File size: 24,722 Bytes
23804b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
"""
Constitutional AI Integration for Safety Alignment
Implements value-based reasoning and ethical constraints for cybersecurity operations
"""

import json
import asyncio
from datetime import datetime
from typing import Dict, List, Optional, Any, Tuple
from dataclasses import dataclass, asdict
from enum import Enum
import re

class EthicalPrinciple(Enum):
    """Core ethical principles for cybersecurity AI"""
    NO_HARM = "no_harm"
    LAWFUL_OPERATION = "lawful_operation"
    PROPORTIONAL_RESPONSE = "proportional_response"
    TRANSPARENT_DECISION = "transparent_decision"
    HUMAN_OVERSIGHT = "human_oversight"
    DATA_PROTECTION = "data_protection"
    CONSENT_BASED = "consent_based"
    MINIMAL_IMPACT = "minimal_impact"

class ViolationSeverity(Enum):
    """Severity levels for ethical violations"""
    LOW = "low"
    MEDIUM = "medium"
    HIGH = "high"
    CRITICAL = "critical"

@dataclass
class EthicalConstraint:
    """Represents an ethical constraint or rule"""
    constraint_id: str
    principle: EthicalPrinciple
    description: str
    condition: str
    action: str
    severity: ViolationSeverity
    enabled: bool

@dataclass
class EthicalEvaluation:
    """Result of ethical evaluation"""
    evaluation_id: str
    action_description: str
    timestamp: str
    constraints_checked: List[str]
    violations: List[Dict[str, Any]]
    approved: bool
    confidence_score: float
    reasoning: str

@dataclass
class ConstitutionalRule:
    """Constitutional rule for AI behavior"""
    rule_id: str
    name: str
    description: str
    condition_pattern: str
    violation_pattern: str
    response_template: str
    principle: EthicalPrinciple
    severity: ViolationSeverity

class ConstitutionalAI:
    """Constitutional AI system for ethical cybersecurity operations"""
    
    def __init__(self):
        self.ethical_constraints = self._load_ethical_constraints()
        self.constitutional_rules = self._load_constitutional_rules()
        self.violation_history = []
        
    def _load_ethical_constraints(self) -> List[EthicalConstraint]:
        """Load core ethical constraints for cybersecurity operations"""
        return [
            EthicalConstraint(
                constraint_id="harm_001",
                principle=EthicalPrinciple.NO_HARM,
                description="Prevent actions that could cause physical harm to individuals",
                condition="action involves critical infrastructure or life-safety systems",
                action="require explicit human authorization and safety review",
                severity=ViolationSeverity.CRITICAL,
                enabled=True
            ),
            EthicalConstraint(
                constraint_id="law_001",
                principle=EthicalPrinciple.LAWFUL_OPERATION,
                description="Ensure all operations comply with applicable laws and regulations",
                condition="action could violate computer crime laws",
                action="block action and flag for legal review",
                severity=ViolationSeverity.HIGH,
                enabled=True
            ),
            EthicalConstraint(
                constraint_id="prop_001",
                principle=EthicalPrinciple.PROPORTIONAL_RESPONSE,
                description="Response must be proportional to the threat level",
                condition="proposed action severity exceeds threat level",
                action="recommend proportional alternative",
                severity=ViolationSeverity.MEDIUM,
                enabled=True
            ),
            EthicalConstraint(
                constraint_id="trans_001",
                principle=EthicalPrinciple.TRANSPARENT_DECISION,
                description="Decision-making process must be transparent and explainable",
                condition="high-impact decision with insufficient explanation",
                action="require detailed reasoning documentation",
                severity=ViolationSeverity.MEDIUM,
                enabled=True
            ),
            EthicalConstraint(
                constraint_id="human_001",
                principle=EthicalPrinciple.HUMAN_OVERSIGHT,
                description="Critical actions require human oversight",
                condition="action has high potential impact",
                action="require human approval before execution",
                severity=ViolationSeverity.HIGH,
                enabled=True
            ),
            EthicalConstraint(
                constraint_id="data_001",
                principle=EthicalPrinciple.DATA_PROTECTION,
                description="Protect personally identifiable information and sensitive data",
                condition="action involves access to PII or sensitive data",
                action="apply data protection safeguards",
                severity=ViolationSeverity.HIGH,
                enabled=True
            ),
            EthicalConstraint(
                constraint_id="consent_001",
                principle=EthicalPrinciple.CONSENT_BASED,
                description="Operations should have appropriate authorization",
                condition="action affects systems without explicit authorization",
                action="verify authorization before proceeding",
                severity=ViolationSeverity.HIGH,
                enabled=True
            ),
            EthicalConstraint(
                constraint_id="impact_001",
                principle=EthicalPrinciple.MINIMAL_IMPACT,
                description="Minimize disruption and collateral impact",
                condition="action could cause significant disruption",
                action="seek minimal impact alternative",
                severity=ViolationSeverity.MEDIUM,
                enabled=True
            )
        ]
    
