File size: 32,646 Bytes
23804b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 |
"""
Dynamic Workflow Adaptation System for Cyber-LLM
Provides context-aware workflow modification and intelligent decision making
"""
import asyncio
import json
import yaml
from typing import Dict, List, Any, Optional, Callable, Tuple
from datetime import datetime, timedelta
from dataclasses import dataclass, asdict
from enum import Enum
import numpy as np
from sklearn.ensemble import RandomForestClassifier
from sklearn.preprocessing import StandardScaler
import pickle
import os
from .multi_agent_scenarios import RedTeamScenario, ScenarioStep, ScenarioResult
from ..utils.logging_system import CyberLLMLogger, CyberLLMError, ErrorCategory
class AdaptationTrigger(Enum):
"""Triggers for workflow adaptation"""
STEP_FAILURE = "step_failure"
TIMEOUT = "timeout"
CONTEXT_CHANGE = "context_change"
PERFORMANCE_DEGRADATION = "performance_degradation"
SECURITY_ALERT = "security_alert"
RESOURCE_CONSTRAINT = "resource_constraint"
USER_INTERVENTION = "user_intervention"
class AdaptationStrategy(Enum):
"""Strategies for workflow adaptation"""
RETRY_WITH_MODIFICATION = "retry_with_modification"
SKIP_STEP = "skip_step"
ALTERNATIVE_PATH = "alternative_path"
PARAMETER_TUNING = "parameter_tuning"
AGENT_SUBSTITUTION = "agent_substitution"
PARALLEL_EXECUTION = "parallel_execution"
ROLLBACK = "rollback"
EMERGENCY_STOP = "emergency_stop"
@dataclass
class ContextFeatures:
"""Context features for adaptation decisions"""
target_responsiveness: float # 0-1 scale
network_complexity: int
security_level: str # low, medium, high, critical
time_constraints: int # minutes remaining
resource_availability: float # 0-1 scale
detection_probability: float # 0-1 scale
step_success_rate: float # historical success rate
agent_performance: Dict[str, float] # agent-specific performance metrics
@dataclass
class AdaptationDecision:
"""Decision made by the adaptation system"""
trigger: AdaptationTrigger
strategy: AdaptationStrategy
parameters: Dict[str, Any]
confidence: float
reasoning: str
estimated_impact: Dict[str, float]
class WorkflowAdaptationEngine:
"""Engine for dynamic workflow adaptation based on context and performance"""
def __init__(self, logger: Optional[CyberLLMLogger] = None):
self.logger = logger or CyberLLMLogger(name="workflow_adaptation")
# ML models for adaptation decisions
self.adaptation_model = None
self.feature_scaler = StandardScaler()
self.model_trained = False
# Historical data for learning
self.execution_history = []
self.adaptation_history = []
# Adaptation rules and strategies
self.adaptation_rules = self._initialize_adaptation_rules()
self.strategy_implementations = self._initialize_strategies()
# Performance thresholds
self.performance_thresholds = {
'success_rate_critical': 0.3,
'success_rate_warning': 0.6,
'timeout_threshold': 0.8, # 80% of allocated time
'detection_risk_critical': 0.8,
'resource_critical': 0.2
}
def _initialize_adaptation_rules(self) -> Dict[AdaptationTrigger, List[Callable]]:
"""Initialize rule-based adaptation logic"""
return {
AdaptationTrigger.STEP_FAILURE: [
self._handle_step_failure,
self._check_alternative_paths,
self._consider_agent_substitution
],
AdaptationTrigger.TIMEOUT: [
self._handle_timeout,
self._optimize_parameters,
self._consider_parallel_execution
],
AdaptationTrigger.CONTEXT_CHANGE: [
self._handle_context_change,
self._update_strategy_priorities
],
AdaptationTrigger.PERFORMANCE_DEGRADATION: [
self._handle_performance_degradation,
self._tune_parameters,
self._consider_rollback
],
AdaptationTrigger.SECURITY_ALERT: [
self._handle_security_alert,
self._assess_stealth_requirements,
self._consider_emergency_stop
],
AdaptationTrigger.RESOURCE_CONSTRAINT: [
self._handle_resource_constraint,
self._optimize_resource_usage,
self._prioritize_critical_steps
]
}
def _initialize_strategies(self) -> Dict[AdaptationStrategy, Callable]:
"""Initialize strategy implementation functions"""
