File size: 30,456 Bytes
23804b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 |
"""
Advanced Multi-Agent Scenario Orchestration for Cyber-LLM
Handles complex red team exercises and coordinated agent operations
"""
import asyncio
import json
import yaml
from typing import Dict, List, Any, Optional, Tuple, Union
from datetime import datetime, timedelta
from pathlib import Path
from dataclasses import dataclass, asdict
from enum import Enum
import uuid
import networkx as nx
from concurrent.futures import ThreadPoolExecutor, as_completed
from ..agents.orchestrator_agent import OrchestratorAgent
from ..agents.recon_agent import ReconnaissanceAgent
from ..agents.c2_agent import CommandControlAgent
from ..agents.post_exploit_agent import PostExploitAgent
from ..agents.safety_agent import SafetyAgent
from ..agents.explainability_agent import ExplainabilityAgent
from ..utils.logging_system import CyberLLMLogger, CyberLLMError, ErrorCategory, retry_with_backoff
class ScenarioType(Enum):
"""Types of security scenarios"""
RED_TEAM_EXERCISE = "red_team_exercise"
PENETRATION_TEST = "penetration_test"
THREAT_HUNTING = "threat_hunting"
INCIDENT_RESPONSE = "incident_response"
VULNERABILITY_ASSESSMENT = "vulnerability_assessment"
SECURITY_AUDIT = "security_audit"
class AgentRole(Enum):
"""Agent roles in scenarios"""
LEADER = "leader"
SPECIALIST = "specialist"
SUPPORT = "support"
OBSERVER = "observer"
@dataclass
class ScenarioStep:
"""Individual step in a security scenario"""
id: str
name: str
description: str
agent_type: str
dependencies: List[str]
parameters: Dict[str, Any]
timeout: int = 300 # 5 minutes default
retry_count: int = 3
critical: bool = False
parallel_group: Optional[str] = None
@dataclass
class ScenarioResult:
"""Result from executing a scenario step"""
step_id: str
success: bool
output: Any
error: Optional[str]
execution_time: float
timestamp: datetime
@dataclass
class RedTeamScenario:
"""Complete red team exercise scenario"""
id: str
name: str
description: str
scenario_type: ScenarioType
target_environment: Dict[str, Any]
steps: List[ScenarioStep]
success_criteria: Dict[str, Any]
safety_constraints: List[str]
estimated_duration: int # minutes
difficulty_level: str # beginner, intermediate, advanced, expert
class MultiAgentOrchestrator:
"""Advanced orchestrator for complex multi-agent scenarios"""
def __init__(self,
logger: Optional[CyberLLMLogger] = None,
max_concurrent_agents: int = 5):
self.logger = logger or CyberLLMLogger(name="multi_agent_orchestrator")
self.max_concurrent_agents = max_concurrent_agents
# Initialize agents
self.agents = {
'orchestrator': OrchestratorAgent(logger=self.logger),
'recon': ReconnaissanceAgent(logger=self.logger),
'c2': CommandControlAgent(logger=self.logger),
'post_exploit': PostExploitAgent(logger=self.logger),
'safety': SafetyAgent(logger=self.logger),
'explainability': ExplainabilityAgent(logger=self.logger)
}
# Execution state
self.active_scenarios = {}
self.scenario_results = {}
self.agent_status = {name: "idle" for name in self.agents.keys()}
# Scenario templates
self.scenario_templates = self._load_scenario_templates()
def _load_scenario_templates(self) -> Dict[str, RedTeamScenario]:
"""Load predefined scenario templates"""
templates = {}
# Advanced Persistent Threat (APT) Simulation
apt_scenario = RedTeamScenario(
id="apt_simulation_001",
name="Advanced Persistent Threat Simulation",
description="Multi-stage APT attack simulation with stealth focus",
scenario_type=ScenarioType.RED_TEAM_EXERCISE,
target_environment={
"network_range": "10.0.0.0/24",
"domain": "target.local",
"critical_assets": ["domain_controller", "file_server", "database"]
},
steps=[
ScenarioStep(
id="recon_phase",
name="Reconnaissance",
description="Gather intelligence on target environment",
agent_type="recon",
dependencies=[],
parameters={
"target": "target.local",
"scope": "external",
"stealth_level": "high"
},
timeout=600,
critical=True
),
ScenarioStep(
id="initial_access",
name="Initial Access",
description="Gain initial foothold in target network",
agent_type="c2",
dependencies=["recon_phase"],
parameters={
