File size: 18,229 Bytes
23804b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 |
"""
Data Preprocessing Pipeline for Cyber-LLM
Handles cleaning, tokenization, and preparation of cybersecurity training data.
"""
import os
import json
import logging
import argparse
from pathlib import Path
from typing import Dict, List, Any, Optional, Tuple
import re
from dataclasses import dataclass
try:
from transformers import AutoTokenizer
import numpy as np
from sklearn.model_selection import train_test_split
import dvc.api
except ImportError:
print("Required packages not installed. Run: pip install transformers scikit-learn dvc")
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
@dataclass
class ProcessingConfig:
"""Configuration for data preprocessing."""
max_sequence_length: int = 2048
min_sequence_length: int = 128
overlap_ratio: float = 0.1
validation_split: float = 0.15
test_split: float = 0.1
tokenizer_name: str = "microsoft/DialoGPT-medium"
special_tokens: Dict[str, str] = None
def __post_init__(self):
if self.special_tokens is None:
self.special_tokens = {
"recon_token": "<|RECON|>",
"c2_token": "<|C2|>",
"postexploit_token": "<|POSTEXPLOIT|>",
"opsec_token": "<|OPSEC|>",
"explain_token": "<|EXPLAIN|>",
"safety_token": "<|SAFETY|>"
}
class CyberDataPreprocessor:
"""Advanced data preprocessor for cybersecurity domain."""
def __init__(self, config: ProcessingConfig):
self.config = config
self.tokenizer = None
self.document_stats = {}
self._initialize_tokenizer()
def _initialize_tokenizer(self):
"""Initialize tokenizer with special tokens."""
logger.info(f"Loading tokenizer: {self.config.tokenizer_name}")
self.tokenizer = AutoTokenizer.from_pretrained(
self.config.tokenizer_name,
trust_remote_code=True
)
# Add special tokens
special_tokens_dict = {
'additional_special_tokens': list(self.config.special_tokens.values())
}
num_added_toks = self.tokenizer.add_special_tokens(special_tokens_dict)
logger.info(f"Added {num_added_toks} special tokens")
# Set pad token if not exists
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
def load_raw_data(self, data_dir: Path) -> List[Dict]:
"""Load and parse raw JSON data files."""
logger.info(f"Loading data from: {data_dir}")
json_files = list(data_dir.glob('**/*.json'))
documents = []
for json_file in json_files:
if json_file.name in ['conversion_report.json', 'metadata.json']:
continue
try:
with open(json_file, 'r', encoding='utf-8') as f:
data = json.load(f)
# Extract relevant fields
if 'content' in data and 'metadata' in data:
doc = {
'id': json_file.stem,
'content': data['content'],
'source_type': data['metadata'].get('source_type', 'unknown'),
'filename': data['metadata'].get('filename', ''),
'source_file': str(json_file)
}
documents.append(doc)
except Exception as e:
logger.error(f"Error loading {json_file}: {str(e)}")
logger.info(f"Loaded {len(documents)} documents")
return documents
def clean_and_structure_text(self, documents: List[Dict]) -> List[Dict]:
"""Clean and structure text content."""
logger.info("Cleaning and structuring text content")
cleaned_documents = []
for doc in documents:
try:
content = doc['content']
# Clean content
cleaned_content = self._clean_text(content)
# Structure based on document type
structured_content = self._structure_by_type(
cleaned_content,
doc['source_type']
)
# Add special tokens based on content type
tagged_content = self._add_domain_tags(
structured_content,
doc['source_type']
)
doc['cleaned_content'] = cleaned_content
doc['structured_content'] = structured_content
doc['tagged_content'] = tagged_content
cleaned_documents.append(doc)
except Exception as e:
logger.error(f"Error processing document {doc['id']}: {str(e)}")
continue
logger.info(f"Cleaned {len(cleaned_documents)} documents")
return cleaned_documents
def _clean_text(self, text: str) -> str:
"""Clean raw text content."""
# Remove excessive whitespace
text = re.sub(r'\s+', ' ', text)
# Remove page numbers and headers/footers
text = re.sub(r'Page \d+', '', text)
text = re.sub(r'\n{3,}', '\n\n', text)
# Fix common OCR errors
text = re.sub(r'([a-z])([A-Z])', r'\1 \2', text) # Missing spaces
text = re.sub(r'(\w)(\d)', r'\1 \2', text) # Word-number separation
# Normalize quotes and dashes
text = text.replace('"', '"').replace('"', '"')
text = text.replace('–', '-').replace('—', '-')
# Remove artifacts
text = re.sub(r'^\s*[•\-\*]\s*', '', text, flags=re.MULTILINE)
return text.strip()
def _structure_by_type(self, content: str, doc_type: str) -> str:
"""Structure content based on document type."""
if doc_type == 'mitre_attack':
return self._structure_mitre_content(content)
elif doc_type == 'apt_report':
return self._structure_apt_report(content)
elif doc_type == 'opsec_guide':
return self._structure_opsec_content(content)
elif doc_type == 'malware_analysis':
return self._structure_malware_content(content)
else:
return content
def _structure_mitre_content(self, content: str) -> str:
"""Structure MITRE ATT&CK content."""