    def _load_constitutional_rules(self) -> List[ConstitutionalRule]:
        """Load constitutional rules for specific scenarios"""
        return [
            ConstitutionalRule(
                rule_id="rule_001",
                name="Critical Infrastructure Protection",
                description="Protect critical infrastructure from harmful actions",
                condition_pattern=r"(power|water|hospital|medical|emergency|911)",
                violation_pattern=r"(attack|exploit|disrupt|damage|destroy)",
                response_template="I cannot assist with actions that could harm critical infrastructure. Consider defensive measures instead.",
                principle=EthicalPrinciple.NO_HARM,
                severity=ViolationSeverity.CRITICAL
            ),
            ConstitutionalRule(
                rule_id="rule_002",
                name="Unauthorized Access Prevention",
                description="Prevent unauthorized access to systems",
                condition_pattern=r"(unauthorized|illegal|without permission)",
                violation_pattern=r"(hack|breach|infiltrate|penetrate)",
                response_template="I cannot provide guidance for unauthorized access. Ensure you have proper authorization for security testing.",
                principle=EthicalPrinciple.LAWFUL_OPERATION,
                severity=ViolationSeverity.HIGH
            ),
            ConstitutionalRule(
                rule_id="rule_003",
                name="Personal Data Protection",
                description="Protect personal and sensitive data",
                condition_pattern=r"(personal|private|confidential|sensitive|PII)",
                violation_pattern=r"(steal|exfiltrate|leak|expose|access)",
                response_template="I cannot assist with accessing personal or sensitive data. Focus on protecting data privacy instead.",
                principle=EthicalPrinciple.DATA_PROTECTION,
                severity=ViolationSeverity.HIGH
            ),
            ConstitutionalRule(
                rule_id="rule_004",
                name="Proportional Response Requirement",
                description="Ensure responses are proportional to threats",
                condition_pattern=r"(low|minor|small) (threat|risk|vulnerability)",
                violation_pattern=r"(nuclear|extreme|maximum|destructive)",
                response_template="The proposed response appears disproportional to the threat level. Consider a more measured approach.",
                principle=EthicalPrinciple.PROPORTIONAL_RESPONSE,
                severity=ViolationSeverity.MEDIUM
            ),
            ConstitutionalRule(
                rule_id="rule_005",
                name="Educational Purpose Enforcement",
                description="Ensure cybersecurity guidance is for educational purposes",
                condition_pattern=r"(learn|understand|education|training|practice)",
                violation_pattern=r"(real|live|production|actual) (attack|exploit)",
                response_template="Cybersecurity techniques should only be used for educational, training, or authorized testing purposes.",
                principle=EthicalPrinciple.LAWFUL_OPERATION,
                severity=ViolationSeverity.MEDIUM
            )
        ]
    
    async def evaluate_action(self, action_description: str, context: Dict[str, Any] = None) -> EthicalEvaluation:
        """Evaluate an action against ethical constraints"""
        evaluation_id = f"eval_{datetime.now().strftime('%Y%m%d_%H%M%S_%f')}"
        context = context or {}
        
        violations = []
        constraints_checked = []
        reasoning_parts = []
        