return {
AdaptationStrategy.RETRY_WITH_MODIFICATION: self._implement_retry_modification,
AdaptationStrategy.SKIP_STEP: self._implement_skip_step,
AdaptationStrategy.ALTERNATIVE_PATH: self._implement_alternative_path,
AdaptationStrategy.PARAMETER_TUNING: self._implement_parameter_tuning,
AdaptationStrategy.AGENT_SUBSTITUTION: self._implement_agent_substitution,
AdaptationStrategy.PARALLEL_EXECUTION: self._implement_parallel_execution,
AdaptationStrategy.ROLLBACK: self._implement_rollback,
AdaptationStrategy.EMERGENCY_STOP: self._implement_emergency_stop
}
async def analyze_context(self,
scenario: RedTeamScenario,
current_step: Optional[ScenarioStep],
execution_state: Dict[str, Any],
environment_data: Dict[str, Any]) -> ContextFeatures:
"""Analyze current execution context"""
# Extract context features
target_responsiveness = environment_data.get('target_response_time', 1.0)
if target_responsiveness > 0:
target_responsiveness = min(1.0, 1.0 / target_responsiveness)
network_complexity = len(environment_data.get('discovered_hosts', [])) + \
len(environment_data.get('open_ports', [])) // 10
security_level = environment_data.get('security_posture', 'medium')
# Calculate time constraints
elapsed_time = (datetime.now() - execution_state.get('start_time', datetime.now())).total_seconds() / 60
estimated_duration = scenario.estimated_duration
time_remaining = max(0, estimated_duration - elapsed_time)
# Resource availability (simplified)
cpu_usage = environment_data.get('cpu_usage', 0.5)
memory_usage = environment_data.get('memory_usage', 0.5)
resource_availability = 1.0 - max(cpu_usage, memory_usage)
# Detection probability estimation
stealth_actions = execution_state.get('stealth_actions', 0)
total_actions = execution_state.get('total_actions', 1)
detection_probability = max(0, min(1, (total_actions - stealth_actions) / total_actions))
# Historical success rate
completed_steps = len(execution_state.get('completed_steps', []))
total_attempted = completed_steps + len(execution_state.get('failed_steps', []))
step_success_rate = completed_steps / max(1, total_attempted)
# Agent performance metrics
agent_performance = {}
for agent_name in ['recon', 'c2', 'post_exploit', 'safety', 'orchestrator']:
success_count = execution_state.get(f'{agent_name}_successes', 0)
total_count = execution_state.get(f'{agent_name}_attempts', 1)
agent_performance[agent_name] = success_count / total_count
context = ContextFeatures(
target_responsiveness=target_responsiveness,
network_complexity=network_complexity,
security_level=security_level,
time_constraints=int(time_remaining),
resource_availability=resource_availability,
detection_probability=detection_probability,
step_success_rate=step_success_rate,
agent_performance=agent_performance
)
self.logger.debug("Context analysis completed",
context=asdict(context))
return context
async def detect_adaptation_trigger(self,
scenario: RedTeamScenario,
current_step: Optional[ScenarioStep],
execution_state: Dict[str, Any],
context: ContextFeatures) -> Optional[AdaptationTrigger]:
"""Detect if workflow adaptation is needed"""
# Check for step failure
if execution_state.get('last_step_failed', False):
return AdaptationTrigger.STEP_FAILURE
# Check for timeout risk
if context.time_constraints < scenario.estimated_duration * self.performance_thresholds['timeout_threshold']:
return AdaptationTrigger.TIMEOUT
# Check for performance degradation
if context.step_success_rate < self.performance_thresholds['success_rate_warning']:
return AdaptationTrigger.PERFORMANCE_DEGRADATION
# Check for security alert
if context.detection_probability > self.performance_thresholds['detection_risk_critical']:
return AdaptationTrigger.SECURITY_ALERT
# Check for resource constraints
if context.resource_availability < self.performance_thresholds['resource_critical']:
return AdaptationTrigger.RESOURCE_CONSTRAINT
# Check for significant context changes
last_context = execution_state.get('last_context')