"attack_vector": "spear_phishing",
"payload_type": "custom_backdoor"
},
timeout=900,
critical=True
),
ScenarioStep(
id="privilege_escalation",
name="Privilege Escalation",
description="Escalate privileges on compromised system",
agent_type="post_exploit",
dependencies=["initial_access"],
parameters={
"technique": "token_manipulation",
"target_privilege": "SYSTEM"
},
timeout=300
),
ScenarioStep(
id="lateral_movement",
name="Lateral Movement",
description="Move laterally through the network",
agent_type="post_exploit",
dependencies=["privilege_escalation"],
parameters={
"technique": "pass_the_hash",
"targets": ["file_server", "database"]
},
timeout=600,
parallel_group="expansion"
),
ScenarioStep(
id="data_exfiltration",
name="Data Exfiltration",
description="Exfiltrate sensitive data",
agent_type="post_exploit",
dependencies=["lateral_movement"],
parameters={
"data_types": ["financial", "pii", "intellectual_property"],
"exfil_method": "dns_tunneling"
},
timeout=450,
parallel_group="expansion"
),
ScenarioStep(
id="persistence",
name="Establish Persistence",
description="Maintain long-term access",
agent_type="c2",
dependencies=["privilege_escalation"],
parameters={
"persistence_type": "service_persistence",
"stealth_level": "high"
},
timeout=300
)
],
success_criteria={
"min_steps_completed": 4,
"critical_steps_required": ["recon_phase", "initial_access"],
"stealth_score_threshold": 0.7,
"detection_threshold": 0.3
},
safety_constraints=[
"no_actual_data_modification",
"no_service_disruption",
"maintain_system_stability",
"document_all_actions"
],
estimated_duration=180, # 3 hours
difficulty_level="advanced"
)
templates["apt_simulation"] = apt_scenario
# Vulnerability Assessment Scenario
vuln_assessment = RedTeamScenario(
id="vuln_assessment_001",
name="Comprehensive Vulnerability Assessment",
description="Multi-vector vulnerability discovery and assessment",
scenario_type=ScenarioType.VULNERABILITY_ASSESSMENT,
target_environment={
"targets": ["web_app", "network_services", "host_systems"],
"assessment_scope": "comprehensive"
},
steps=[
ScenarioStep(
id="network_discovery",
name="Network Discovery",
description="Discover network topology and services",
agent_type="recon",
dependencies=[],
parameters={
"scan_type": "comprehensive",
"port_range": "1-65535"
},
timeout=1800,
parallel_group="discovery"
),
ScenarioStep(
id="service_enumeration",
name="Service Enumeration",
description="Enumerate discovered services",
agent_type="recon",
dependencies=[],
parameters={
"service_types": ["web", "database", "file_sharing"],
"deep_scan": True
},
timeout=1200,
parallel_group="discovery"
),
ScenarioStep(
id="vulnerability_scanning",
name="Vulnerability Scanning",
description="Scan for known vulnerabilities",
agent_type="recon",
dependencies=["network_discovery", "service_enumeration"],
parameters={
"scanner_types": ["nessus", "openvas", "custom"],
"authenticated": False
},
timeout=2400,
critical=True
),
ScenarioStep(
id="web_app_testing",
name="Web Application Testing",
description="Test web applications for vulnerabilities",
agent_type="recon",
dependencies=["service_enumeration"],
parameters={
"test_types": ["owasp_top10", "custom_checks"],
"authentication_bypass": True
},
timeout=1800,
parallel_group="testing"
),
ScenarioStep(
id="exploit_validation",
name="Exploit Validation",
description="Validate critical vulnerabilities",
agent_type="c2",
dependencies=["vulnerability_scanning"],
parameters={
"exploit_types": ["proof_of_concept"],
"severity_threshold": "high"
},
timeout=900
)
],
success_criteria={
"vulnerability_discovery_rate": 0.8,
"false_positive_rate": 0.1,
"coverage_percentage": 0.9
},
safety_constraints=[
"read_only_operations",
"no_system_modification",
"minimal_service_impact"
],
estimated_duration=360, # 6 hours
difficulty_level="intermediate"
)
templates["vuln_assessment"] = vuln_assessment
return templates
async def execute_scenario(self,
scenario: RedTeamScenario,
context: Optional[Dict[str, Any]] = None) -> Dict[str, Any]:
"""Execute a complete multi-agent scenario"""
scenario_id = f"{scenario.id}_{uuid.uuid4().hex[:8]}"
