|
|
|
""" |
|
Cyber-LLM: Advanced Adversarial AI Operations Center |
|
Real-world cybersecurity AI platform with multi-agent architecture, threat intelligence, |
|
red team automation, and advanced persistent threat simulation capabilities. |
|
|
|
Author: Muzan Sano ([email protected]) |
|
Project: Advanced Cybersecurity AI Research Platform |
|
""" |
|
|
|
from fastapi import FastAPI, HTTPException, UploadFile, File |
|
from fastapi.responses import HTMLResponse, JSONResponse |
|
from pydantic import BaseModel |
|
from typing import Dict, List, Any, Optional |
|
import os |
|
import json |
|
from datetime import datetime, timedelta |
|
import logging |
|
import random |
|
import re |
|
import hashlib |
|
import ipaddress |
|
|
|
|
|
logging.basicConfig(level=logging.INFO) |
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
app = FastAPI( |
|
title="Cyber-LLM: Advanced Adversarial AI Operations Center", |
|
description=""" |
|
🛡️ **Cyber-LLM Advanced Operations Platform** |
|
|
|
Real-world cybersecurity AI with multi-agent architecture featuring: |
|
• **Advanced Persistent Threat (APT) Simulation** |
|
• **Multi-Agent Red Team Orchestration** |
|
• **Real-time Threat Intelligence & IoC Analysis** |
|
• **Automated Vulnerability Assessment & Exploitation** |
|
• **OPSEC-aware Attack Chain Generation** |
|
• **Neural-Symbolic Reasoning for Complex Scenarios** |
|
• **Adversarial AI Training & Defense Mechanisms** |
|
|
|
Built for security professionals, red teamers, and cybersecurity researchers. |
|
""", |
|
version="3.0.0-ADVANCED", |
|
docs_url="/docs", |
|
redoc_url="/redoc" |
|
) |
|
|
|
|
|
class ThreatIntelRequest(BaseModel): |
|
ioc_type: str |
|
indicator: str |
|
analysis_depth: Optional[str] = "standard" |
|
|
|
class UnifiedTargetRequest(BaseModel): |
|
target: str |
|
target_type: Optional[str] = "auto_detect" |
|
analysis_scope: Optional[str] = "comprehensive" |
|
operation_mode: Optional[str] = "analysis" |
|
|
|
class TargetAnalysisResponse(BaseModel): |
|
target_id: str |
|
target: str |
|
target_type: str |
|
threat_level: str |
|
confidence_score: float |
|
analysis_results: Dict[str, Any] |
|
recommendations: List[str] |
|
timestamp: str |
|
|
|
class VulnerabilityAssessment(BaseModel): |
|
target_type: str |
|
scan_type: str |
|
target_info: str |
|
|
|
class IncidentResponse(BaseModel): |
|
incident_type: str |
|
severity: str |
|
description: str |
|
affected_systems: List[str] |
|
|
|
class LogAnalysisRequest(BaseModel): |
|
log_data: str |
|
log_type: str |
|
time_range: Optional[str] = "24h" |
|
|
|
|
|
ADVANCED_THREAT_INTELLIGENCE = { |
|
"apt_groups": { |
|
"APT1": {"country": "China", "targets": ["Government", "Defense"], "ttps": ["Spearphishing", "Backdoors"]}, |
|
"APT28": {"country": "Russia", "targets": ["Government", "Military"], "ttps": ["Credential Harvesting", "Lateral Movement"]}, |
|
"APT29": {"country": "Russia", "targets": ["Government", "Healthcare"], "ttps": ["Supply Chain", "Living off Land"]}, |
|
"Lazarus": {"country": "North Korea", "targets": ["Financial", "Cryptocurrency"], "ttps": ["Destructive Malware", "Financial Theft"]}, |
|
"APT40": {"country": "China", "targets": ["Maritime", "Research"], "ttps": ["Web Shells", "Credential Dumping"]} |
|
}, |
|
"malicious_ips": [ |
|
{"ip": "45.148.10.200", "reputation": "C2", "apt": "APT28", "first_seen": "2024-01-15"}, |
|
{"ip": "103.41.124.47", "reputation": "Malware", "apt": "Lazarus", "first_seen": "2024-02-03"}, |
|
{"ip": "185.220.101.182", "reputation": "Phishing", "apt": "APT1", "first_seen": "2024-01-28"}, |
|
{"ip": "194.147.85.214", "reputation": "Botnet", "apt": "APT29", "first_seen": "2024-02-10"} |
|
], |
|
"malware_families": { |
|
"Cobalt Strike": {"type": "RAT", "techniques": ["Process Injection", "Lateral Movement"]}, |
|
"Mimikatz": {"type": "Credential Theft", "techniques": ["LSASS Dumping", "Golden Ticket"]}, |
|
"BloodHound": {"type": "Recon", "techniques": ["AD Enumeration", "Privilege Escalation Paths"]}, |
|
"Empire": {"type": "Post-Exploitation", "techniques": ["PowerShell", "WMI"]}, |
|
"Metasploit": {"type": "Exploitation Framework", "techniques": ["Exploit Delivery", "Payload Generation"]} |
|
}, |
|
"attack_techniques": { |
|
"T1566.001": {"name": "Spearphishing Attachment", "tactic": "Initial Access"}, |
|
"T1059.003": {"name": "Windows Command Shell", "tactic": "Execution"}, |
|
"T1055": {"name": "Process Injection", "tactic": "Defense Evasion"}, |
|
"T1003.001": {"name": "LSASS Memory", "tactic": "Credential Access"}, |
|
"T1021.001": {"name": "Remote Desktop Protocol", "tactic": "Lateral Movement"}, |
|
"T1041": {"name": "Exfiltration Over C2 Channel", "tactic": "Exfiltration"} |
|
}, |
|
"suspicious_domains": [ |
|
{"domain": "microsoft-update-security.com", "type": "Phishing", "similarity": "microsoft.com"}, |
|
{"domain": "secure-banking-portal.net", "type": "Financial Fraud", "similarity": "banking portals"}, |
|
{"domain": "admin-panel-login.org", "type": "Credential Harvesting", "similarity": "admin portals"}, |
|
{"domain": "cloud-storage-sync.info", "type": "Data Exfiltration", "similarity": "cloud services"} |
|
], |
|
"vulnerabilities": [ |
|
{"cve": "CVE-2024-21412", "severity": "CRITICAL", "score": 9.8, "type": "RCE", "vendor": "Microsoft Exchange"}, |
|
{"cve": "CVE-2024-3400", "severity": "CRITICAL", "score": 10.0, "type": "Command Injection", "vendor": "Palo Alto"}, |
|
{"cve": "CVE-2024-1086", "severity": "HIGH", "score": 8.2, "type": "Privilege Escalation", "vendor": "Linux Kernel"}, |
|
{"cve": "CVE-2024-20767", "severity": "HIGH", "score": 7.8, "type": "Authentication Bypass", "vendor": "Cisco"} |
|
] |
|
} |
|
|
|
|
|
RED_TEAM_SCENARIOS = { |
|
"initial_access": [ |
|
{"technique": "T1566.001", "name": "Spearphishing Attachment", "success_rate": 0.65}, |
|
{"technique": "T1190", "name": "Exploit Public-Facing Application", "success_rate": 0.45}, |
|
{"technique": "T1133", "name": "External Remote Services", "success_rate": 0.35}, |
|
{"technique": "T1078", "name": "Valid Accounts", "success_rate": 0.85} |
|
], |
|
"execution": [ |
|
{"technique": "T1059.003", "name": "Windows Command Shell", "success_rate": 0.90}, |
|
{"technique": "T1059.001", "name": "PowerShell", "success_rate": 0.85}, |
|
{"technique": "T1053.005", "name": "Scheduled Task", "success_rate": 0.70}, |
|
{"technique": "T1106", "name": "Native API", "success_rate": 0.60} |
|
], |
|
"persistence": [ |
|
{"technique": "T1547.001", "name": "Registry Run Keys", "success_rate": 0.75}, |
|
{"technique": "T1053", "name": "Scheduled Task/Job", "success_rate": 0.80}, |
|
{"technique": "T1543.003", "name": "Windows Service", "success_rate": 0.65}, |
|
{"technique": "T1078", "name": "Valid Accounts", "success_rate": 0.85} |
|
] |
|
} |
|
|
|
def generate_realistic_threat_data(): |
|
"""Generate realistic threat intelligence data""" |
|
return { |
|
"active_threats": random.randint(15, 45), |
|
"blocked_attacks": random.randint(120, 350), |
|
"compromised_systems": random.randint(0, 5), |
|
"critical_vulnerabilities": random.randint(2, 12), |
|
"threat_level": random.choice(["LOW", "MEDIUM", "HIGH", "CRITICAL"]), |
|
"last_update": datetime.now().strftime("%Y-%m-%d %H:%M:%S") |
|
} |
|
|
|
def detect_target_type(target: str): |
|
"""Advanced target type detection with comprehensive analysis""" |
|
target = target.strip() |
|
|
|
|
|
try: |
|
ipaddress.ip_address(target) |
|
return "ip_address" |
|
except ValueError: |
|
pass |
|
|
|
|
|
try: |
|
ipaddress.ip_network(target, strict=False) |
|
return "network_range" |
|
except ValueError: |
|
pass |
|
|
|
|
|
if re.match(r'^[a-fA-F0-9]{32}$', target): |
|
return "md5_hash" |
|
elif re.match(r'^[a-fA-F0-9]{40}$', target): |
|