        # Check each enabled ethical constraint
        for constraint in self.ethical_constraints:
            if not constraint.enabled:
                continue
                
            constraints_checked.append(constraint.constraint_id)
            
            # Check if constraint applies to this action
            violation_detected = await self._check_constraint_violation(
                action_description, constraint, context
            )
            
            if violation_detected:
                violation_detail = {
                    "constraint_id": constraint.constraint_id,
                    "principle": constraint.principle.value,
                    "description": constraint.description,
                    "severity": constraint.severity.value,
                    "recommended_action": constraint.action
                }
                violations.append(violation_detail)
                reasoning_parts.append(
                    f"Violation of {constraint.principle.value}: {constraint.description}"
                )
        
        # Check constitutional rules
        for rule in self.constitutional_rules:
            rule_violation = await self._check_constitutional_rule(
                action_description, rule, context
            )
            
            if rule_violation:
                violation_detail = {
                    "rule_id": rule.rule_id,
                    "rule_name": rule.name,
                    "principle": rule.principle.value,
                    "severity": rule.severity.value,
                    "response": rule.response_template
                }
                violations.append(violation_detail)
                reasoning_parts.append(f"Constitutional rule violation: {rule.name}")
        
        # Determine if action is approved
        critical_violations = [v for v in violations if v.get("severity") == "critical"]
        high_violations = [v for v in violations if v.get("severity") == "high"]
        
        approved = len(critical_violations) == 0 and len(high_violations) == 0
        
        # Calculate confidence score
        confidence_score = self._calculate_confidence_score(violations, context)
        
        # Generate reasoning
        if not violations:
            reasoning = "Action evaluated successfully with no ethical violations detected."
        else:
            violation_summary = ", ".join(reasoning_parts)
            reasoning = f"Ethical concerns identified: {violation_summary}"
        
        evaluation = EthicalEvaluation(
            evaluation_id=evaluation_id,
            action_description=action_description,
            timestamp=datetime.now().isoformat(),
            constraints_checked=constraints_checked,
            violations=violations,
            approved=approved,
            confidence_score=confidence_score,
            reasoning=reasoning
        )
        
        # Store evaluation in history
        self.violation_history.append(evaluation)
        
        return evaluation
    
    async def _check_constraint_violation(self, action: str, constraint: EthicalConstraint, 
                                        context: Dict[str, Any]) -> bool:
        """Check if an action violates a specific ethical constraint"""
        action_lower = action.lower()
        
        # Pattern-based checks for different principles
        if constraint.principle == EthicalPrinciple.NO_HARM:
            harm_indicators = [
                "critical infrastructure", "power grid", "hospital", "emergency",
                "life support", "medical device", "911", "first responder"
            ]
            return any(indicator in action_lower for indicator in harm_indicators)
        
        elif constraint.principle == EthicalPrinciple.LAWFUL_OPERATION:
            illegal_indicators = [
                "unauthorized", "illegal", "without permission", "criminal",
                "fraud", "identity theft", "money laundering"
            ]
            return any(indicator in action_lower for indicator in illegal_indicators)
        
        elif constraint.principle == EthicalPrinciple.PROPORTIONAL_RESPONSE:
            # Check for disproportional responses
            threat_level = context.get("threat_level", "medium").lower()
            response_level = self._assess_response_level(action_lower)
            
            if threat_level == "low" and response_level in ["high", "critical"]:
                return True
            elif threat_level == "medium" and response_level == "critical":
                return True
        
        elif constraint.principle == EthicalPrinciple.DATA_PROTECTION:
            data_access_indicators = [
                "personal data", "pii", "credit card", "ssn", "social security",
                "medical record", "financial data", "private information"
            ]
            return any(indicator in action_lower for indicator in data_access_indicators)
        
        elif constraint.principle == EthicalPrinciple.CONSENT_BASED:
            unauthorized_indicators = [
                "without consent", "unauthorized access", "breach", "infiltrate",
                "penetrate without permission"
            ]
            return any(indicator in action_lower for indicator in unauthorized_indicators)
        
        return False
    
    async def _check_constitutional_rule(self, action: str, rule: ConstitutionalRule,
                                       context: Dict[str, Any]) -> bool:
        """Check if an action violates a constitutional rule"""
        action_lower = action.lower()
        
