json.dumps(experiment_ids),
json.dumps(comparison_data),
datetime.now().isoformat()
))
conn.commit()
return comparison_data
def get_model_leaderboard(self, model_type: str = None,
metric_name: str = "accuracy",
limit: int = 10) -> List[Dict[str, Any]]:
"""Get model leaderboard based on performance metrics"""
query = '''
SELECT e.experiment_id, e.name, e.model_type, e.created_at,
mv.version_id, mv.model_name, mv.version, mv.performance_metrics
FROM experiments e
JOIN model_versions mv ON e.experiment_id = mv.experiment_id
WHERE mv.status != 'archived'
'''
params = []
if model_type:
query += ' AND e.model_type = ?'
params.append(model_type)
query += ' ORDER BY e.created_at DESC'
with self.get_db_connection() as conn:
cursor = conn.execute(query, params)
models = []
for row in cursor.fetchall():
columns = [desc[0] for desc in cursor.description]
model = dict(zip(columns, row))
# Parse performance metrics
performance_metrics = json.loads(model.get('performance_metrics', '{}'))
model['performance_metrics'] = performance_metrics
# Extract target metric for sorting
model['target_metric_value'] = performance_metrics.get(metric_name, 0)
models.append(model)
# Sort by target metric (descending for most metrics, ascending for loss)
reverse_sort = metric_name.lower() != 'loss'
models.sort(key=lambda x: x['target_metric_value'], reverse=reverse_sort)
return models[:limit] if limit else models
def update_experiment_status(self, experiment_id: str, status: str) -> None:
"""Update experiment status"""
with self.get_db_connection() as conn:
conn.execute('''
UPDATE experiments
SET status = ?, updated_at = ?
WHERE experiment_id = ?
''', (status, datetime.now().isoformat(), experiment_id))
conn.commit()
def archive_experiment(self, experiment_id: str) -> None:
"""Archive an experiment"""
self.update_experiment_status(experiment_id, 'archived')
# Archive associated model versions
with self.get_db_connection() as conn:
conn.execute('''
UPDATE model_versions
SET status = 'archived'
WHERE experiment_id = ?
''', (experiment_id,))
conn.commit()
def get_experiment_stats(self) -> Dict[str, Any]:
"""Get overall experiment tracking statistics"""
with self.get_db_connection() as conn:
# Total experiments
cursor = conn.execute('SELECT COUNT(*) FROM experiments')
total_experiments = cursor.fetchone()[0]
# Experiments by status
cursor = conn.execute('''
SELECT status, COUNT(*)
FROM experiments
GROUP BY status
''')
status_counts = dict(cursor.fetchall())
# Experiments by model type
cursor = conn.execute('''
SELECT model_type, COUNT(*)
FROM experiments
GROUP BY model_type
''')
model_type_counts = dict(cursor.fetchall())
# Total artifacts
cursor = conn.execute('SELECT COUNT(*) FROM experiment_artifacts')
total_artifacts = cursor.fetchone()[0]
# Total model versions
cursor = conn.execute('SELECT COUNT(*) FROM model_versions')
total_model_versions = cursor.fetchone()[0]
# Recent activity
cursor = conn.execute('''
SELECT COUNT(*) FROM experiments
WHERE created_at >= datetime('now', '-7 days')
''')
experiments_last_week = cursor.fetchone()[0]
return {
"total_experiments": total_experiments,
"status_distribution": status_counts,
"model_type_distribution": model_type_counts,
"total_artifacts": total_artifacts,
"total_model_versions": total_model_versions,
"experiments_last_week": experiments_last_week,
"generated_at": datetime.now().isoformat()
}
# Example usage and testing
if __name__ == "__main__":
# Initialize experiment tracker
tracker = ExperimentTracker()
print("π§ͺ MLOps Experiment Tracker Testing:")
print("=" * 50)
# Create sample experiments
exp1_id = tracker.create_experiment(
name="Cybersecurity Threat Detection - CNN",
description="Convolutional Neural Network for malware detection",
tags=["malware", "cnn", "classification"],
parameters={"learning_rate": 0.001, "batch_size": 32, "epochs": 50},
model_type="cnn",
dataset_info={"name": "malware_samples", "size": 10000, "features": 128}
)
exp2_id = tracker.create_experiment(
name="Network Anomaly Detection - LSTM",
description="LSTM network for network traffic anomaly detection",
tags=["anomaly", "lstm", "network"],
parameters={"learning_rate": 0.0001, "batch_size": 64, "epochs": 30},
model_type="lstm",
dataset_info={"name": "network_traffic", "size": 50000, "features": 64}
)
# Log metrics for experiments
print(f"\nπ Logging metrics for experiments...")
for step in range(1, 6):
# CNN experiment metrics
tracker.log_metrics(exp1_id, {
"accuracy": 0.7 + step * 0.05,
"loss": 0.5 - step * 0.05,
"precision": 0.75 + step * 0.03,
"recall": 0.72 + step * 0.04
}, validation_metrics={
"val_accuracy": 0.68 + step * 0.04,
"val_loss": 0.52 - step * 0.04
}, step=step)
# LSTM experiment metrics
tracker.log_metrics(exp2_id, {
"accuracy": 0.65 + step * 0.06,
"loss": 0.6 - step * 0.06,
"f1_score": 0.7 + step * 0.05
}, validation_metrics={
"val_accuracy": 0.62 + step * 0.05,
"val_loss": 0.65 - step * 0.05
}, step=step)
# Log model versions
print("π€ Logging model versions...")
model1_id = tracker.log_model_version(
exp1_id,
"ThreatDetectionCNN",
"/models/threat_cnn_v1.pkl",
{"accuracy": 0.95, "precision": 0.93, "recall": 0.92},
version="v1.0"
)
model2_id = tracker.log_model_version(
exp2_id,
"AnomalyDetectionLSTM",
"/models/anomaly_lstm_v1.pkl",
{"accuracy": 0.91, "f1_score": 0.89},
version="v1.0"
)
# Log artifacts
print("π Logging artifacts...")
tracker.log_artifact(exp1_id, "training_plot.png", "/artifacts/training_plot.png", "plot")
tracker.log_artifact(exp2_id, "confusion_matrix.png", "/artifacts/confusion_matrix.png", "plot")
# List experiments
print("\nπ Listing experiments:")
experiments = tracker.list_experiments(limit=5)
for exp in experiments:
print(f" - {exp['name']} ({exp['model_type']}) - {len(exp['tags'])} tags")
# Compare experiments
print("\nβοΈ Comparing experiments:")
comparison = tracker.compare_experiments([exp1_id, exp2_id], ["accuracy", "loss"])
if comparison["summary"]:
best_exp_name = comparison["summary"]["best_experiment_name"]
print(f" Best overall experiment: {best_exp_name}")
# Get leaderboard
print("\nπ Model Leaderboard (by accuracy):")
leaderboard = tracker.get_model_leaderboard(metric_name="accuracy", limit=5)
for i, model in enumerate(leaderboard, 1):
accuracy = model.get('target_metric_value', 0)
print(f" {i}. {model['model_name']} - Accuracy: {accuracy:.3f}")
# Get statistics
print("\nπ Experiment Statistics:")
stats = tracker.get_experiment_stats()
print(f" Total Experiments: {stats['total_experiments']}")
print(f" Total Model Versions: {stats['total_model_versions']}")
print(f" Total Artifacts: {stats['total_artifacts']}")
print(f" Experiments Last Week: {stats['experiments_last_week']}")
print("\nβ
MLOps Experiment Tracker implemented and tested")
|