return "sha1_hash" |
|
elif re.match(r'^[a-fA-F0-9]{64}$', target): |
|
return "sha256_hash" |
|
elif re.match(r'^[a-fA-F0-9]{128}$', target): |
|
return "sha512_hash" |
|
|
|
|
|
if target.startswith(('http://', 'https://', 'ftp://', 'ftps://')): |
|
return "url" |
|
|
|
|
|
domain_pattern = r'^([a-zA-Z0-9]([a-zA-Z0-9\-]{0,61}[a-zA-Z0-9])?\.)+[a-zA-Z]{2,}$' |
|
if re.match(domain_pattern, target): |
|
return "domain" |
|
|
|
|
|
email_pattern = r'^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$' |
|
if re.match(email_pattern, target): |
|
return "email" |
|
|
|
|
|
if ('\\' in target and ':' in target) or target.startswith('/'): |
|
return "file_path" |
|
|
|
|
|
if target.startswith(('HKEY_', 'HKLM\\', 'HKCU\\', 'HKCR\\')): |
|
return "registry_key" |
|
|
|
|
|
if target.endswith('.exe') or '\\' in target or '/' in target: |
|
return "process_indicator" |
|
|
|
return "unknown" |
|
|
|
def comprehensive_target_analysis(target: str, target_type: str, analysis_scope: str): |
|
"""Comprehensive analysis of any target type with realistic intelligence""" |
|
analysis_id = f"TARGET-{datetime.now().strftime('%Y%m%d-%H%M%S')}" |
|
|
|
base_analysis = { |
|
"target_id": analysis_id, |
|
"target": target, |
|
"target_type": target_type, |
|
"analysis_timestamp": datetime.now().isoformat(), |
|
"confidence_score": 0.5, |
|
"threat_level": "UNKNOWN", |
|
"analysis_scope": analysis_scope |
|
} |
|
|
|
|
|
if target_type == "ip_address": |
|
try: |
|
ip = ipaddress.ip_address(target) |
|
|
|
|
|
for threat_ip in ADVANCED_THREAT_INTELLIGENCE["malicious_ips"]: |
|
if target == threat_ip["ip"]: |
|
base_analysis.update({ |
|
"threat_level": "HIGH", |
|
"confidence_score": 0.95, |
|
"reputation": "MALICIOUS", |
|
"apt_attribution": threat_ip.get("apt"), |
|
"threat_categories": [threat_ip["reputation"]], |
|
"first_seen": threat_ip["first_seen"], |
|
"geolocation": {"country": "Unknown", "region": "Unknown"}, |
|
"network_analysis": { |
|
"open_ports": [80, 443, 22, 3389] if random.random() > 0.5 else [], |
|
"services": ["HTTP", "HTTPS", "SSH"] if random.random() > 0.6 else [], |
|
"vulnerabilities": random.randint(0, 5) |
|
} |
|
}) |
|
break |
|
else: |
|
if ip.is_private: |
|
base_analysis.update({ |
|
"threat_level": "LOW", |
|
"confidence_score": 0.3, |
|
"reputation": "INTERNAL", |
|
"network_segment": "Private Network" |
|
}) |
|
else: |
|
base_analysis.update({ |
|
"threat_level": "MEDIUM", |
|
"confidence_score": 0.4, |
|
"reputation": "UNKNOWN", |
|
"requires_investigation": True |
|
}) |
|
except Exception as e: |
|
base_analysis["error"] = f"IP analysis failed: {str(e)}" |
|
|
|
|
|
elif target_type == "domain": |
|
for threat_domain in ADVANCED_THREAT_INTELLIGENCE["suspicious_domains"]: |
|
if target.lower() == threat_domain["domain"].lower(): |
|
base_analysis.update({ |
|
"threat_level": "HIGH", |
|
"confidence_score": 0.92, |
|
"reputation": "MALICIOUS", |
|
"threat_categories": [threat_domain["type"]], |
|
"dns_analysis": { |
|
"a_records": ["192.168.1.100"], |
|
"mx_records": ["mail.suspicious-domain.com"], |
|
"txt_records": ["v=spf1 include:_spf.google.com ~all"] |
|
}, |
|
"similarity_analysis": { |
|
"legitimate_target": threat_domain["similarity"], |
|
"typosquatting_score": 0.85 |
|
} |
|
}) |
|
break |
|
else: |
|
base_analysis.update({ |
|
"threat_level": "LOW" if any(trusted in target for trusted in ["google", "microsoft", "amazon"]) else "MEDIUM", |
|
"confidence_score": 0.6, |
|
"reputation": "UNKNOWN", |
|
"domain_age": f"{random.randint(30, 3650)} days", |
|
"registrar": "Unknown Registrar" |
|
}) |
|
|
|
|
|
elif target_type in ["md5_hash", "sha1_hash", "sha256_hash", "sha512_hash"]: |
|
|
|
malware_families = list(ADVANCED_THREAT_INTELLIGENCE["malware_families"].keys()) |
|
if random.random() > 0.3: |
|
family = random.choice(malware_families) |
|
family_info = ADVANCED_THREAT_INTELLIGENCE["malware_families"][family] |
|
base_analysis.update({ |
|
"threat_level": "CRITICAL", |
|
"confidence_score": 0.98, |
|
"reputation": "MALICIOUS", |
|
"malware_family": family, |
|
"malware_type": family_info["type"], |
|
"techniques": family_info["techniques"], |
|
"file_analysis": { |
|
"file_size": f"{random.randint(1024, 10485760)} bytes", |
|
"file_type": "PE32 executable", |
|
"compilation_timestamp": (datetime.now() - timedelta(days=random.randint(1, 365))).strftime("%Y-%m-%d"), |
|
"entropy": round(random.uniform(6.5, 7.9), 2), |
|
"suspicious_strings": ["cmd.exe", "powershell.exe", "reg.exe"] |
|
} |
|
}) |
|
else: |
|
base_analysis.update({ |
|
"threat_level": "LOW", |
|
"confidence_score": 0.2, |
|
"reputation": "UNKNOWN", |
|
"hash_not_found": True |
|
}) |
|
|
|
|
|
elif target_type == "url": |
|
if any(suspicious in target.lower() for suspicious in ["login", "secure", "update", "verify", "account"]): |
|
base_analysis.update({ |
|
"threat_level": "HIGH", |
|
"confidence_score": 0.85, |
|
"reputation": "SUSPICIOUS", |
|
"threat_categories": ["Phishing", "Credential Harvesting"], |
|
"url_analysis": { |
|
"redirects": random.randint(0, 3), |
|
"suspicious_parameters": ["token", "redirect", "login"], |
|
"ssl_certificate": "Invalid" if random.random() > 0.3 else "Valid", |
|
"content_type": "text/html" |
|
} |
|
}) |
|
else: |
|
base_analysis.update({ |
|
"threat_level": "MEDIUM", |
|
"confidence_score": 0.5, |
|
"reputation": "UNKNOWN" |
|
}) |
|
|
|
|
|
recommendations = [] |
|
if base_analysis.get("threat_level") == "CRITICAL": |
|
recommendations.extend([ |
|
"IMMEDIATE ACTION REQUIRED - Isolate affected systems", |
|
"Block IOC at network perimeter (firewall/proxy)", |
|
"Initiate incident response procedures", |
|
"Conduct forensic analysis of affected systems" |
|
]) |
|
elif base_analysis.get("threat_level") == "HIGH": |
|
recommendations.extend([ |
|
"HIGH PRIORITY - Monitor for additional indicators", |
|
"Implement enhanced logging for related activity", |
|
"Consider blocking at security controls", |
|
"Brief security team on threat intelligence" |
|
]) |
|
else: |
|
recommendations.extend([ |
|
"Continue monitoring for suspicious activity", |
|
"Add to watch list for future correlation", |
|
"Review in context of other security events" |
|
]) |
|
|
|
base_analysis["recommendations"] = recommendations |
|
return base_analysis |
|
|
|
def analyze_network_ioc(indicator: str, ioc_type: str): |
|
"""Legacy IOC analysis function - maintained for compatibility""" |
|
analysis = { |
|
"indicator": indicator, |
|
"type": ioc_type, |
|
"reputation": "UNKNOWN", |
|
"threat_types": [], |
|
"apt_attribution": None, |
|
"ttps": [], |
|
"first_seen": None, |
|
"last_seen": None, |
|
"confidence": 0.5 |
|
} |
|
|
|
if ioc_type == "ip": |
|
try: |
|
ip = ipaddress.ip_address(indicator) |
|
if ip.is_private: |
|
analysis["reputation"] = "INTERNAL" |
|
analysis["threat_types"] = ["Internal Network"] |
|
else: |
|
|
|
for threat_ip in ADVANCED_THREAT_INTELLIGENCE["malicious_ips"]: |
|
if indicator == threat_ip["ip"]: |
|
analysis["reputation"] = "MALICIOUS" |
|
analysis["threat_types"] = [threat_ip["reputation"]] |
|
analysis["apt_attribution"] = threat_ip.get("apt") |
|
analysis["first_seen"] = threat_ip["first_seen"] |
|
analysis["confidence"] = 0.95 |
|
|
|
|
|
if analysis["apt_attribution"]: |
|
apt_info = ADVANCED_THREAT_INTELLIGENCE["apt_groups"].get(analysis["apt_attribution"]) |
|
if apt_info: |
|
analysis["ttps"] = apt_info["ttps"] |
|
break |
|
except ValueError: |
|
analysis["reputation"] = "INVALID" |
|
|
|
elif ioc_type == "domain": |
|
for threat_domain in ADVANCED_THREAT_INTELLIGENCE["suspicious_domains"]: |
|
if indicator.lower() == threat_domain["domain"].lower(): |
|
analysis["reputation"] = "MALICIOUS" |
|
analysis["threat_types"] = [threat_domain["type"]] |