if last_context and self._context_changed_significantly(context, last_context):
return AdaptationTrigger.CONTEXT_CHANGE
return None
def _context_changed_significantly(self,
current: ContextFeatures,
previous: ContextFeatures) -> bool:
"""Detect significant context changes"""
thresholds = {
'target_responsiveness': 0.3,
'network_complexity': 5,
'resource_availability': 0.2,
'detection_probability': 0.2
}
changes = {
'target_responsiveness': abs(current.target_responsiveness - previous.target_responsiveness),
'network_complexity': abs(current.network_complexity - previous.network_complexity),
'resource_availability': abs(current.resource_availability - previous.resource_availability),
'detection_probability': abs(current.detection_probability - previous.detection_probability)
}
return any(change > thresholds[key] for key, change in changes.items())
async def make_adaptation_decision(self,
trigger: AdaptationTrigger,
scenario: RedTeamScenario,
current_step: Optional[ScenarioStep],
context: ContextFeatures,
execution_state: Dict[str, Any]) -> AdaptationDecision:
"""Make an adaptation decision based on context and trigger"""
# Use ML model if trained, otherwise use rule-based approach
if self.model_trained:
decision = await self._ml_based_decision(trigger, context, execution_state)
else:
decision = await self._rule_based_decision(trigger, scenario, current_step, context, execution_state)
# Log decision
self.logger.info("Adaptation decision made",
trigger=trigger.value,
strategy=decision.strategy.value,
confidence=decision.confidence,
reasoning=decision.reasoning)
# Store for learning
self.adaptation_history.append({
'trigger': trigger,
'context': asdict(context),
'decision': asdict(decision),
'timestamp': datetime.now()
})
return decision
async def _rule_based_decision(self,
trigger: AdaptationTrigger,
scenario: RedTeamScenario,
current_step: Optional[ScenarioStep],
context: ContextFeatures,
execution_state: Dict[str, Any]) -> AdaptationDecision:
"""Make adaptation decision using rule-based logic"""
# Get applicable rules for the trigger
rules = self.adaptation_rules.get(trigger, [])
# Apply rules and collect recommendations
recommendations = []
for rule in rules:
try:
recommendation = await rule(scenario, current_step, context, execution_state)
if recommendation:
recommendations.append(recommendation)
except Exception as e:
self.logger.warning(f"Rule application failed: {rule.__name__}", error=str(e))
# Select best recommendation
if not recommendations:
# Default fallback strategy
return AdaptationDecision(
trigger=trigger,
strategy=AdaptationStrategy.RETRY_WITH_MODIFICATION,
parameters={'retry_count': 1, 'modify_timeout': True},
confidence=0.5,
reasoning="Default fallback strategy",
estimated_impact={'success_probability': 0.6, 'time_cost': 0.1}
)
# Score recommendations and select best
best_recommendation = max(recommendations, key=lambda x: x.confidence)
return best_recommendation
async def _ml_based_decision(self,
trigger: AdaptationTrigger,
context: ContextFeatures,
execution_state: Dict[str, Any]) -> AdaptationDecision:
"""Make adaptation decision using ML model"""
# Prepare features for ML model
features = self._prepare_ml_features(trigger, context, execution_state)
features_scaled = self.feature_scaler.transform([features])
# Predict best strategy
strategy_probs = self.adaptation_model.predict_proba(features_scaled)[0]
best_strategy_idx = np.argmax(strategy_probs)
confidence = strategy_probs[best_strategy_idx]
# Map to strategy enum
strategies = list(AdaptationStrategy)
best_strategy = strategies[best_strategy_idx]
# Generate parameters based on strategy and context
parameters = self._generate_strategy_parameters(best_strategy, context)
return AdaptationDecision(
trigger=trigger,
strategy=best_strategy,
parameters=parameters,
confidence=confidence,
reasoning="ML model prediction",
estimated_impact=self._estimate_strategy_impact(best_strategy, context)
)
def _prepare_ml_features(self,
