File size: 24,722 Bytes
23804b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 |
"""
Constitutional AI Integration for Safety Alignment
Implements value-based reasoning and ethical constraints for cybersecurity operations
"""
import json
import asyncio
from datetime import datetime
from typing import Dict, List, Optional, Any, Tuple
from dataclasses import dataclass, asdict
from enum import Enum
import re
class EthicalPrinciple(Enum):
"""Core ethical principles for cybersecurity AI"""
NO_HARM = "no_harm"
LAWFUL_OPERATION = "lawful_operation"
PROPORTIONAL_RESPONSE = "proportional_response"
TRANSPARENT_DECISION = "transparent_decision"
HUMAN_OVERSIGHT = "human_oversight"
DATA_PROTECTION = "data_protection"
CONSENT_BASED = "consent_based"
MINIMAL_IMPACT = "minimal_impact"
class ViolationSeverity(Enum):
"""Severity levels for ethical violations"""
LOW = "low"
MEDIUM = "medium"
HIGH = "high"
CRITICAL = "critical"
@dataclass
class EthicalConstraint:
"""Represents an ethical constraint or rule"""
constraint_id: str
principle: EthicalPrinciple
description: str
condition: str
action: str
severity: ViolationSeverity
enabled: bool
@dataclass
class EthicalEvaluation:
"""Result of ethical evaluation"""
evaluation_id: str
action_description: str
timestamp: str
constraints_checked: List[str]
violations: List[Dict[str, Any]]
approved: bool
confidence_score: float
reasoning: str
@dataclass
class ConstitutionalRule:
"""Constitutional rule for AI behavior"""
rule_id: str
name: str
description: str
condition_pattern: str
violation_pattern: str
response_template: str
principle: EthicalPrinciple
severity: ViolationSeverity
class ConstitutionalAI:
"""Constitutional AI system for ethical cybersecurity operations"""
def __init__(self):
self.ethical_constraints = self._load_ethical_constraints()
self.constitutional_rules = self._load_constitutional_rules()
self.violation_history = []
def _load_ethical_constraints(self) -> List[EthicalConstraint]:
"""Load core ethical constraints for cybersecurity operations"""
return [
EthicalConstraint(
constraint_id="harm_001",
principle=EthicalPrinciple.NO_HARM,
description="Prevent actions that could cause physical harm to individuals",
condition="action involves critical infrastructure or life-safety systems",
action="require explicit human authorization and safety review",
severity=ViolationSeverity.CRITICAL,
enabled=True
),
EthicalConstraint(
constraint_id="law_001",
principle=EthicalPrinciple.LAWFUL_OPERATION,
description="Ensure all operations comply with applicable laws and regulations",
condition="action could violate computer crime laws",
action="block action and flag for legal review",
severity=ViolationSeverity.HIGH,
enabled=True
),
EthicalConstraint(
constraint_id="prop_001",
principle=EthicalPrinciple.PROPORTIONAL_RESPONSE,
description="Response must be proportional to the threat level",
condition="proposed action severity exceeds threat level",
action="recommend proportional alternative",
severity=ViolationSeverity.MEDIUM,
enabled=True
),
EthicalConstraint(
constraint_id="trans_001",
principle=EthicalPrinciple.TRANSPARENT_DECISION,
description="Decision-making process must be transparent and explainable",
condition="high-impact decision with insufficient explanation",
action="require detailed reasoning documentation",
severity=ViolationSeverity.MEDIUM,
enabled=True
),
EthicalConstraint(
constraint_id="human_001",
principle=EthicalPrinciple.HUMAN_OVERSIGHT,
description="Critical actions require human oversight",
condition="action has high potential impact",
action="require human approval before execution",
severity=ViolationSeverity.HIGH,
enabled=True
),
EthicalConstraint(
constraint_id="data_001",
principle=EthicalPrinciple.DATA_PROTECTION,
description="Protect personally identifiable information and sensitive data",
condition="action involves access to PII or sensitive data",
action="apply data protection safeguards",
severity=ViolationSeverity.HIGH,
enabled=True
),
EthicalConstraint(
constraint_id="consent_001",
principle=EthicalPrinciple.CONSENT_BASED,
description="Operations should have appropriate authorization",
condition="action affects systems without explicit authorization",
action="verify authorization before proceeding",
severity=ViolationSeverity.HIGH,
enabled=True
),
EthicalConstraint(
constraint_id="impact_001",
principle=EthicalPrinciple.MINIMAL_IMPACT,
description="Minimize disruption and collateral impact",
condition="action could cause significant disruption",
action="seek minimal impact alternative",