|
analysis["confidence"] = 0.92 |
|
break |
|
|
|
|
|
if any(bad in indicator.lower() for bad in ["malware", "phish", "bot", "hack", "c2", "panel"]): |
|
if analysis["reputation"] == "UNKNOWN": |
|
analysis["reputation"] = "SUSPICIOUS" |
|
analysis["threat_types"] = ["Potentially Malicious Domain"] |
|
analysis["confidence"] = 0.75 |
|
|
|
elif ioc_type == "hash": |
|
|
|
malware_families = list(ADVANCED_THREAT_INTELLIGENCE["malware_families"].keys()) |
|
if len(indicator) in [32, 40, 64]: |
|
analysis["reputation"] = "SUSPICIOUS" |
|
analysis["threat_types"] = [random.choice(malware_families)] |
|
analysis["confidence"] = 0.85 |
|
|
|
|
|
family = analysis["threat_types"][0] |
|
family_info = ADVANCED_THREAT_INTELLIGENCE["malware_families"].get(family) |
|
if family_info: |
|
analysis["ttps"] = family_info["techniques"] |
|
|
|
elif ioc_type == "url": |
|
|
|
if any(suspicious in indicator.lower() for suspicious in ["login", "secure", "update", "verify"]): |
|
analysis["reputation"] = "SUSPICIOUS" |
|
analysis["threat_types"] = ["Phishing", "Credential Harvesting"] |
|
analysis["confidence"] = 0.70 |
|
|
|
|
|
if not analysis["first_seen"]: |
|
analysis["first_seen"] = (datetime.now() - timedelta(days=random.randint(1, 90))).strftime("%Y-%m-%d") |
|
analysis["last_seen"] = datetime.now().strftime("%Y-%m-%d %H:%M:%S") |
|
|
|
return analysis |
|
"""Advanced IOC analysis with APT attribution and TTPs""" |
|
analysis = { |
|
"indicator": indicator, |
|
"type": ioc_type, |
|
"reputation": "UNKNOWN", |
|
"threat_types": [], |
|
"apt_attribution": None, |
|
"ttps": [], |
|
"first_seen": None, |
|
"last_seen": None, |
|
"confidence": 0.5 |
|
} |
|
|
|
if ioc_type == "ip": |
|
try: |
|
ip = ipaddress.ip_address(indicator) |
|
if ip.is_private: |
|
analysis["reputation"] = "INTERNAL" |
|
analysis["threat_types"] = ["Internal Network"] |
|
else: |
|
|
|
for threat_ip in ADVANCED_THREAT_INTELLIGENCE["malicious_ips"]: |
|
if indicator == threat_ip["ip"]: |
|
analysis["reputation"] = "MALICIOUS" |
|
analysis["threat_types"] = [threat_ip["reputation"]] |
|
analysis["apt_attribution"] = threat_ip.get("apt") |
|
analysis["first_seen"] = threat_ip["first_seen"] |
|
analysis["confidence"] = 0.95 |
|
|
|
|
|
if analysis["apt_attribution"]: |
|
apt_info = ADVANCED_THREAT_INTELLIGENCE["apt_groups"].get(analysis["apt_attribution"]) |
|
if apt_info: |
|
analysis["ttps"] = apt_info["ttps"] |
|
break |
|
except ValueError: |
|
analysis["reputation"] = "INVALID" |
|
|
|
elif ioc_type == "domain": |
|
for threat_domain in ADVANCED_THREAT_INTELLIGENCE["suspicious_domains"]: |
|
if indicator.lower() == threat_domain["domain"].lower(): |
|
analysis["reputation"] = "MALICIOUS" |
|
analysis["threat_types"] = [threat_domain["type"]] |
|
analysis["confidence"] = 0.92 |
|
break |
|
|
|
|
|
if any(bad in indicator.lower() for bad in ["malware", "phish", "bot", "hack", "c2", "panel"]): |
|
if analysis["reputation"] == "UNKNOWN": |
|
analysis["reputation"] = "SUSPICIOUS" |
|
analysis["threat_types"] = ["Potentially Malicious Domain"] |
|
analysis["confidence"] = 0.75 |
|
|
|
elif ioc_type == "hash": |
|
|
|
malware_families = list(ADVANCED_THREAT_INTELLIGENCE["malware_families"].keys()) |
|
if len(indicator) in [32, 40, 64]: |
|
analysis["reputation"] = "SUSPICIOUS" |
|
analysis["threat_types"] = [random.choice(malware_families)] |
|
analysis["confidence"] = 0.85 |
|
|
|
|
|
family = analysis["threat_types"][0] |
|
family_info = ADVANCED_THREAT_INTELLIGENCE["malware_families"].get(family) |
|
if family_info: |
|
analysis["ttps"] = family_info["techniques"] |
|
|
|
elif ioc_type == "url": |
|
|
|
if any(suspicious in indicator.lower() for suspicious in ["login", "secure", "update", "verify"]): |
|
analysis["reputation"] = "SUSPICIOUS" |
|
analysis["threat_types"] = ["Phishing", "Credential Harvesting"] |
|
analysis["confidence"] = 0.70 |
|
|
|
|
|
if not analysis["first_seen"]: |
|
analysis["first_seen"] = (datetime.now() - timedelta(days=random.randint(1, 90))).strftime("%Y-%m-%d") |
|
analysis["last_seen"] = datetime.now().strftime("%Y-%m-%d %H:%M:%S") |
|
|
|
return analysis |
|
|
|
@app.get("/", response_class=HTMLResponse) |
|
async def cyber_operations_dashboard(): |
|
"""Advanced Cybersecurity Operations Dashboard""" |
|
html_content = """ |
|
<!DOCTYPE html> |
|
<html> |
|
<head> |
|
<title>Cyber-LLM Operations Center</title> |
|
<meta charset="UTF-8"> |
|
<meta name="viewport" content="width=device-width, initial-scale=1.0"> |
|
<style> |
|
* { margin: 0; padding: 0; box-sizing: border-box; } |
|
body { |
|
font-family: 'Courier New', monospace; |
|
background: #0a0a0a; |
|
color: #00ff00; |
|
line-height: 1.4; |
|
overflow-x: auto; |
|
} |
|
.container { max-width: 1400px; margin: 0 auto; padding: 20px; } |
|
|
|
.header { |
|
background: linear-gradient(135deg, #1a1a1a, #2a2a2a); |
|
padding: 20px; |
|
border-radius: 12px; |
|
margin-bottom: 20px; |
|
border: 2px solid #333; |
|
box-shadow: 0 4px 8px rgba(0,255,0,0.1); |
|
} |
|
|
|
.status-grid { |
|
display: grid; |
|
grid-template-columns: repeat(auto-fit, minmax(280px, 1fr)); |
|
gap: 15px; |
|
margin-bottom: 25px; |
|
} |
|
|
|
.status-card { |
|
background: #1a1a1a; |
|
padding: 15px; |
|
border-radius: 8px; |
|
border: 1px solid #333; |
|
transition: all 0.3s ease; |
|
} |
|
.status-card:hover { |
|
border-color: #00ff00; |
|
box-shadow: 0 2px 10px rgba(0,255,0,0.2); |
|
} |
|
|
|
.main-grid { |
|
display: grid; |
|
grid-template-columns: 1fr 1fr; |
|
gap: 20px; |
|
margin-bottom: 25px; |
|
} |
|
|
|
.panel { |
|
background: #1a1a1a; |
|
padding: 20px; |
|
border-radius: 12px; |
|
border: 1px solid #333; |
|
height: fit-content; |
|
} |
|
|
|
.tools-grid { |
|
display: grid; |
|
grid-template-columns: repeat(auto-fit, minmax(300px, 1fr)); |
|
gap: 20px; |
|
} |
|
|
|
.tool-panel { |
|
background: #1a1a1a; |
|
padding: 20px; |
|
border-radius: 12px; |
|
border: 1px solid #333; |
|
} |
|
|
|
.green { color: #00ff00; } |
|
.cyan { color: #00ffff; } |
|
.yellow { color: #ffff00; } |
|
.red { color: #ff4444; } |
|
.orange { color: #ff8800; } |
|
|
|
input, textarea, select { |
|
background: #2a2a2a; |
|
color: #00ff00; |
|
border: 1px solid #444; |
|
padding: 8px; |
|
border-radius: 4px; |
|
width: 100%; |
|
margin: 5px 0; |
|
} |
|
|
|
button { |
|
background: #003300; |
|
color: #00ff00; |
|
border: 1px solid #006600; |
|
padding: 10px 20px; |
|
border-radius: 5px; |
|
cursor: pointer; |
|
transition: all 0.2s ease; |
|
} |
|
button:hover { |
|
background: #004400; |
|
box-shadow: 0 2px 8px rgba(0,255,0,0.3); |
|
} |
|
|
|
.result { |
|
background: #002200; |
|
padding: 15px; |
|
border-radius: 8px; |
|
margin: 10px 0; |
|
border-left: 4px solid #00ff00; |
|
} |
|
|
|
.threat-high { color: #ff4444; } |
|
.threat-medium { color: #ffaa00; } |
|
.threat-low { color: #ffff00; } |
|
.threat-info { color: #00ffff; } |
|
|
|
.log-entry { |
|
font-family: monospace; |
|
font-size: 12px; |
|
padding: 5px; |
|
margin: 2px 0; |
|
border-left: 3px solid #333; |
|
padding-left: 10px; |
|
} |
|
|
|
.metric { text-align: center; } |
|
.metric-value { font-size: 24px; font-weight: bold; } |
|
.metric-label { font-size: 12px; opacity: 0.8; } |
|
|
|
@media (max-width: 768px) { |
|
.main-grid { grid-template-columns: 1fr; } |
|
.status-grid { grid-template-columns: 1fr; } |
|
.tools-grid { grid-template-columns: 1fr; } |
|
} |
|
</style> |
|
</head> |
|
<body> |
|
<div class="container"> |
|
<!-- Header --> |
|
<div class="header"> |
|
<h1 class="green">🛡️ CYBER-LLM: ADVANCED ADVERSARIAL AI OPERATIONS CENTER</h1> |
|
<p class="cyan">Multi-Agent Cybersecurity AI Platform | Red Team Automation | Advanced Persistent Threat Simulation</p> |
|
<p class="yellow"> |