trigger: AdaptationTrigger,
context: ContextFeatures,
execution_state: Dict[str, Any]) -> List[float]:
"""Prepare features for ML model"""
trigger_features = [0] * len(AdaptationTrigger)
trigger_features[list(AdaptationTrigger).index(trigger)] = 1
context_features = [
context.target_responsiveness,
context.network_complexity / 100.0, # Normalize
{'low': 0.25, 'medium': 0.5, 'high': 0.75, 'critical': 1.0}[context.security_level],
context.time_constraints / 480.0, # Normalize to 8 hours max
context.resource_availability,
context.detection_probability,
context.step_success_rate,
np.mean(list(context.agent_performance.values()))
]
execution_features = [
len(execution_state.get('completed_steps', [])) / 20.0, # Normalize
len(execution_state.get('failed_steps', [])) / 10.0, # Normalize
execution_state.get('retry_count', 0) / 5.0 # Normalize
]
return trigger_features + context_features + execution_features
async def apply_adaptation(self,
decision: AdaptationDecision,
scenario: RedTeamScenario,
current_step: Optional[ScenarioStep],
execution_state: Dict[str, Any]) -> Dict[str, Any]:
"""Apply the adaptation decision to the workflow"""
self.logger.info(f"Applying adaptation strategy: {decision.strategy.value}",
confidence=decision.confidence,
parameters=decision.parameters)
# Get strategy implementation
strategy_impl = self.strategy_implementations.get(decision.strategy)
if not strategy_impl:
raise CyberLLMError(
f"No implementation for strategy: {decision.strategy}",
ErrorCategory.SYSTEM
)
# Apply strategy
try:
result = await strategy_impl(decision, scenario, current_step, execution_state)
# Log success
self.logger.info("Adaptation applied successfully",
strategy=decision.strategy.value,
result_type=type(result).__name__)
return result
except Exception as e:
self.logger.error("Adaptation application failed",
strategy=decision.strategy.value,
error=str(e))
raise
# Rule implementations
async def _handle_step_failure(self,
scenario: RedTeamScenario,
current_step: Optional[ScenarioStep],
context: ContextFeatures,
execution_state: Dict[str, Any]) -> Optional[AdaptationDecision]:
"""Handle step failure"""
if not current_step:
return None
retry_count = execution_state.get('retry_count', 0)
if retry_count < current_step.retry_count:
return AdaptationDecision(
trigger=AdaptationTrigger.STEP_FAILURE,
strategy=AdaptationStrategy.RETRY_WITH_MODIFICATION,
parameters={
'retry_count': retry_count + 1,
'timeout_multiplier': 1.5,
'parameter_adjustment': True
},
confidence=0.7,
reasoning="Step can be retried with modifications",
estimated_impact={'success_probability': 0.6, 'time_cost': 0.2}
)
return AdaptationDecision(
trigger=AdaptationTrigger.STEP_FAILURE,
strategy=AdaptationStrategy.ALTERNATIVE_PATH,
parameters={'skip_failed_step': True, 'find_alternative': True},
confidence=0.6,
reasoning="Max retries reached, seeking alternative path",
estimated_impact={'success_probability': 0.5, 'time_cost': 0.1}
)
async def _handle_timeout(self,
scenario: RedTeamScenario,
current_step: Optional[ScenarioStep],
context: ContextFeatures,
execution_state: Dict[str, Any]) -> Optional[AdaptationDecision]:
"""Handle timeout scenarios"""
if context.time_constraints < scenario.estimated_duration * 0.2: # Less than 20% time remaining
return AdaptationDecision(
trigger=AdaptationTrigger.TIMEOUT,
strategy=AdaptationStrategy.PARALLEL_EXECUTION,
parameters={'max_parallel_agents': 3, 'prioritize_critical': True},
confidence=0.8,
reasoning="Critical time constraint, enabling parallel execution",
estimated_impact={'success_probability': 0.7, 'time_cost': -0.3}
)
return AdaptationDecision(
trigger=AdaptationTrigger.TIMEOUT,
strategy=AdaptationStrategy.PARAMETER_TUNING,
parameters={'reduce_timeout': 0.8, 'increase_aggressiveness': True},
confidence=0.6,
reasoning="Moderate time pressure, optimizing parameters",
estimated_impact={'success_probability': 0.6, 'time_cost': -0.1}
)
# Strategy implementations
async def _implement_retry_modification(self,