        # Check if condition pattern matches
        condition_match = re.search(rule.condition_pattern, action_lower, re.IGNORECASE)
        if not condition_match:
            return False
        
        # Check if violation pattern matches
        violation_match = re.search(rule.violation_pattern, action_lower, re.IGNORECASE)
        return violation_match is not None
    
    def _assess_response_level(self, action: str) -> str:
        """Assess the intensity level of a proposed response"""
        critical_indicators = ["destroy", "delete", "wipe", "format", "nuclear"]
        high_indicators = ["exploit", "attack", "penetrate", "breach", "damage"]
        medium_indicators = ["scan", "probe", "investigate", "analyze"]
        
        if any(indicator in action for indicator in critical_indicators):
            return "critical"
        elif any(indicator in action for indicator in high_indicators):
            return "high"
        elif any(indicator in action for indicator in medium_indicators):
            return "medium"
        else:
            return "low"
    
    def _calculate_confidence_score(self, violations: List[Dict], context: Dict[str, Any]) -> float:
        """Calculate confidence score for the ethical evaluation"""
        base_confidence = 0.9
        
        # Reduce confidence for each violation
        for violation in violations:
            severity = violation.get("severity", "low")
            if severity == "critical":
                base_confidence -= 0.3
            elif severity == "high":
                base_confidence -= 0.2
            elif severity == "medium":
                base_confidence -= 0.1
            else:
                base_confidence -= 0.05
        
        # Adjust based on context clarity
        if context.get("authorization_verified"):
            base_confidence += 0.1
        if context.get("threat_level") == "critical":
            base_confidence += 0.05
        
        return max(0.0, min(1.0, base_confidence))
    
    def get_ethical_guidance(self, action_description: str) -> Dict[str, Any]:
        """Get ethical guidance for a proposed action"""
        guidance = {
            "action": action_description,
            "recommendations": [],
            "alternative_approaches": [],
            "required_safeguards": [],
            "approval_requirements": []
        }
        
        action_lower = action_description.lower()
        
        # Analyze action and provide guidance
        if any(term in action_lower for term in ["attack", "exploit", "penetrate"]):
            guidance["recommendations"].append("Ensure you have explicit written authorization")
            guidance["recommendations"].append("Limit scope to minimize potential impact")
            guidance["alternative_approaches"].append("Consider defensive security assessment instead")
            guidance["required_safeguards"].append("Document all activities for audit trail")
            guidance["approval_requirements"].append("Obtain security manager approval")
        
        if any(term in action_lower for term in ["data", "information", "files"]):
            guidance["recommendations"].append("Apply data protection principles")
            guidance["required_safeguards"].append("Encrypt sensitive data")
            guidance["required_safeguards"].append("Follow data retention policies")
        
        if any(term in action_lower for term in ["network", "system", "infrastructure"]):
            guidance["recommendations"].append("Use least privilege access principles")
            guidance["alternative_approaches"].append("Consider read-only assessment methods")
            guidance["required_safeguards"].append("Implement network segmentation")
        
        return guidance
    
    def generate_constitutional_report(self) -> Dict[str, Any]:
        """Generate a report on constitutional AI compliance"""
        report = {
            "generated_at": datetime.now().isoformat(),
            "evaluation_summary": {
                "total_evaluations": len(self.violation_history),
                "approved_actions": 0,
                "rejected_actions": 0,
                "violation_types": {}
            },
            "principle_compliance": {},
            "recent_violations": [],
            "recommendations": []
        }
        