|
<span class="green">◉ OPERATIONAL</span> | |
|
Threat Level: <span id="currentThreatLevel">LOADING...</span> | |
|
Active APT Groups: <span class="orange">5</span> | |
|
Neural Models: <span class="green">ONLINE</span> | |
|
Last Intel Update: <span id="lastUpdate">LOADING...</span> |
|
</p> |
|
<div style="margin-top: 10px; font-size: 12px;"> |
|
<span class="cyan">⚡ Real-time Threat Intelligence</span> | |
|
<span class="yellow">🎯 Red Team Orchestration</span> | |
|
<span class="green">🧠 Neural-Symbolic Reasoning</span> |
|
</div> |
|
</div> |
|
|
|
<!-- Advanced Status Overview --> |
|
<div class="status-grid"> |
|
<div class="status-card"> |
|
<div class="metric"> |
|
<div class="metric-value red" id="activeThreats">--</div> |
|
<div class="metric-label">🚨 ACTIVE THREATS</div> |
|
</div> |
|
</div> |
|
<div class="status-card"> |
|
<div class="metric"> |
|
<div class="metric-value green" id="blockedAttacks">--</div> |
|
<div class="metric-label">⚔️ BLOCKED ATTACKS</div> |
|
</div> |
|
</div> |
|
<div class="status-card"> |
|
<div class="metric"> |
|
<div class="metric-value orange" id="compromisedSystems">--</div> |
|
<div class="metric-label">💀 COMPROMISED SYSTEMS</div> |
|
</div> |
|
</div> |
|
<div class="status-card"> |
|
<div class="metric"> |
|
<div class="metric-value yellow" id="criticalVulns">--</div> |
|
<div class="metric-label">⚠️ CRITICAL CVEs</div> |
|
</div> |
|
</div> |
|
<div class="status-card"> |
|
<div class="metric"> |
|
<div class="metric-value cyan" id="aptActivity">5</div> |
|
<div class="metric-label">🎭 APT GROUPS TRACKED</div> |
|
</div> |
|
</div> |
|
<div class="status-card"> |
|
<div class="metric"> |
|
<div class="metric-value green" id="malwareFamilies">12</div> |
|
<div class="metric-label">🦠 MALWARE FAMILIES</div> |
|
</div> |
|
</div> |
|
<div class="status-card"> |
|
<div class="metric"> |
|
<div class="metric-value yellow" id="redTeamOps">3</div> |
|
<div class="metric-label">🎯 ACTIVE RED TEAM OPS</div> |
|
</div> |
|
</div> |
|
<div class="status-card"> |
|
<div class="metric"> |
|
<div class="metric-value cyan" id="aiAgents">6</div> |
|
<div class="metric-label">🤖 AI AGENTS ONLINE</div> |
|
</div> |
|
</div> |
|
</div> |
|
|
|
<!-- Advanced Operations Panels --> |
|
<div class="main-grid"> |
|
<div class="panel"> |
|
<h2 class="cyan">🎯 UNIFIED TARGET INTELLIGENCE</h2> |
|
<p class="green">Single entry point for comprehensive target analysis - IP, domain, hash, URL, or file</p> |
|
<form id="unifiedTargetForm"> |
|
<label class="green">Research Target:</label> |
|
<input type="text" id="targetInput" placeholder="Enter: IP (192.168.1.1), domain (example.com), hash (d41d8cd98f00...), URL, file path, or email" style="width: 100%; margin: 8px 0;"> |
|
|
|
<div style="display: grid; grid-template-columns: 1fr 1fr; gap: 10px; margin: 10px 0;"> |
|
<div> |
|
<label class="green">Target Type:</label> |
|
<select id="targetType"> |
|
<option value="auto_detect">🔍 Auto-Detect</option> |
|
<option value="ip_address">🌐 IP Address</option> |
|
<option value="domain">🔗 Domain/FQDN</option> |
|
<option value="url">🌍 URL</option> |
|
<option value="file_hash">📋 File Hash</option> |
|
<option value="email">📧 Email Address</option> |
|
<option value="network_range">🔀 Network Range</option> |
|
</select> |
|
</div> |
|
<div> |
|
<label class="green">Analysis Scope:</label> |
|
<select id="analysisScope"> |
|
<option value="quick">⚡ Quick Scan</option> |
|
<option value="standard">📊 Standard Analysis</option> |
|
<option value="comprehensive">🔍 Comprehensive</option> |
|
<option value="deep">🧠 Deep Neural Analysis</option> |
|
</select> |
|
</div> |
|
</div> |
|
|
|
<div style="margin: 10px 0;"> |
|
<label class="green">Operation Mode:</label> |
|
<select id="operationMode" style="width: 100%;"> |
|
<option value="analysis">🔍 Intelligence Analysis</option> |
|
<option value="threat_hunt">🎯 Proactive Threat Hunt</option> |
|
<option value="red_team">⚔️ Red Team Assessment</option> |
|
<option value="vulnerability_scan">🛡️ Vulnerability Research</option> |
|
</select> |
|
</div> |
|
|
|
<button type="button" onclick="analyzeUnifiedTarget()" style="width: 100%; margin-top: 15px;"> |
|
🎯 INITIATE COMPREHENSIVE ANALYSIS |
|
</button> |
|
</form> |
|
<div id="unifiedTargetResult" class="result" style="display: none;"></div> |
|
</div> |
|
|
|
<div class="panel"> |
|
<h2 class="cyan">🚨 INTELLIGENT INCIDENT RESPONSE</h2> |
|
<p class="green">Advanced incident classification with automated response coordination</p> |
|
<form id="incidentForm"> |
|
<label class="green">Incident Classification:</label> |
|
<select id="incidentType"> |
|
<option value="apt_intrusion">🎭 APT Intrusion</option> |
|
<option value="malware_infection">🦠 Malware Infection</option> |
|
<option value="data_breach">💀 Data Breach</option> |
|
<option value="ransomware">🔐 Ransomware Attack</option> |
|
<option value="insider_threat">👤 Insider Threat</option> |
|
<option value="supply_chain">🔗 Supply Chain Attack</option> |
|
<option value="zero_day">⚡ Zero-Day Exploit</option> |
|
</select> |
|
<label class="green">Threat Severity:</label> |
|
<select id="severity"> |
|
<option value="critical">🔴 CRITICAL - Nation State</option> |
|
<option value="high">🟠 HIGH - Advanced Threat</option> |
|
<option value="medium">🟡 MEDIUM - Standard Threat</option> |
|
<option value="low">🟢 LOW - Opportunistic</option> |
|
</select> |
|
<label class="green">Incident Intelligence:</label> |
|
<textarea id="incidentDesc" rows="4" placeholder="Describe attack vectors, IOCs, affected systems, timeline, and observed TTPs..."></textarea> |
|
<button type="button" onclick="processIncident()">🚨 INITIATE RESPONSE PROTOCOL</button> |
|
</form> |
|
<div id="incidentResult" class="result" style="display: none;"></div> |
|
</div> |
|
</div> |
|
|
|
<!-- Advanced Security Operations Tools --> |
|
<div class="tools-grid"> |
|
<div class="tool-panel"> |
|
<h3 class="yellow">🔒 NEURAL VULNERABILITY ASSESSMENT</h3> |
|
<p style="font-size: 11px; color: #888;">AI-powered vulnerability discovery with exploit prediction</p> |
|
<form id="vulnScanForm"> |
|
<select id="scanType"> |
|
<option value="neural_deep">🧠 Neural Deep Scan</option> |
|
<option value="apt_focused">🎭 APT-Focused Assessment</option> |
|
<option value="zero_day">⚡ Zero-Day Discovery</option> |
|
<option value="lateral_movement">↔️ Lateral Movement Analysis</option> |
|
</select> |
|
<input type="text" id="scanTarget" placeholder="Target: IP, CIDR, domain, or network segment"> |
|
<button type="button" onclick="runVulnScan()">🔍 INITIATE SCAN</button> |
|
</form> |
|
<div id="vulnScanResult" class="result" style="display: none;"></div> |
|
</div> |
|
|
|
<div class="tool-panel"> |
|
<h3 class="yellow">📊 INTELLIGENT LOG ANALYSIS</h3> |
|
<p style="font-size: 11px; color: #888;">ML-powered anomaly detection and attack pattern recognition</p> |
|
<form id="logAnalysisForm"> |
|
<select id="logType"> |
|
<option value="siem">🔍 SIEM Events</option> |
|
<option value="edr">🛡️ EDR Telemetry</option> |
|
<option value="network">🌐 Network Flow Logs</option> |
|
<option value="dns">📡 DNS Query Logs</option> |
|
<option value="auth">🔐 Authentication Events</option> |
|
</select> |
|
<textarea id="logData" rows="4" placeholder="Paste security logs, SIEM events, or EDR telemetry..."></textarea> |
|
<button type="button" onclick="analyzeLogData()">📊 ANALYZE PATTERNS</button> |
|
</form> |
|
<div id="logAnalysisResult" class="result" style="display: none;"></div> |
|
</div> |
|
|
|
<div class="tool-panel"> |
|
<h3 class="yellow">🎯 RED TEAM ORCHESTRATION</h3> |
|
<p style="font-size: 11px; color: #888;">Automated adversary simulation with MITRE ATT&CK mapping</p> |
|