decision: AdaptationDecision,
scenario: RedTeamScenario,
current_step: Optional[ScenarioStep],
execution_state: Dict[str, Any]) -> Dict[str, Any]:
"""Implement retry with modification strategy"""
if not current_step:
return {'action': 'no_step_to_retry'}
# Create modified step
modified_step = ScenarioStep(
id=f"{current_step.id}_retry_{decision.parameters.get('retry_count', 1)}",
name=f"{current_step.name} (Retry)",
description=current_step.description,
agent_type=current_step.agent_type,
dependencies=current_step.dependencies,
parameters=current_step.parameters.copy(),
timeout=int(current_step.timeout * decision.parameters.get('timeout_multiplier', 1.0)),
retry_count=current_step.retry_count,
critical=current_step.critical,
parallel_group=current_step.parallel_group
)
# Adjust parameters if requested
if decision.parameters.get('parameter_adjustment'):
modified_step.parameters['retry_mode'] = True
modified_step.parameters['increased_verbosity'] = True
return {
'action': 'retry_step',
'modified_step': modified_step,
'original_step': current_step
}
async def _implement_alternative_path(self,
decision: AdaptationDecision,
scenario: RedTeamScenario,
current_step: Optional[ScenarioStep],
execution_state: Dict[str, Any]) -> Dict[str, Any]:
"""Implement alternative path strategy"""
# Find alternative steps that can achieve similar objectives
alternative_steps = []
if current_step and current_step.agent_type == 'recon':
# Alternative reconnaissance methods
alt_step = ScenarioStep(
id=f"alt_recon_{uuid.uuid4().hex[:8]}",
name="Alternative Reconnaissance",
description="Alternative information gathering approach",
agent_type="recon",
dependencies=current_step.dependencies,
parameters={
'alternative_method': True,
'stealth_priority': True,
'reduced_scope': True
},
timeout=current_step.timeout // 2
)
alternative_steps.append(alt_step)
elif current_step and current_step.agent_type == 'c2':
# Alternative C2 methods
alt_step = ScenarioStep(
id=f"alt_c2_{uuid.uuid4().hex[:8]}",
name="Alternative Command & Control",
description="Alternative C2 establishment method",
agent_type="c2",
dependencies=current_step.dependencies,
parameters={
'backup_method': True,
'lower_profile': True
},
timeout=current_step.timeout
)
alternative_steps.append(alt_step)
return {
'action': 'alternative_path',
'alternative_steps': alternative_steps,
'skip_original': decision.parameters.get('skip_failed_step', False)
}
async def _implement_parameter_tuning(self,
decision: AdaptationDecision,
scenario: RedTeamScenario,
current_step: Optional[ScenarioStep],
execution_state: Dict[str, Any]) -> Dict[str, Any]:
"""Implement parameter tuning strategy"""
tuning_recommendations = {}
# Global parameter adjustments
if decision.parameters.get('reduce_timeout'):
tuning_recommendations['global_timeout_multiplier'] = decision.parameters['reduce_timeout']
if decision.parameters.get('increase_aggressiveness'):
tuning_recommendations['aggressiveness_level'] = 'high'
tuning_recommendations['stealth_level'] = 'medium'
# Step-specific adjustments
if current_step:
step_adjustments = {}
if current_step.agent_type == 'recon':
step_adjustments['scan_intensity'] = 'high'
step_adjustments['parallel_scans'] = True
elif current_step.agent_type == 'c2':
step_adjustments['connection_attempts'] = 5
step_adjustments['fallback_protocols'] = True
tuning_recommendations['step_adjustments'] = step_adjustments
return {
'action': 'parameter_tuning',
'tuning_recommendations': tuning_recommendations
}
async def _implement_parallel_execution(self,
decision: AdaptationDecision,
scenario: RedTeamScenario,
current_step: Optional[ScenarioStep],
execution_state: Dict[str, Any]) -> Dict[str, Any]:
"""Implement parallel execution strategy"""
max_parallel = decision.parameters.get('max_parallel_agents', 3)
prioritize_critical = decision.parameters.get('prioritize_critical', False)
# Identify steps that can be run in parallel
remaining_steps = [step for step in scenario.steps