severity=ViolationSeverity.MEDIUM,
enabled=True
)
]
def _load_constitutional_rules(self) -> List[ConstitutionalRule]:
"""Load constitutional rules for specific scenarios"""
return [
ConstitutionalRule(
rule_id="rule_001",
name="Critical Infrastructure Protection",
description="Protect critical infrastructure from harmful actions",
condition_pattern=r"(power|water|hospital|medical|emergency|911)",
violation_pattern=r"(attack|exploit|disrupt|damage|destroy)",
response_template="I cannot assist with actions that could harm critical infrastructure. Consider defensive measures instead.",
principle=EthicalPrinciple.NO_HARM,
severity=ViolationSeverity.CRITICAL
),
ConstitutionalRule(
rule_id="rule_002",
name="Unauthorized Access Prevention",
description="Prevent unauthorized access to systems",
condition_pattern=r"(unauthorized|illegal|without permission)",
violation_pattern=r"(hack|breach|infiltrate|penetrate)",
response_template="I cannot provide guidance for unauthorized access. Ensure you have proper authorization for security testing.",
principle=EthicalPrinciple.LAWFUL_OPERATION,
severity=ViolationSeverity.HIGH
),
ConstitutionalRule(
rule_id="rule_003",
name="Personal Data Protection",
description="Protect personal and sensitive data",
condition_pattern=r"(personal|private|confidential|sensitive|PII)",
violation_pattern=r"(steal|exfiltrate|leak|expose|access)",
response_template="I cannot assist with accessing personal or sensitive data. Focus on protecting data privacy instead.",
principle=EthicalPrinciple.DATA_PROTECTION,
severity=ViolationSeverity.HIGH
),
ConstitutionalRule(
rule_id="rule_004",
name="Proportional Response Requirement",
description="Ensure responses are proportional to threats",
condition_pattern=r"(low|minor|small) (threat|risk|vulnerability)",
violation_pattern=r"(nuclear|extreme|maximum|destructive)",
response_template="The proposed response appears disproportional to the threat level. Consider a more measured approach.",
principle=EthicalPrinciple.PROPORTIONAL_RESPONSE,
severity=ViolationSeverity.MEDIUM
),
ConstitutionalRule(
rule_id="rule_005",
name="Educational Purpose Enforcement",
description="Ensure cybersecurity guidance is for educational purposes",
condition_pattern=r"(learn|understand|education|training|practice)",
violation_pattern=r"(real|live|production|actual) (attack|exploit)",
response_template="Cybersecurity techniques should only be used for educational, training, or authorized testing purposes.",
principle=EthicalPrinciple.LAWFUL_OPERATION,
severity=ViolationSeverity.MEDIUM
)
]
async def evaluate_action(self, action_description: str, context: Dict[str, Any] = None) -> EthicalEvaluation:
"""Evaluate an action against ethical constraints"""
evaluation_id = f"eval_{datetime.now().strftime('%Y%m%d_%H%M%S_%f')}"
context = context or {}
violations = []
constraints_checked = []
reasoning_parts = []
# Check each enabled ethical constraint
for constraint in self.ethical_constraints:
if not constraint.enabled:
continue
constraints_checked.append(constraint.constraint_id)
# Check if constraint applies to this action
violation_detected = await self._check_constraint_violation(
action_description, constraint, context
)
if violation_detected:
violation_detail = {
"constraint_id": constraint.constraint_id,
"principle": constraint.principle.value,
"description": constraint.description,
"severity": constraint.severity.value,
"recommended_action": constraint.action
}
violations.append(violation_detail)
reasoning_parts.append(
f"Violation of {constraint.principle.value}: {constraint.description}"
)
# Check constitutional rules
for rule in self.constitutional_rules:
rule_violation = await self._check_constitutional_rule(
action_description, rule, context
)
if rule_violation:
violation_detail = {
"rule_id": rule.rule_id,
"rule_name": rule.name,
"principle": rule.principle.value,
"severity": rule.severity.value,
"response": rule.response_template
}
violations.append(violation_detail)
reasoning_parts.append(f"Constitutional rule violation: {rule.name}")
# Determine if action is approved
critical_violations = [v for v in violations if v.get("severity") == "critical"]
high_violations = [v for v in violations if v.get("severity") == "high"]
approved = len(critical_violations) == 0 and len(high_violations) == 0
# Calculate confidence score
confidence_score = self._calculate_confidence_score(violations, context)
# Generate reasoning
if not violations:
reasoning = "Action evaluated successfully with no ethical violations detected."