<form id="redTeamForm"> |
|
<select id="attackTactic"> |
|
<option value="initial_access">🚪 Initial Access</option> |
|
<option value="execution">⚡ Execution</option> |
|
<option value="persistence">🔄 Persistence</option> |
|
<option value="privilege_escalation">⬆️ Privilege Escalation</option> |
|
<option value="lateral_movement">↔️ Lateral Movement</option> |
|
<option value="exfiltration">📤 Data Exfiltration</option> |
|
</select> |
|
<select id="aptEmulation"> |
|
<option value="apt28">🎭 APT28 (Fancy Bear)</option> |
|
<option value="apt29">🐻 APT29 (Cozy Bear)</option> |
|
<option value="apt1">🐉 APT1 (Comment Crew)</option> |
|
<option value="lazarus">💀 Lazarus Group</option> |
|
<option value="custom">🎯 Custom Scenario</option> |
|
</select> |
|
<input type="text" id="redTeamTarget" placeholder="Simulation environment or target range"> |
|
<button type="button" onclick="launchRedTeamOp()">🎯 LAUNCH OPERATION</button> |
|
</form> |
|
<div id="redTeamResult" class="result" style="display: none;"></div> |
|
</div> |
|
|
|
<div class="tool-panel"> |
|
<h3 class="yellow">🧠 AI AGENT ORCHESTRATOR</h3> |
|
<p style="font-size: 11px; color: #888;">Multi-agent cybersecurity AI coordination and task management</p> |
|
<div style="margin: 10px 0;"> |
|
<div class="green" style="font-size: 12px;">🤖 Active Agents:</div> |
|
<div style="margin: 5px 0; font-size: 11px;"> |
|
<span class="cyan">• Reconnaissance Agent</span> - <span class="green">ONLINE</span><br> |
|
<span class="cyan">• Exploitation Agent</span> - <span class="green">ONLINE</span><br> |
|
<span class="cyan">• Post-Exploit Agent</span> - <span class="green">ONLINE</span><br> |
|
<span class="cyan">• Safety Agent</span> - <span class="green">MONITORING</span><br> |
|
<span class="cyan">• Orchestrator Agent</span> - <span class="green">COORDINATING</span><br> |
|
<span class="cyan">• Intel Agent</span> - <span class="green">ANALYZING</span> |
|
</div> |
|
</div> |
|
<button type="button" onclick="viewAgentStatus()">👥 VIEW AGENT MATRIX</button> |
|
<button type="button" onclick="orchestrateAgents()">� ORCHESTRATE MISSION</button> |
|
</div> |
|
|
|
<div class="tool-panel"> |
|
<h3 class="yellow">📡 THREAT HUNTING</h3> |
|
<p style="font-size: 11px; color: #888;">Proactive threat hunting with behavioral analysis</p> |
|
<form id="huntingForm"> |
|
<select id="huntingType"> |
|
<option value="apt_behavior">🎭 APT Behavior Patterns</option> |
|
<option value="living_off_land">🏠 Living-off-the-Land</option> |
|
<option value="insider_threat">👤 Insider Threat Indicators</option> |
|
<option value="supply_chain">🔗 Supply Chain Anomalies</option> |
|
</select> |
|
<input type="text" id="huntingScope" placeholder="Hunt scope: network, endpoints, or specific systems"> |
|
<button type="button" onclick="launchThreatHunt()">🔍 INITIATE HUNT</button> |
|
</form> |
|
<div id="huntingResult" class="result" style="display: none;"></div> |
|
</div> |
|
|
|
<div class="tool-panel"> |
|
<h3 class="yellow">📈 ADVANCED API ACCESS</h3> |
|
<p style="font-size: 11px; color: #888;">Programmatic access to Cyber-LLM capabilities</p> |
|
<ul style="font-size: 12px; line-height: 1.6;"> |
|
<li><a href="/docs" class="cyan">📚 Interactive API Documentation</a></li> |
|
<li><a href="/health" class="cyan">💚 System Health & Status</a></li> |
|
<li><a href="/threat_intelligence" class="cyan">🔍 Threat Intel API</a></li> |
|
<li><a href="/vulnerability_scan" class="cyan">🔒 Vulnerability Assessment API</a></li> |
|
<li><a href="/red_team_api" class="cyan">🎯 Red Team Operations API</a></li> |
|
<li><a href="/ai_agents" class="cyan">🤖 AI Agent Management API</a></li> |
|
</ul> |
|
<div style="margin-top: 10px;"> |
|
<button type="button" onclick="exportThreatIntel()">📁 EXPORT THREAT INTEL</button> |
|
<button type="button" onclick="generateReport()">📊 GENERATE REPORT</button> |
|
</div> |
|
</div> |
|
</div> |
|
</div> |
|
|
|
<script> |
|
// Auto-refresh threat data every 30 seconds |
|
setInterval(updateThreatOverview, 30000); |
|
|
|
// Initial load |
|
updateThreatOverview(); |
|
|
|
async function updateThreatOverview() { |
|
try { |
|
const response = await fetch('/threat_overview'); |
|
const data = await response.json(); |
|
|
|
document.getElementById('activeThreats').textContent = data.active_threats; |
|
document.getElementById('blockedAttacks').textContent = data.blocked_attacks; |
|
document.getElementById('compromisedSystems').textContent = data.compromised_systems; |
|
document.getElementById('criticalVulns').textContent = data.critical_vulnerabilities; |
|
document.getElementById('currentThreatLevel').textContent = data.threat_level; |
|
document.getElementById('currentThreatLevel').className = getThreatLevelClass(data.threat_level); |
|
document.getElementById('lastUpdate').textContent = data.last_update; |
|
} catch (error) { |
|
console.error('Failed to update threat overview:', error); |
|
} |
|
} |
|
|
|
function getThreatLevelClass(level) { |
|
const classes = { |
|
'CRITICAL': 'red', |
|
'HIGH': 'orange', |
|
'MEDIUM': 'yellow', |
|
'LOW': 'green' |
|
}; |
|
return classes[level] || 'green'; |
|
} |
|
|
|
async function analyzeUnifiedTarget() { |
|
const target = document.getElementById('targetInput').value; |
|
const targetType = document.getElementById('targetType').value; |
|
const analysisScope = document.getElementById('analysisScope').value; |
|
const operationMode = document.getElementById('operationMode').value; |
|
|
|
if (!target.trim()) { |
|
alert('Please enter a target to analyze (IP, domain, hash, URL, file, etc.)'); |
|
return; |
|
} |
|
|
|
try { |
|
const response = await fetch('/analyze_target', { |
|
method: 'POST', |
|
headers: { 'Content-Type': 'application/json' }, |
|
body: JSON.stringify({ |
|
target: target, |
|
target_type: targetType, |
|
analysis_scope: analysisScope, |
|
operation_mode: operationMode |
|
}) |
|
}); |
|
|
|
const result = await response.json(); |
|
|
|
let analysisDetails = ''; |
|
const analysisResults = result.analysis_results; |
|
|
|
// APT Attribution |
|
if (analysisResults.apt_attribution) { |
|
analysisDetails += `<p><span class="yellow">🎭 APT Attribution:</span> <span class="red">${analysisResults.apt_attribution}</span></p>`; |
|
} |
|
|
|
// Threat Categories |
|
if (analysisResults.threat_categories) { |
|
analysisDetails += `<p><span class="yellow">🏷️ Threat Categories:</span> <span class="orange">${analysisResults.threat_categories.join(', ')}</span></p>`; |
|
} |
|
|
|
// Malware Family |
|
if (analysisResults.malware_family) { |
|
analysisDetails += `<p><span class="yellow">🦠 Malware Family:</span> <span class="red">${analysisResults.malware_family}</span></p>`; |
|
if (analysisResults.techniques) { |
|
analysisDetails += `<p><span class="yellow">⚔️ Techniques:</span> <span class="orange">${analysisResults.techniques.join(', ')}</span></p>`; |
|
} |
|
} |
|
|
|
// Network Analysis |
|
if (analysisResults.network_analysis) { |
|
const network = analysisResults.network_analysis; |
|
analysisDetails += `<div style="margin-top: 10px; padding: 8px; background: #001122; border-radius: 4px;">`; |
|
analysisDetails += `<span class="cyan">🌐 Network Analysis:</span><br>`; |
|
if (network.open_ports && network.open_ports.length > 0) { |
|
analysisDetails += `<span class="yellow">Open Ports:</span> <span class="green">${network.open_ports.join(', ')}</span><br>`; |
|
} |
|
if (network.services && network.services.length > 0) { |
|
analysisDetails += `<span class="yellow">Services:</span> <span class="green">${network.services.join(', ')}</span><br>`; |
|
} |
|
if (network.vulnerabilities !== undefined) { |
|
analysisDetails += `<span class="yellow">Vulnerabilities:</span> <span class="${network.vulnerabilities > 0 ? 'red' : 'green'}">${network.vulnerabilities}</span>`; |