start_time = datetime.now()
self.logger.info(f"Starting scenario execution",
scenario_id=scenario_id,
scenario_name=scenario.name,
scenario_type=scenario.scenario_type.value,
estimated_duration=scenario.estimated_duration)
# Initialize scenario state
self.active_scenarios[scenario_id] = {
'scenario': scenario,
'context': context or {},
'start_time': start_time,
'status': 'running',
'completed_steps': [],
'failed_steps': [],
'step_results': {}
}
try:
# Safety check
safety_approval = await self._safety_check(scenario)
if not safety_approval['approved']:
raise CyberLLMError(
f"Scenario failed safety check: {safety_approval['reason']}",
ErrorCategory.SAFETY
)
# Build execution graph
execution_graph = self._build_execution_graph(scenario.steps)
# Execute scenario steps
results = await self._execute_scenario_graph(
scenario_id,
execution_graph,
scenario.success_criteria
)
# Evaluate results
evaluation = self._evaluate_scenario_results(scenario, results)
# Generate report
report = await self._generate_scenario_report(
scenario_id,
scenario,
results,
evaluation
)
execution_time = (datetime.now() - start_time).total_seconds()
self.active_scenarios[scenario_id]['status'] = 'completed'
self.scenario_results[scenario_id] = {
'scenario': scenario,
'results': results,
'evaluation': evaluation,
'report': report,
'execution_time': execution_time,
'completed_at': datetime.now()
}
self.logger.info(f"Scenario execution completed",
scenario_id=scenario_id,
success=evaluation['overall_success'],
execution_time=execution_time,
steps_completed=len(results['completed']),
steps_failed=len(results['failed']))
return self.scenario_results[scenario_id]
except Exception as e:
self.active_scenarios[scenario_id]['status'] = 'failed'
self.logger.error(f"Scenario execution failed",
scenario_id=scenario_id,
error=str(e))
raise
finally:
# Cleanup
if scenario_id in self.active_scenarios:
del self.active_scenarios[scenario_id]
async def _safety_check(self, scenario: RedTeamScenario) -> Dict[str, Any]:
"""Perform safety check on scenario"""
safety_agent = self.agents['safety']
# Check scenario against safety constraints
check_request = {
'scenario_type': scenario.scenario_type.value,
'target_environment': scenario.target_environment,
'steps': [asdict(step) for step in scenario.steps],
'safety_constraints': scenario.safety_constraints
}
try:
safety_result = await safety_agent.evaluate_scenario_safety(check_request)
return {
'approved': safety_result.get('approved', False),
'reason': safety_result.get('reason', ''),
'risk_level': safety_result.get('risk_level', 'unknown'),
'recommendations': safety_result.get('recommendations', [])
}
except Exception as e:
self.logger.error("Safety check failed", error=str(e))
return {
'approved': False,
'reason': f"Safety check error: {str(e)}",
'risk_level': 'critical'
}
def _build_execution_graph(self, steps: List[ScenarioStep]) -> nx.DiGraph:
"""Build directed graph for scenario execution"""
graph = nx.DiGraph()
# Add nodes
for step in steps:
graph.add_node(step.id, step=step)
# Add dependency edges
for step in steps:
for dependency in step.dependencies:
if dependency in [s.id for s in steps]:
graph.add_edge(dependency, step.id)
# Verify graph is acyclic
if not nx.is_directed_acyclic_graph(graph):
raise CyberLLMError(
"Scenario contains circular dependencies",
ErrorCategory.VALIDATION
)
return graph
async def _execute_scenario_graph(self,
scenario_id: str,
graph: nx.DiGraph,
success_criteria: Dict[str, Any]) -> Dict[str, Any]:
"""Execute scenario steps according to dependency graph"""
completed_steps = set()
failed_steps = set()
step_results = {}
parallel_groups = {}
# Group steps by parallel execution groups
for node_id in graph.nodes():
step = graph.nodes[node_id]['step']
if step.parallel_group:
if step.parallel_group not in parallel_groups:
parallel_groups[step.parallel_group] = []
parallel_groups[step.parallel_group].append(step)
# Execute steps in topological order
execution_order = list(nx.topological_sort(graph))
for step_id in execution_order:
step = graph.nodes[step_id]['step']
# Check if dependencies are satisfied
dependencies_met = all(