else:
violation_summary = ", ".join(reasoning_parts)
reasoning = f"Ethical concerns identified: {violation_summary}"
evaluation = EthicalEvaluation(
evaluation_id=evaluation_id,
action_description=action_description,
timestamp=datetime.now().isoformat(),
constraints_checked=constraints_checked,
violations=violations,
approved=approved,
confidence_score=confidence_score,
reasoning=reasoning
)
# Store evaluation in history
self.violation_history.append(evaluation)
return evaluation
async def _check_constraint_violation(self, action: str, constraint: EthicalConstraint,
context: Dict[str, Any]) -> bool:
"""Check if an action violates a specific ethical constraint"""
action_lower = action.lower()
# Pattern-based checks for different principles
if constraint.principle == EthicalPrinciple.NO_HARM:
harm_indicators = [
"critical infrastructure", "power grid", "hospital", "emergency",
"life support", "medical device", "911", "first responder"
]
return any(indicator in action_lower for indicator in harm_indicators)
elif constraint.principle == EthicalPrinciple.LAWFUL_OPERATION:
illegal_indicators = [
"unauthorized", "illegal", "without permission", "criminal",
"fraud", "identity theft", "money laundering"
]
return any(indicator in action_lower for indicator in illegal_indicators)
elif constraint.principle == EthicalPrinciple.PROPORTIONAL_RESPONSE:
# Check for disproportional responses
threat_level = context.get("threat_level", "medium").lower()
response_level = self._assess_response_level(action_lower)
if threat_level == "low" and response_level in ["high", "critical"]:
return True
elif threat_level == "medium" and response_level == "critical":
return True
elif constraint.principle == EthicalPrinciple.DATA_PROTECTION:
data_access_indicators = [
"personal data", "pii", "credit card", "ssn", "social security",
"medical record", "financial data", "private information"
]
return any(indicator in action_lower for indicator in data_access_indicators)
elif constraint.principle == EthicalPrinciple.CONSENT_BASED:
unauthorized_indicators = [
"without consent", "unauthorized access", "breach", "infiltrate",
"penetrate without permission"
]
return any(indicator in action_lower for indicator in unauthorized_indicators)
return False
async def _check_constitutional_rule(self, action: str, rule: ConstitutionalRule,
context: Dict[str, Any]) -> bool:
"""Check if an action violates a constitutional rule"""
action_lower = action.lower()
# Check if condition pattern matches
condition_match = re.search(rule.condition_pattern, action_lower, re.IGNORECASE)
if not condition_match:
return False
# Check if violation pattern matches
violation_match = re.search(rule.violation_pattern, action_lower, re.IGNORECASE)
return violation_match is not None
def _assess_response_level(self, action: str) -> str:
"""Assess the intensity level of a proposed response"""
critical_indicators = ["destroy", "delete", "wipe", "format", "nuclear"]
high_indicators = ["exploit", "attack", "penetrate", "breach", "damage"]
medium_indicators = ["scan", "probe", "investigate", "analyze"]
if any(indicator in action for indicator in critical_indicators):
return "critical"
elif any(indicator in action for indicator in high_indicators):
return "high"
elif any(indicator in action for indicator in medium_indicators):
return "medium"
else:
return "low"
def _calculate_confidence_score(self, violations: List[Dict], context: Dict[str, Any]) -> float:
"""Calculate confidence score for the ethical evaluation"""
base_confidence = 0.9
# Reduce confidence for each violation
for violation in violations:
severity = violation.get("severity", "low")
if severity == "critical":
base_confidence -= 0.3
elif severity == "high":
base_confidence -= 0.2
elif severity == "medium":
base_confidence -= 0.1
else:
base_confidence -= 0.05
# Adjust based on context clarity
if context.get("authorization_verified"):
base_confidence += 0.1
if context.get("threat_level") == "critical":
base_confidence += 0.05
return max(0.0, min(1.0, base_confidence))
def get_ethical_guidance(self, action_description: str) -> Dict[str, Any]:
"""Get ethical guidance for a proposed action"""
guidance = {
"action": action_description,
"recommendations": [],
"alternative_approaches": [],
"required_safeguards": [],
"approval_requirements": []
}
action_lower = action_description.lower()
# Analyze action and provide guidance
if any(term in action_lower for term in ["attack", "exploit", "penetrate"]):
guidance["recommendations"].append("Ensure you have explicit written authorization")
guidance["recommendations"].append("Limit scope to minimize potential impact")
guidance["alternative_approaches"].append("Consider defensive security assessment instead")
guidance["required_safeguards"].append("Document all activities for audit trail")
guidance["approval_requirements"].append("Obtain security manager approval")