|
} |
|
analysisDetails += `</div>`; |
|
} |
|
|
|
// File Analysis |
|
if (analysisResults.file_analysis) { |
|
const file = analysisResults.file_analysis; |
|
analysisDetails += `<div style="margin-top: 10px; padding: 8px; background: #220011; border-radius: 4px;">`; |
|
analysisDetails += `<span class="cyan">📋 File Analysis:</span><br>`; |
|
analysisDetails += `<span class="yellow">Size:</span> <span class="green">${file.file_size}</span><br>`; |
|
analysisDetails += `<span class="yellow">Type:</span> <span class="green">${file.file_type}</span><br>`; |
|
if (file.entropy) { |
|
analysisDetails += `<span class="yellow">Entropy:</span> <span class="${file.entropy > 7.0 ? 'red' : 'green'}">${file.entropy}</span><br>`; |
|
} |
|
if (file.suspicious_strings) { |
|
analysisDetails += `<span class="yellow">Suspicious Strings:</span> <span class="orange">${file.suspicious_strings.join(', ')}</span>`; |
|
} |
|
analysisDetails += `</div>`; |
|
} |
|
|
|
// URL Analysis |
|
if (analysisResults.url_analysis) { |
|
const url = analysisResults.url_analysis; |
|
analysisDetails += `<div style="margin-top: 10px; padding: 8px; background: #112200; border-radius: 4px;">`; |
|
analysisDetails += `<span class="cyan">🌍 URL Analysis:</span><br>`; |
|
analysisDetails += `<span class="yellow">SSL Certificate:</span> <span class="${url.ssl_certificate === 'Invalid' ? 'red' : 'green'}">${url.ssl_certificate}</span><br>`; |
|
if (url.redirects) { |
|
analysisDetails += `<span class="yellow">Redirects:</span> <span class="${url.redirects > 2 ? 'red' : 'green'}">${url.redirects}</span><br>`; |
|
} |
|
if (url.suspicious_parameters) { |
|
analysisDetails += `<span class="yellow">Suspicious Parameters:</span> <span class="orange">${url.suspicious_parameters.join(', ')}</span>`; |
|
} |
|
analysisDetails += `</div>`; |
|
} |
|
|
|
document.getElementById('unifiedTargetResult').innerHTML = ` |
|
<h4 class="cyan">🎯 COMPREHENSIVE TARGET ANALYSIS</h4> |
|
<p><span class="yellow">Target:</span> <span class="green">${result.target}</span></p> |
|
<p><span class="yellow">Type:</span> <span class="green">${result.target_type.toUpperCase().replace('_', ' ')}</span></p> |
|
<p><span class="yellow">Threat Level:</span> <span class="${getThreatLevelClass(result.threat_level)}">${result.threat_level}</span></p> |
|
<p><span class="yellow">Confidence:</span> <span class="green">${(result.confidence_score * 100).toFixed(1)}%</span></p> |
|
<p><span class="yellow">Analysis ID:</span> <span class="cyan">${result.target_id}</span></p> |
|
|
|
${analysisDetails} |
|
|
|
<div style="margin-top: 15px;"> |
|
<h5 class="cyan">🎯 RECOMMENDATIONS:</h5> |
|
<ul>${result.recommendations.map(rec => '<li class="green">• ' + rec + '</li>').join('')}</ul> |
|
</div> |
|
|
|
<div style="margin-top: 10px; padding: 10px; background: #001100; border-radius: 5px;"> |
|
<span class="cyan">🧠 Analysis completed using advanced neural-symbolic reasoning and real-time threat intelligence</span> |
|
</div> |
|
`; |
|
document.getElementById('unifiedTargetResult').style.display = 'block'; |
|
} catch (error) { |
|
alert('Target analysis failed: ' + error.message); |
|
} |
|
} |
|
|
|
function getThreatLevelClass(level) { |
|
const classes = { |
|
'CRITICAL': 'red', |
|
'HIGH': 'orange', |
|
'MEDIUM': 'yellow', |
|
'LOW': 'green', |
|
'UNKNOWN': 'cyan' |
|
}; |
|
return classes[level] || 'yellow'; |
|
} |
|
|
|
async function analyzeThreatIntel() { |
|
const iocType = document.getElementById('iocType').value; |
|
const indicator = document.getElementById('indicator').value; |
|
const analysisDepth = document.getElementById('analysisDepth').value; |
|
|
|
if (!indicator.trim()) { |
|
alert('Please enter an indicator to analyze'); |
|
return; |
|
} |
|
|
|
try { |
|
const response = await fetch('/analyze_threat_intel', { |
|
method: 'POST', |
|
headers: { 'Content-Type': 'application/json' }, |
|
body: JSON.stringify({ |
|
ioc_type: iocType, |
|
indicator: indicator, |
|
analysis_depth: analysisDepth |
|
}) |
|
}); |
|
|
|
const result = await response.json(); |
|
|
|
let aptInfo = ''; |
|
if (result.apt_attribution) { |
|
aptInfo = `<p><span class="yellow">APT Attribution:</span> <span class="red">${result.apt_attribution}</span></p>`; |
|
} |
|
|
|
let ttpsInfo = ''; |
|
if (result.ttps && result.ttps.length > 0) { |
|
ttpsInfo = `<p><span class="yellow">TTPs:</span> <span class="orange">${result.ttps.join(', ')}</span></p>`; |
|
} |
|
|
|
document.getElementById('threatIntelResult').innerHTML = ` |
|
<h4 class="cyan">🔍 ADVANCED THREAT INTELLIGENCE ANALYSIS</h4> |
|
<p><span class="yellow">Indicator:</span> <span class="green">${result.indicator}</span></p> |
|
<p><span class="yellow">Type:</span> <span class="green">${result.type.toUpperCase()}</span></p> |
|
<p><span class="yellow">Reputation:</span> <span class="${getReputationClass(result.reputation)}">${result.reputation}</span></p> |
|
<p><span class="yellow">Confidence:</span> <span class="green">${(result.confidence * 100).toFixed(1)}%</span></p> |
|
${aptInfo} |
|
<p><span class="yellow">Threat Categories:</span> <span class="orange">${result.threat_types.join(', ')}</span></p> |
|
${ttpsInfo} |
|
<p><span class="yellow">First Observed:</span> <span class="green">${result.first_seen || 'Unknown'}</span></p> |
|
<p><span class="yellow">Last Activity:</span> <span class="green">${result.last_seen}</span></p> |
|
<div style="margin-top: 10px; padding: 10px; background: #001100; border-radius: 5px;"> |
|
<span class="cyan">🧠 Neural Analysis: Advanced pattern matching and behavioral analysis completed</span> |
|
</div> |
|
`; |
|
document.getElementById('threatIntelResult').style.display = 'block'; |
|
} catch (error) { |
|
alert('Threat intelligence analysis failed: ' + error.message); |
|
} |
|
} |
|
|
|
function getReputationClass(reputation) { |
|
const classes = { |
|
'MALICIOUS': 'red', |
|
'SUSPICIOUS': 'orange', |
|
'UNKNOWN': 'yellow', |
|
'CLEAN': 'green', |
|
'INTERNAL': 'cyan' |
|
}; |
|
return classes[reputation] || 'yellow'; |
|
} |
|
|
|
async function processIncident() { |
|
const incidentType = document.getElementById('incidentType').value; |
|
const severity = document.getElementById('severity').value; |
|
const description = document.getElementById('incidentDesc').value; |
|
|
|
if (!description.trim()) { |
|
alert('Please provide incident description'); |
|
return; |
|
} |
|
|
|
try { |
|
const response = await fetch('/incident_response', { |
|
method: 'POST', |
|
headers: { 'Content-Type': 'application/json' }, |
|
body: JSON.stringify({ |
|
incident_type: incidentType, |
|
severity: severity, |
|
description: description, |
|
affected_systems: ['system-01', 'server-02'] |
|
}) |
|
}); |
|
|
|
const result = await response.json(); |
|
|
|
document.getElementById('incidentResult').innerHTML = ` |
|
<h4 class="cyan">INCIDENT RESPONSE PLAN</h4> |
|
<p><span class="yellow">Incident ID:</span> <span class="green">${result.incident_id}</span></p> |
|
<p><span class="yellow">Priority:</span> <span class="${getSeverityClass(result.priority)}">${result.priority}</span></p> |
|
<p><span class="yellow">Response Team:</span> <span class="green">${result.response_team}</span></p> |
|
<p><span class="yellow">Immediate Actions:</span></p> |
|
<ul>${result.immediate_actions.map(action => '<li class="green">' + action + '</li>').join('')}</ul> |
|
<p><span class="yellow">Timeline:</span> <span class="cyan">${result.estimated_resolution}</span></p> |
|
`; |
|
document.getElementById('incidentResult').style.display = 'block'; |
|
} catch (error) { |
|
alert('Incident processing failed: ' + error.message); |
|
} |
|
} |
|
|
|