dep in completed_steps for dep in step.dependencies
)
if not dependencies_met:
failed_steps.add(step_id)
self.logger.warning(f"Step dependencies not met: {step_id}")
continue
# Execute step
try:
if step.parallel_group and step.parallel_group in parallel_groups:
# Execute parallel group
group_steps = parallel_groups[step.parallel_group]
group_results = await self._execute_parallel_steps(group_steps)
for group_step, result in group_results.items():
step_results[group_step.id] = result
if result.success:
completed_steps.add(group_step.id)
else:
failed_steps.add(group_step.id)
# Remove processed group
del parallel_groups[step.parallel_group]
else:
# Execute single step
result = await self._execute_single_step(step)
step_results[step_id] = result
if result.success:
completed_steps.add(step_id)
else:
failed_steps.add(step_id)
# Check if critical step failed
if step.critical:
self.logger.error(f"Critical step failed: {step_id}")
break
except Exception as e:
self.logger.error(f"Step execution error: {step_id}", error=str(e))
failed_steps.add(step_id)
if step.critical:
break
return {
'completed': completed_steps,
'failed': failed_steps,
'results': step_results,
'success_rate': len(completed_steps) / len(graph.nodes()) if graph.nodes() else 0
}
async def _execute_parallel_steps(self,
steps: List[ScenarioStep]) -> Dict[ScenarioStep, ScenarioResult]:
"""Execute multiple steps in parallel"""
tasks = []
for step in steps:
task = asyncio.create_task(self._execute_single_step(step))
tasks.append((step, task))
results = {}
completed_tasks = await asyncio.gather(*[task for _, task in tasks], return_exceptions=True)
for (step, _), result in zip(tasks, completed_tasks):
if isinstance(result, Exception):
results[step] = ScenarioResult(
step_id=step.id,
success=False,
output=None,
error=str(result),
execution_time=0,
timestamp=datetime.now()
)
else:
results[step] = result
return results
@retry_with_backoff(max_retries=3)
async def _execute_single_step(self, step: ScenarioStep) -> ScenarioResult:
"""Execute a single scenario step"""
start_time = datetime.now()
self.logger.info(f"Executing step: {step.name}",
step_id=step.id,
agent_type=step.agent_type)
try:
# Get appropriate agent
agent = self.agents.get(step.agent_type)
if not agent:
raise CyberLLMError(
f"Unknown agent type: {step.agent_type}",
ErrorCategory.VALIDATION
)
# Update agent status
self.agent_status[step.agent_type] = "busy"
# Execute step with timeout
result = await asyncio.wait_for(
agent.execute_task(step.parameters),
timeout=step.timeout
)
execution_time = (datetime.now() - start_time).total_seconds()
step_result = ScenarioResult(
step_id=step.id,
success=True,
output=result,
error=None,
execution_time=execution_time,
timestamp=datetime.now()
)
self.logger.info(f"Step completed successfully: {step.name}",
step_id=step.id,
execution_time=execution_time)
return step_result
except asyncio.TimeoutError:
error_msg = f"Step timed out after {step.timeout} seconds"
self.logger.error(f"Step timeout: {step.name}", step_id=step.id)
return ScenarioResult(
step_id=step.id,
success=False,
output=None,
error=error_msg,
execution_time=step.timeout,
timestamp=datetime.now()
)
except Exception as e:
execution_time = (datetime.now() - start_time).total_seconds()
error_msg = str(e)
self.logger.error(f"Step execution failed: {step.name}",
step_id=step.id,
error=error_msg)
return ScenarioResult(
step_id=step.id,
success=False,
output=None,
error=error_msg,
execution_time=execution_time,
timestamp=datetime.now()
)
finally:
# Reset agent status
self.agent_status[step.agent_type] = "idle"
def _evaluate_scenario_results(self,
scenario: RedTeamScenario,
results: Dict[str, Any]) -> Dict[str, Any]:
"""Evaluate scenario results against success criteria"""
success_criteria = scenario.success_criteria
evaluation = {
'overall_success': False,
'criteria_met': {},
'score': 0.0,
'recommendations': []
}
# Check minimum steps completed
min_steps = success_criteria.get('min_steps_completed', 0)
steps_completed = len(results['completed'])
evaluation['criteria_met']['min_steps_completed'] = steps_completed >= min_steps