# Find and structure tactics/techniques
sections = []
# Look for technique patterns
technique_pattern = r'(T\d{4}(?:\.\d{3})?)\s*[-:]\s*([^\n]+)'
techniques = re.findall(technique_pattern, content)
if techniques:
sections.append("MITRE ATT&CK Techniques:")
for tech_id, tech_name in techniques:
sections.append(f"- {tech_id}: {tech_name}")
# Look for tactic sections
tactic_pattern = r'(Initial Access|Execution|Persistence|Privilege Escalation|Defense Evasion|Credential Access|Discovery|Lateral Movement|Collection|Exfiltration|Command and Control|Impact)'
current_section = None
for line in content.split('\n'):
tactic_match = re.search(tactic_pattern, line, re.IGNORECASE)
if tactic_match:
current_section = tactic_match.group(1)
sections.append(f"\n{current_section}:")
elif current_section and line.strip():
sections.append(f" {line.strip()}")
return '\n'.join(sections) if sections else content
def _structure_apt_report(self, content: str) -> str:
"""Structure APT report content."""
sections = []
# Extract IOCs
ip_pattern = r'\b(?:\d{1,3}\.){3}\d{1,3}\b'
domain_pattern = r'\b[a-zA-Z0-9](?:[a-zA-Z0-9-]{0,61}[a-zA-Z0-9])?(?:\.[a-zA-Z0-9](?:[a-zA-Z0-9-]{0,61}[a-zA-Z0-9])?)+\b'
hash_pattern = r'\b[a-fA-F0-9]{32,64}\b'
ips = re.findall(ip_pattern, content)
domains = re.findall(domain_pattern, content)
hashes = re.findall(hash_pattern, content)
if ips or domains or hashes:
sections.append("Indicators of Compromise (IOCs):")
if ips:
sections.append(f"IPs: {', '.join(set(ips[:10]))}") # Limit to first 10
if domains:
sections.append(f"Domains: {', '.join(set(domains[:10]))}")
if hashes:
sections.append(f"Hashes: {', '.join(set(hashes[:5]))}")
# Extract TTPs
ttp_keywords = ['technique', 'tactic', 'procedure', 'method', 'attack']
ttp_lines = []
for line in content.split('\n'):
if any(keyword in line.lower() for keyword in ttp_keywords):
ttp_lines.append(line.strip())
if ttp_lines:
sections.append("\nTTPs (Tactics, Techniques, Procedures):")
sections.extend(f"- {line}" for line in ttp_lines[:10])
sections.append(f"\nFull Report:\n{content}")
return '\n'.join(sections)
def _structure_opsec_content(self, content: str) -> str:
"""Structure OPSEC guide content."""
sections = []
# Look for OPSEC principles/rules
opsec_keywords = ['stealth', 'detection', 'evasion', 'anonymity', 'operational security']
opsec_lines = []
for line in content.split('\n'):
if any(keyword in line.lower() for keyword in opsec_keywords):
opsec_lines.append(line.strip())
if opsec_lines:
sections.append("OPSEC Guidelines:")
sections.extend(f"- {line}" for line in opsec_lines[:15])
sections.append(f"\nDetailed Content:\n{content}")
return '\n'.join(sections)
def _structure_malware_content(self, content: str) -> str:
"""Structure malware analysis content."""
sections = []
# Extract analysis sections
analysis_sections = ['summary', 'behavior', 'network', 'filesystem', 'registry']
for section in analysis_sections:
pattern = rf'{section}[:\s]+(.*?)(?=\n[a-z]+:|$)'
match = re.search(pattern, content, re.IGNORECASE | re.DOTALL)
if match:
sections.append(f"{section.title()}: {match.group(1).strip()}")
return '\n'.join(sections) if sections else content
def _add_domain_tags(self, content: str, doc_type: str) -> str:
"""Add domain-specific special tokens."""
tag_mapping = {
'mitre_attack': self.config.special_tokens['recon_token'],
'apt_report': self.config.special_tokens['postexploit_token'],
'opsec_guide': self.config.special_tokens['opsec_token'],
'malware_analysis': self.config.special_tokens['postexploit_token']
}
tag = tag_mapping.get(doc_type, '')
if tag:
return f"{tag} {content}"
return content
def create_training_sequences(self, documents: List[Dict]) -> List[Dict]:
"""Create training sequences with proper tokenization."""