        # Analyze evaluation history
        for evaluation in self.violation_history:
            if evaluation.approved:
                report["evaluation_summary"]["approved_actions"] += 1
            else:
                report["evaluation_summary"]["rejected_actions"] += 1
            
            for violation in evaluation.violations:
                principle = violation.get("principle", "unknown")
                if principle not in report["evaluation_summary"]["violation_types"]:
                    report["evaluation_summary"]["violation_types"][principle] = 0
                report["evaluation_summary"]["violation_types"][principle] += 1
        
        # Principle compliance rates
        for principle in EthicalPrinciple:
            principle_evaluations = []
            for evaluation in self.violation_history:
                principle_violations = [
                    v for v in evaluation.violations 
                    if v.get("principle") == principle.value
                ]
                principle_evaluations.append(len(principle_violations) == 0)
            
            if principle_evaluations:
                compliance_rate = sum(principle_evaluations) / len(principle_evaluations)
                report["principle_compliance"][principle.value] = {
                    "compliance_rate": compliance_rate,
                    "total_evaluations": len(principle_evaluations)
                }
        
        # Recent violations (last 10)
        recent_violations = []
        for evaluation in self.violation_history[-10:]:
            if not evaluation.approved:
                recent_violations.append({
                    "evaluation_id": evaluation.evaluation_id,
                    "action": evaluation.action_description,
                    "timestamp": evaluation.timestamp,
                    "violation_count": len(evaluation.violations)
                })
        
        report["recent_violations"] = recent_violations
        
        # Generate recommendations
        if report["evaluation_summary"]["total_evaluations"] > 0:
            rejection_rate = (
                report["evaluation_summary"]["rejected_actions"] / 
                report["evaluation_summary"]["total_evaluations"]
            )
            if rejection_rate > 0.2:
                report["recommendations"].append("High rejection rate - review operational procedures")
        
        for principle, stats in report["principle_compliance"].items():
            if stats["compliance_rate"] < 0.8:
                report["recommendations"].append(f"Improve compliance for {principle} principle")
        
        return report

# Example usage and testing
if __name__ == "__main__":
    import asyncio
    
    async def test_constitutional_ai():
        # Initialize Constitutional AI
        constitutional_ai = ConstitutionalAI()
        
        # Test cases
        test_actions = [
            "Perform authorized penetration testing on corporate network",
            "Attack power grid control systems",
            "Scan for vulnerabilities in client systems with written permission",
            "Access personal data without authorization",
            "Conduct educational demonstration of SQL injection",
            "Launch DDoS attack against competitor website"
        ]
        
        print("πŸ›οΈ Constitutional AI Evaluation Results:")
        print("=" * 60)
        
        for i, action in enumerate(test_actions, 1):
            evaluation = await constitutional_ai.evaluate_action(
                action, 
                context={"threat_level": "medium", "authorization_verified": i % 2 == 1}
            )
            
            status = "βœ… APPROVED" if evaluation.approved else "❌ REJECTED"
            print(f"\n{i}. Action: {action}")
            print(f"   Status: {status}")
            print(f"   Confidence: {evaluation.confidence_score:.2f}")
            print(f"   Violations: {len(evaluation.violations)}")
            
            if evaluation.violations:
                for violation in evaluation.violations:
                    print(f"     - {violation.get('principle', 'unknown')}: {violation.get('description', 'N/A')}")
            
            print(f"   Reasoning: {evaluation.reasoning}")
        
        # Generate constitutional report
        print("\n" + "=" * 60)
        print("πŸ“Š Constitutional AI Compliance Report:")
        report = constitutional_ai.generate_constitutional_report()
        
        print(f"Total Evaluations: {report['evaluation_summary']['total_evaluations']}")
        print(f"Approved Actions: {report['evaluation_summary']['approved_actions']}")
        print(f"Rejected Actions: {report['evaluation_summary']['rejected_actions']}")
        
        if report['principle_compliance']:
            print("\nPrinciple Compliance Rates:")
            for principle, stats in report['principle_compliance'].items():
                print(f"  {principle}: {stats['compliance_rate']:.1%}")
        
        print("βœ… Constitutional AI Integration implemented and tested")
    
    # Run the test
    asyncio.run(test_constitutional_ai())