# Check critical steps
critical_steps = success_criteria.get('critical_steps_required', [])
critical_met = all(step in results['completed'] for step in critical_steps)
evaluation['criteria_met']['critical_steps_completed'] = critical_met
# Calculate success score
total_steps = len(results['completed']) + len(results['failed'])
if total_steps > 0:
success_rate = len(results['completed']) / total_steps
evaluation['score'] = success_rate
# Overall success determination
evaluation['overall_success'] = (
evaluation['criteria_met'].get('min_steps_completed', False) and
evaluation['criteria_met'].get('critical_steps_completed', False) and
evaluation['score'] >= 0.7 # 70% success threshold
)
# Generate recommendations
if not evaluation['overall_success']:
if not critical_met:
evaluation['recommendations'].append("Complete all critical steps")
if evaluation['score'] < 0.7:
evaluation['recommendations'].append("Improve step success rate")
return evaluation
async def _generate_scenario_report(self,
scenario_id: str,
scenario: RedTeamScenario,
results: Dict[str, Any],
evaluation: Dict[str, Any]) -> Dict[str, Any]:
"""Generate comprehensive scenario execution report"""
# Get explainability analysis
explainability_agent = self.agents['explainability']
analysis_request = {
'scenario': asdict(scenario),
'results': results,
'evaluation': evaluation
}
try:
explanation = await explainability_agent.analyze_scenario_execution(analysis_request)
except Exception as e:
self.logger.warning("Failed to generate explanation", error=str(e))
explanation = {"analysis": "Analysis unavailable", "insights": []}
report = {
'scenario_id': scenario_id,
'scenario_summary': {
'name': scenario.name,
'type': scenario.scenario_type.value,
'difficulty': scenario.difficulty_level,
'estimated_duration': scenario.estimated_duration
},
'execution_summary': {
'total_steps': len(scenario.steps),
'completed_steps': len(results['completed']),
'failed_steps': len(results['failed']),
'success_rate': results['success_rate'],
'overall_success': evaluation['overall_success']
},
'detailed_results': results['results'],
'evaluation': evaluation,
'explanation': explanation,
'generated_at': datetime.now().isoformat()
}
return report
def get_scenario_template(self, template_name: str) -> Optional[RedTeamScenario]:
"""Get a scenario template by name"""
return self.scenario_templates.get(template_name)
def list_scenario_templates(self) -> List[str]:
"""List available scenario templates"""
return list(self.scenario_templates.keys())
def get_active_scenarios(self) -> Dict[str, Any]:
"""Get currently active scenarios"""
return self.active_scenarios.copy()
def get_agent_status(self) -> Dict[str, str]:
"""Get current status of all agents"""
return self.agent_status.copy()
# Convenience functions
async def execute_red_team_scenario(scenario_name: str = "apt_simulation") -> Dict[str, Any]:
"""Execute a predefined red team scenario"""
orchestrator = MultiAgentOrchestrator()
template = orchestrator.get_scenario_template(scenario_name)
if not template:
raise ValueError(f"Unknown scenario template: {scenario_name}")
return await orchestrator.execute_scenario(template)
async def execute_vulnerability_assessment(targets: List[str]) -> Dict[str, Any]:
"""Execute vulnerability assessment scenario"""
orchestrator = MultiAgentOrchestrator()
template = orchestrator.get_scenario_template("vuln_assessment")
if not template:
raise ValueError("Vulnerability assessment template not found")
# Customize template with specific targets
context = {"custom_targets": targets}
return await orchestrator.execute_scenario(template, context)
# Example usage
if __name__ == "__main__":
async def main():
# Initialize orchestrator
orchestrator = MultiAgentOrchestrator()
# List available templates
templates = orchestrator.list_scenario_templates()
print(f"Available scenario templates: {templates}")
# Execute APT simulation
result = await execute_red_team_scenario("apt_simulation")
print(f"Scenario completed: {result['evaluation']['overall_success']}")
print(f"Success rate: {result['evaluation']['score']:.2%}")
asyncio.run(main())
|