if any(term in action_lower for term in ["data", "information", "files"]):
guidance["recommendations"].append("Apply data protection principles")
guidance["required_safeguards"].append("Encrypt sensitive data")
guidance["required_safeguards"].append("Follow data retention policies")
if any(term in action_lower for term in ["network", "system", "infrastructure"]):
guidance["recommendations"].append("Use least privilege access principles")
guidance["alternative_approaches"].append("Consider read-only assessment methods")
guidance["required_safeguards"].append("Implement network segmentation")
return guidance
def generate_constitutional_report(self) -> Dict[str, Any]:
"""Generate a report on constitutional AI compliance"""
report = {
"generated_at": datetime.now().isoformat(),
"evaluation_summary": {
"total_evaluations": len(self.violation_history),
"approved_actions": 0,
"rejected_actions": 0,
"violation_types": {}
},
"principle_compliance": {},
"recent_violations": [],
"recommendations": []
}
# Analyze evaluation history
for evaluation in self.violation_history:
if evaluation.approved:
report["evaluation_summary"]["approved_actions"] += 1
else:
report["evaluation_summary"]["rejected_actions"] += 1
for violation in evaluation.violations:
principle = violation.get("principle", "unknown")
if principle not in report["evaluation_summary"]["violation_types"]:
report["evaluation_summary"]["violation_types"][principle] = 0
report["evaluation_summary"]["violation_types"][principle] += 1
# Principle compliance rates
for principle in EthicalPrinciple:
principle_evaluations = []
for evaluation in self.violation_history:
principle_violations = [
v for v in evaluation.violations
if v.get("principle") == principle.value
]
principle_evaluations.append(len(principle_violations) == 0)
if principle_evaluations:
compliance_rate = sum(principle_evaluations) / len(principle_evaluations)
report["principle_compliance"][principle.value] = {
"compliance_rate": compliance_rate,
"total_evaluations": len(principle_evaluations)
}
# Recent violations (last 10)
recent_violations = []
for evaluation in self.violation_history[-10:]:
if not evaluation.approved:
recent_violations.append({
"evaluation_id": evaluation.evaluation_id,
"action": evaluation.action_description,
"timestamp": evaluation.timestamp,
"violation_count": len(evaluation.violations)
})
report["recent_violations"] = recent_violations
# Generate recommendations
if report["evaluation_summary"]["total_evaluations"] > 0:
rejection_rate = (
report["evaluation_summary"]["rejected_actions"] /
report["evaluation_summary"]["total_evaluations"]
)
if rejection_rate > 0.2:
report["recommendations"].append("High rejection rate - review operational procedures")
for principle, stats in report["principle_compliance"].items():
if stats["compliance_rate"] < 0.8:
report["recommendations"].append(f"Improve compliance for {principle} principle")
return report
# Example usage and testing
if __name__ == "__main__":
import asyncio
async def test_constitutional_ai():
# Initialize Constitutional AI
constitutional_ai = ConstitutionalAI()
# Test cases
test_actions = [
"Perform authorized penetration testing on corporate network",
"Attack power grid control systems",
"Scan for vulnerabilities in client systems with written permission",
"Access personal data without authorization",
"Conduct educational demonstration of SQL injection",
"Launch DDoS attack against competitor website"
]
print("ποΈ Constitutional AI Evaluation Results:")
print("=" * 60)
for i, action in enumerate(test_actions, 1):
evaluation = await constitutional_ai.evaluate_action(
action,
context={"threat_level": "medium", "authorization_verified": i % 2 == 1}
)
status = "β
APPROVED" if evaluation.approved else "β REJECTED"
print(f"\n{i}. Action: {action}")
print(f" Status: {status}")
print(f" Confidence: {evaluation.confidence_score:.2f}")
print(f" Violations: {len(evaluation.violations)}")
if evaluation.violations:
for violation in evaluation.violations:
print(f" - {violation.get('principle', 'unknown')}: {violation.get('description', 'N/A')}")
print(f" Reasoning: {evaluation.reasoning}")
# Generate constitutional report
print("\n" + "=" * 60)
print("π Constitutional AI Compliance Report:")
report = constitutional_ai.generate_constitutional_report()
print(f"Total Evaluations: {report['evaluation_summary']['total_evaluations']}")
print(f"Approved Actions: {report['evaluation_summary']['approved_actions']}")
print(f"Rejected Actions: {report['evaluation_summary']['rejected_actions']}")
if report['principle_compliance']:
print("\nPrinciple Compliance Rates:")
for principle, stats in report['principle_compliance'].items():
print(f" {principle}: {stats['compliance_rate']:.1%}")
print("β
Constitutional AI Integration implemented and tested")
# Run the test
asyncio.run(test_constitutional_ai())
|