logger.info("Creating training sequences")
sequences = []
for doc in documents:
content = doc['tagged_content']
# Tokenize content
tokens = self.tokenizer.encode(content, add_special_tokens=True)
# Create overlapping sequences
seq_length = self.config.max_sequence_length
overlap = int(seq_length * self.config.overlap_ratio)
for i in range(0, len(tokens), seq_length - overlap):
seq_tokens = tokens[i:i + seq_length]
# Skip sequences that are too short
if len(seq_tokens) < self.config.min_sequence_length:
continue
# Pad sequence if necessary
if len(seq_tokens) < seq_length:
seq_tokens.extend([self.tokenizer.pad_token_id] * (seq_length - len(seq_tokens)))
sequence = {
'input_ids': seq_tokens,
'attention_mask': [1 if token != self.tokenizer.pad_token_id else 0 for token in seq_tokens],
'labels': seq_tokens.copy(), # For language modeling
'source_type': doc['source_type'],
'document_id': doc['id'],
'sequence_index': i // (seq_length - overlap)
}
sequences.append(sequence)
logger.info(f"Created {len(sequences)} training sequences")
return sequences
def split_data(self, sequences: List[Dict]) -> Tuple[List[Dict], List[Dict], List[Dict]]:
"""Split data into train/validation/test sets."""
logger.info("Splitting data into train/validation/test sets")
# Group sequences by document to ensure proper splitting
doc_sequences = {}
for seq in sequences:
doc_id = seq['document_id']
if doc_id not in doc_sequences:
doc_sequences[doc_id] = []
doc_sequences[doc_id].append(seq)
# Split document IDs
doc_ids = list(doc_sequences.keys())
# First split: train + temp vs test
train_temp_ids, test_ids = train_test_split(
doc_ids,
test_size=self.config.test_split,
random_state=42,
shuffle=True
)
# Second split: train vs validation
val_size = self.config.validation_split / (1 - self.config.test_split)
train_ids, val_ids = train_test_split(
train_temp_ids,
test_size=val_size,
random_state=42,
shuffle=True
)
# Collect sequences for each split
train_sequences = []
val_sequences = []
test_sequences = []
for doc_id, doc_seqs in doc_sequences.items():
if doc_id in train_ids:
train_sequences.extend(doc_seqs)
elif doc_id in val_ids:
val_sequences.extend(doc_seqs)
else: # test_ids
test_sequences.extend(doc_seqs)
logger.info(f"Split: {len(train_sequences)} train, {len(val_sequences)} val, {len(test_sequences)} test")
return train_sequences, val_sequences, test_sequences
def save_processed_data(self, train_data: List[Dict], val_data: List[Dict],
test_data: List[Dict], output_dir: Path):
"""Save processed data to files."""
output_dir.mkdir(parents=True, exist_ok=True)
# Save datasets
datasets = {
'train': train_data,
'validation': val_data,
'test': test_data
}
for split_name, data in datasets.items():
output_file = output_dir / f'{split_name}.json'
logger.info(f"Saving {len(data)} {split_name} sequences to {output_file}")
with open(output_file, 'w', encoding='utf-8') as f:
json.dump(data, f, indent=2, ensure_ascii=False)
# Save tokenizer
tokenizer_dir = output_dir / 'tokenizer'
self.tokenizer.save_pretrained(tokenizer_dir)
# Save preprocessing metadata
metadata = {
'config': self.config.__dict__,
'splits': {
'train_size': len(train_data),
'validation_size': len(val_data),
'test_size': len(test_data)
},
'tokenizer_info': {
'vocab_size': self.tokenizer.vocab_size,
'model_max_length': self.tokenizer.model_max_length,
'special_tokens': self.config.special_tokens
}
}
metadata_file = output_dir / 'preprocessing_metadata.json'
with open(metadata_file, 'w', encoding='utf-8') as f:
json.dump(metadata, f, indent=2, ensure_ascii=False)
logger.info(f"Preprocessing complete. Data saved to {output_dir}")
def main():
parser = argparse.ArgumentParser(description='Preprocess cybersecurity data for Cyber-LLM')
parser.add_argument('--input', required=True, help='Input directory with raw JSON files')
parser.add_argument('--output', required=True, help='Output directory for processed data')
parser.add_argument('--config', help='Configuration file path')
parser.add_argument('--max-length', type=int, default=2048, help='Maximum sequence length')
parser.add_argument('--tokenizer', default='microsoft/DialoGPT-medium', help='Tokenizer model name')
args = parser.parse_args()
# Create configuration
config = ProcessingConfig(
max_sequence_length=args.max_length,
tokenizer_name=args.tokenizer
)
# Initialize preprocessor
preprocessor = CyberDataPreprocessor(config)
# Load and process data
input_dir = Path(args.input)
output_dir = Path(args.output)
# Load raw data
documents = preprocessor.load_raw_data(input_dir)
# Clean and structure
cleaned_documents = preprocessor.clean_and_structure_text(documents)
# Create training sequences
sequences = preprocessor.create_training_sequences(cleaned_documents)
# Split data
train_data, val_data, test_data = preprocessor.split_data(sequences)
# Save processed data
preprocessor.save_processed_data(train_data, val_data, test_data, output_dir)
logger.info("Data preprocessing completed successfully!")
if __name__ == '__main__':
main()
|