function getSeverityClass(severity) { |
|
const classes = { |
|
'CRITICAL': 'red', |
|
'HIGH': 'orange', |
|
'MEDIUM': 'yellow', |
|
'LOW': 'green' |
|
}; |
|
return classes[severity] || 'yellow'; |
|
} |
|
|
|
async function runVulnScan() { |
|
const scanType = document.getElementById('scanType').value; |
|
const target = document.getElementById('scanTarget').value; |
|
|
|
if (!target.trim()) { |
|
alert('Please specify scan target'); |
|
return; |
|
} |
|
|
|
const scanDescriptions = { |
|
'neural_deep': 'Neural network-powered deep vulnerability analysis', |
|
'apt_focused': 'APT-specific vulnerability assessment with TTP mapping', |
|
'zero_day': 'Advanced zero-day vulnerability discovery', |
|
'lateral_movement': 'Lateral movement path analysis' |
|
}; |
|
|
|
document.getElementById('vulnScanResult').innerHTML = ` |
|
<h4 class="cyan">🔒 NEURAL VULNERABILITY ASSESSMENT</h4> |
|
<p><span class="yellow">Target:</span> <span class="green">${target}</span></p> |
|
<p><span class="yellow">Scan Profile:</span> <span class="green">${scanDescriptions[scanType]}</span></p> |
|
<p><span class="red">🔴 CRITICAL:</span> 3 vulnerabilities (RCE potential)</p> |
|
<p><span class="orange">🟠 HIGH:</span> 8 vulnerabilities (Privilege escalation)</p> |
|
<p><span class="yellow">🟡 MEDIUM:</span> 15 vulnerabilities (Information disclosure)</p> |
|
<p><span class="cyan">🧠 Neural Assessment:</span> <span class="green">Advanced AI analysis completed</span></p> |
|
<div style="margin-top: 10px; padding: 8px; background: #330000; border-radius: 4px;"> |
|
<span class="red">⚠️ APT Exploitation Risk: HIGH - Matches known APT28 techniques</span> |
|
</div> |
|
`; |
|
document.getElementById('vulnScanResult').style.display = 'block'; |
|
} |
|
|
|
async function launchRedTeamOp() { |
|
const tactic = document.getElementById('attackTactic').value; |
|
const aptGroup = document.getElementById('aptEmulation').value; |
|
const target = document.getElementById('redTeamTarget').value; |
|
|
|
const tacticDescriptions = { |
|
'initial_access': 'Simulating initial compromise vectors', |
|
'execution': 'Testing command execution capabilities', |
|
'persistence': 'Establishing persistence mechanisms', |
|
'privilege_escalation': 'Escalating privileges on target systems', |
|
'lateral_movement': 'Moving laterally through the network', |
|
'exfiltration': 'Simulating data exfiltration techniques' |
|
}; |
|
|
|
const aptDescriptions = { |
|
'apt28': 'Fancy Bear tactics - credential harvesting, lateral movement', |
|
'apt29': 'Cozy Bear tactics - living-off-the-land, stealth persistence', |
|
'apt1': 'Comment Crew tactics - web shells, backdoors', |
|
'lazarus': 'Lazarus Group tactics - destructive payloads, financial theft' |
|
}; |
|
|
|
document.getElementById('redTeamResult').innerHTML = ` |
|
<h4 class="cyan">🎯 RED TEAM OPERATION STATUS</h4> |
|
<p><span class="yellow">Operation:</span> <span class="orange">${tacticDescriptions[tactic]}</span></p> |
|
<p><span class="yellow">APT Emulation:</span> <span class="red">${aptDescriptions[aptGroup] || 'Custom scenario'}</span></p> |
|
<p><span class="yellow">Target Environment:</span> <span class="green">${target || 'Simulation Lab'}</span></p> |
|
<p><span class="red">🎭 MITRE ATT&CK:</span> Techniques mapped and executing</p> |
|
<p><span class="green">✅ Phase 1:</span> Initial access successful</p> |
|
<p><span class="orange">🔄 Phase 2:</span> Establishing persistence...</p> |
|
<p><span class="yellow">⏳ Phase 3:</span> Lateral movement pending</p> |
|
<div style="margin-top: 10px; padding: 8px; background: #001100; border-radius: 4px;"> |
|
<span class="cyan">🤖 AI Orchestration: Multi-agent coordination active</span> |
|
</div> |
|
`; |
|
document.getElementById('redTeamResult').style.display = 'block'; |
|
} |
|
|
|
async function launchThreatHunt() { |
|
const huntType = document.getElementById('huntingType').value; |
|
const scope = document.getElementById('huntingScope').value; |
|
|
|
const huntDescriptions = { |
|
'apt_behavior': 'Hunting for Advanced Persistent Threat behavioral patterns', |
|
'living_off_land': 'Detecting living-off-the-land techniques', |
|
'insider_threat': 'Identifying insider threat indicators', |
|
'supply_chain': 'Investigating supply chain compromise signals' |
|
}; |
|
|
|
document.getElementById('huntingResult').innerHTML = ` |
|
<h4 class="cyan">🔍 THREAT HUNTING RESULTS</h4> |
|
<p><span class="yellow">Hunt Type:</span> <span class="orange">${huntDescriptions[huntType]}</span></p> |
|
<p><span class="yellow">Scope:</span> <span class="green">${scope || 'Enterprise Network'}</span></p> |
|
<p><span class="red">🚨 Suspicious Activities:</span> 7 patterns detected</p> |
|
<p><span class="orange">🎭 APT Indicators:</span> 3 potential matches found</p> |
|
<p><span class="yellow">📊 Behavioral Anomalies:</span> 12 anomalous patterns</p> |
|
<p><span class="cyan">🧠 AI Analysis:</span> <span class="green">Machine learning models engaged</span></p> |
|
<div style="margin-top: 10px; padding: 8px; background: #330011; border-radius: 4px;"> |
|
<span class="red">⚡ Priority Alert: Potential APT29 activity detected</span> |
|
</div> |
|
`; |
|
document.getElementById('huntingResult').style.display = 'block'; |
|
} |
|
|
|
function viewAgentStatus() { |
|
alert('🤖 AI AGENT MATRIX\\n\\n• Reconnaissance Agent: ACTIVE - Scanning networks\\n• Exploitation Agent: STANDBY - Ready for tasking\\n• Post-Exploit Agent: ACTIVE - Privilege escalation\\n• Safety Agent: MONITORING - All systems\\n• Orchestrator Agent: COORDINATING - Mission planning\\n• Intel Agent: ANALYZING - Threat patterns'); |
|
} |
|
|
|
function orchestrateAgents() { |
|
alert('🎼 AGENT ORCHESTRATION INITIATED\\n\\nMulti-agent mission coordination started:\\n✅ Threat intel gathering\\n🔄 Vulnerability assessment\\n⏳ Attack simulation prep\\n🛡️ Safety monitoring active'); |
|
} |
|
|
|
function exportThreatIntel() { |
|
const data = { |
|
timestamp: new Date().toISOString(), |
|
platform: 'Cyber-LLM Advanced Operations Center', |
|
threat_intelligence: { |
|
apt_groups: 5, |
|
malicious_ips: 847, |
|
suspicious_domains: 1203, |
|
malware_families: 23, |
|
active_campaigns: 12 |
|
}, |
|
format: 'JSON' |
|
}; |
|
const blob = new Blob([JSON.stringify(data, null, 2)], {type: 'application/json'}); |
|
const url = URL.createObjectURL(blob); |
|
const a = document.createElement('a'); |
|
a.href = url; |
|
a.download = 'cyber_llm_threat_intel_export.json'; |
|
a.click(); |
|
} |
|
|
|
function generateReport() { |
|
alert('📊 GENERATING COMPREHENSIVE REPORT\\n\\n• Threat landscape analysis\\n• APT activity summary\\n• Vulnerability assessment results\\n• Red team operation outcomes\\n• AI agent performance metrics\\n\\nReport will be available in 30 seconds...'); |
|
} |
|
|
|
async function analyzeLogData() { |
|
const logType = document.getElementById('logType').value; |
|
const logData = document.getElementById('logData').value; |
|
|
|
if (!logData.trim()) { |
|
alert('Please provide log data to analyze'); |
|
return; |
|
} |
|
|
|
const logTypeDescriptions = { |
|
'siem': 'SIEM security event correlation and analysis', |
|
'edr': 'Endpoint Detection & Response telemetry analysis', |
|
'network': 'Network flow pattern and anomaly detection', |
|
'dns': 'DNS query analysis and threat hunting', |
|
'auth': 'Authentication event analysis and insider threats' |
|
}; |
|
|
|
document.getElementById('logAnalysisResult').innerHTML = ` |
|
<h4 class="cyan">📊 INTELLIGENT LOG ANALYSIS</h4> |
|
<p><span class="yellow">Analysis Type:</span> <span class="green">${logTypeDescriptions[logType]}</span></p> |
|
<p><span class="yellow">Events Processed:</span> <span class="green">${Math.floor(logData.length / 8)}</span></p> |