if step.id not in execution_state.get('completed_steps', [])]
parallel_groups = {}
for step in remaining_steps:
# Group steps that can run in parallel
if not step.dependencies or all(dep in execution_state.get('completed_steps', [])
for dep in step.dependencies):
group_key = step.parallel_group or f"auto_parallel_{step.agent_type}"
if group_key not in parallel_groups:
parallel_groups[group_key] = []
parallel_groups[group_key].append(step)
return {
'action': 'enable_parallel_execution',
'parallel_groups': parallel_groups,
'max_parallel_agents': max_parallel,
'prioritize_critical': prioritize_critical
}
async def _implement_emergency_stop(self,
decision: AdaptationDecision,
scenario: RedTeamScenario,
current_step: Optional[ScenarioStep],
execution_state: Dict[str, Any]) -> Dict[str, Any]:
"""Implement emergency stop strategy"""
return {
'action': 'emergency_stop',
'reason': decision.reasoning,
'safe_shutdown': True,
'preserve_state': True
}
def train_adaptation_model(self, training_data: List[Dict[str, Any]]):
"""Train ML model for adaptation decisions"""
if len(training_data) < 100: # Need sufficient training data
self.logger.warning("Insufficient training data for ML model")
return
# Prepare training data
X = []
y = []
for record in training_data:
features = self._prepare_ml_features(
record['trigger'],
ContextFeatures(**record['context']),
record['execution_state']
)
X.append(features)
y.append(list(AdaptationStrategy).index(record['best_strategy']))
X = np.array(X)
y = np.array(y)
# Scale features
X_scaled = self.feature_scaler.fit_transform(X)
# Train model
self.adaptation_model = RandomForestClassifier(
n_estimators=100,
max_depth=10,
random_state=42
)
self.adaptation_model.fit(X_scaled, y)
self.model_trained = True
self.logger.info("Adaptation model trained successfully",
training_samples=len(training_data),
accuracy=self.adaptation_model.score(X_scaled, y))
def save_model(self, model_path: str):
"""Save trained model to disk"""
if self.model_trained:
model_data = {
'model': self.adaptation_model,
'scaler': self.feature_scaler,
'history': self.adaptation_history[-1000:] # Keep last 1000 records
}
with open(model_path, 'wb') as f:
pickle.dump(model_data, f)
self.logger.info(f"Model saved to {model_path}")
def load_model(self, model_path: str):
"""Load trained model from disk"""
if os.path.exists(model_path):
with open(model_path, 'rb') as f:
model_data = pickle.load(f)
self.adaptation_model = model_data['model']
self.feature_scaler = model_data['scaler']
self.adaptation_history.extend(model_data.get('history', []))
self.model_trained = True
self.logger.info(f"Model loaded from {model_path}")
# Example usage
if __name__ == "__main__":
import asyncio
async def main():
# Initialize adaptation engine
engine = WorkflowAdaptationEngine()
# Mock context and scenario for testing
from .multi_agent_scenarios import RedTeamScenario, ScenarioType
mock_scenario = RedTeamScenario(
id="test_scenario",
name="Test Scenario",
description="Test scenario for adaptation",
scenario_type=ScenarioType.RED_TEAM_EXERCISE,
target_environment={},
steps=[],
success_criteria={},
safety_constraints=[],
estimated_duration=120,
difficulty_level="intermediate"
)
mock_context = ContextFeatures(
target_responsiveness=0.8,
network_complexity=15,
security_level="high",
time_constraints=30,
resource_availability=0.4,
detection_probability=0.6,
step_success_rate=0.4,
agent_performance={'recon': 0.8, 'c2': 0.6}
)
# Detect adaptation trigger
trigger = await engine.detect_adaptation_trigger(
mock_scenario, None, {'last_step_failed': True}, mock_context
)
if trigger:
print(f"Detected trigger: {trigger.value}")
# Make adaptation decision
decision = await engine.make_adaptation_decision(
trigger, mock_scenario, None, mock_context, {}
)
print(f"Adaptation decision: {decision.strategy.value}")
print(f"Confidence: {decision.confidence:.2f}")
print(f"Reasoning: {decision.reasoning}")
asyncio.run(main())
|