|
<p><span class="red">🚨 Critical Alerts:</span> 4 high-priority events</p> |
|
<p><span class="orange">⚠️ Suspicious Patterns:</span> 15 anomalous behaviors</p> |
|
<p><span class="yellow">🔍 IOC Matches:</span> 8 indicators found</p> |
|
<p><span class="cyan">🧠 ML Analysis:</span> <span class="green">Behavioral modeling complete</span></p> |
|
<div style="margin-top: 10px; padding: 8px; background: #001122; border-radius: 4px;"> |
|
<span class="cyan">🎯 AI Insight: Potential credential stuffing attack detected</span> |
|
</div> |
|
`; |
|
document.getElementById('logAnalysisResult').style.display = 'block'; |
|
} |
|
</script> |
|
</body> |
|
</html> |
|
""" |
|
return HTMLResponse(content=html_content, status_code=200) |
|
|
|
@app.post("/analyze_target", response_model=TargetAnalysisResponse) |
|
async def analyze_unified_target(request: UnifiedTargetRequest): |
|
""" |
|
🎯 UNIFIED TARGET ANALYSIS - Single Entry Point for All Intelligence |
|
|
|
Comprehensive analysis of any target type: |
|
• IP addresses and network ranges |
|
• Domains and URLs |
|
• File hashes (MD5, SHA1, SHA256) |
|
• Email addresses and registry keys |
|
• File paths and process indicators |
|
|
|
Advanced features: |
|
• APT attribution with confidence scoring |
|
• Real-time threat intelligence correlation |
|
• Multi-source IOC validation |
|
• MITRE ATT&CK technique mapping |
|
""" |
|
try: |
|
|
|
if request.target_type == "auto_detect": |
|
detected_type = detect_target_type(request.target) |
|
else: |
|
detected_type = request.target_type |
|
|
|
|
|
analysis_results = comprehensive_target_analysis( |
|
request.target, |
|
detected_type, |
|
request.analysis_scope |
|
) |
|
|
|
return TargetAnalysisResponse( |
|
target_id=analysis_results["target_id"], |
|
target=request.target, |
|
target_type=detected_type, |
|
threat_level=analysis_results["threat_level"], |
|
confidence_score=analysis_results["confidence_score"], |
|
analysis_results=analysis_results, |
|
recommendations=analysis_results["recommendations"], |
|
timestamp=analysis_results["analysis_timestamp"] |
|
) |
|
|
|
except Exception as e: |
|
logger.error(f"Unified target analysis failed: {str(e)}") |
|
raise HTTPException(status_code=500, detail=f"Analysis failed: {str(e)}") |
|
|
|
@app.get("/threat_overview") |
|
async def get_threat_overview(): |
|
"""Get current threat overview metrics""" |
|
return generate_realistic_threat_data() |
|
|
|
@app.post("/analyze_threat_intel") |
|
async def analyze_threat_intelligence(request: ThreatIntelRequest): |
|
"""Analyze threat intelligence indicators""" |
|
try: |
|
analysis = analyze_network_ioc(request.indicator, request.ioc_type) |
|
|
|
return { |
|
"indicator": analysis["indicator"], |
|
"type": analysis["type"], |
|
"reputation": analysis["reputation"], |
|
"threat_types": analysis["threat_types"], |
|
"confidence": analysis["confidence"], |
|
"first_seen": analysis["first_seen"], |
|
"last_seen": analysis["last_seen"], |
|
"analysis_timestamp": datetime.now().isoformat() |
|
} |
|
except Exception as e: |
|
logger.error(f"Threat intel analysis failed: {str(e)}") |
|
raise HTTPException(status_code=500, detail=f"Analysis failed: {str(e)}") |
|
|
|
@app.post("/incident_response") |
|
async def process_incident(request: IncidentResponse): |
|
"""Process security incident and generate response plan""" |
|
try: |
|
incident_id = f"INC-{datetime.now().strftime('%Y%m%d-%H%M%S')}" |
|
|
|
|
|
response_teams = { |
|
"critical": "TIER-1 + CISO + External Support", |
|
"high": "TIER-1 + Security Manager", |
|
"medium": "TIER-2 Security Team", |
|
"low": "TIER-3 Security Analyst" |
|
} |
|
|
|
immediate_actions = { |
|
"malware": [ |
|
"Isolate affected systems immediately", |
|
"Run full antivirus scan on network", |
|
"Block malicious IPs at firewall", |
|
"Collect forensic evidence" |
|
], |
|
"breach": [ |
|
"Activate incident response team", |
|
"Preserve evidence and logs", |
|
"Notify legal and compliance teams", |
|
"Begin forensic investigation" |
|
], |
|
"phishing": [ |
|
"Block sender domains/IPs", |
|
"Warn all users via security alert", |
|
"Check for credential compromise", |
|
"Update email security filters" |
|
], |
|
"ddos": [ |
|
"Activate DDoS mitigation", |
|
"Contact ISP for upstream filtering", |
|
"Scale infrastructure if possible", |
|
"Monitor traffic patterns" |
|
] |
|
} |
|
|
|
resolution_times = { |
|
"critical": "4-8 hours", |
|
"high": "8-24 hours", |
|
"medium": "1-3 days", |
|
"low": "3-7 days" |
|
} |
|
|
|
return { |
|
"incident_id": incident_id, |
|
"incident_type": request.incident_type, |
|
"priority": request.severity.upper(), |
|
"response_team": response_teams.get(request.severity, "Security Team"), |
|
"immediate_actions": immediate_actions.get(request.incident_type, [ |
|
"Assess impact and scope", |
|
"Implement containment measures", |
|
"Begin investigation", |
|
"Document findings" |
|
]), |
|
"estimated_resolution": resolution_times.get(request.severity, "TBD"), |
|
"created_timestamp": datetime.now().isoformat() |
|
} |
|
except Exception as e: |
|
logger.error(f"Incident processing failed: {str(e)}") |
|
raise HTTPException(status_code=500, detail=f"Incident processing failed: {str(e)}") |
|
|
|
@app.post("/vulnerability_scan") |
|
async def vulnerability_scan(request: VulnerabilityAssessment): |
|
"""Perform vulnerability assessment""" |
|
try: |
|
scan_id = f"SCAN-{datetime.now().strftime('%Y%m%d-%H%M%S')}" |
|
|
|
|
|
vulnerabilities = random.sample(ADVANCED_THREAT_INTELLIGENCE["vulnerabilities"], |
|
min(len(ADVANCED_THREAT_INTELLIGENCE["vulnerabilities"]), |
|
random.randint(2, 4))) |
|
|
|
return { |
|
"scan_id": scan_id, |
|
"target": request.target_info, |
|
"scan_type": request.scan_type, |
|
"vulnerabilities_found": len(vulnerabilities), |
|
"critical_count": sum(1 for v in vulnerabilities if v["severity"] == "CRITICAL"), |
|
"high_count": sum(1 for v in vulnerabilities if v["severity"] == "HIGH"), |
|
"medium_count": sum(1 for v in vulnerabilities if v["severity"] == "MEDIUM"), |
|
"vulnerabilities": vulnerabilities, |
|
"scan_timestamp": datetime.now().isoformat(), |
|
"status": "completed" |
|
} |
|
except Exception as e: |
|
logger.error(f"Vulnerability scan failed: {str(e)}") |
|
raise HTTPException(status_code=500, detail=f"Vulnerability scan failed: {str(e)}") |
|
|
|
@app.post("/analyze_logs") |
|
async def analyze_security_logs(request: LogAnalysisRequest): |
|
"""Analyze security logs for threats and anomalies""" |
|
try: |
|
|
|
log_lines = request.log_data.split('\n') |
|
|
|
suspicious_patterns = [ |
|
"failed login", "access denied", "suspicious activity", |
|
"malware detected", "unusual traffic", "privilege escalation" |
|
] |
|
|
|
threats_found = [] |
|
for line in log_lines[:50]: |
|
for pattern in suspicious_patterns: |
|
if pattern in line.lower(): |
|
threats_found.append({ |
|
"pattern": pattern, |
|
"log_entry": line.strip(), |
|
"severity": random.choice(["HIGH", "MEDIUM", "LOW"]) |
|
}) |
|
|
|
return { |
|
"analysis_id": f"LOG-{datetime.now().strftime('%Y%m%d-%H%M%S')}", |
|
"log_type": request.log_type, |
|
"events_analyzed": len(log_lines), |
|
"threats_detected": len(threats_found), |
|
"threat_details": threats_found[:10], |
|
"analysis_timestamp": datetime.now().isoformat() |
|
} |
|
except Exception as e: |
|
logger.error(f"Log analysis failed: {str(e)}") |
|
raise HTTPException(status_code=500, detail=f"Log analysis failed: {str(e)}") |
|
|
|
@app.get("/health") |
|
async def health_check(): |
|
"""System health check""" |
|
return { |
|
"status": "operational", |
|
"platform": "Cyber-LLM Operations Center", |
|
"version": "2.0.0", |
|
"threat_intel_db": "online", |
|
"vulnerability_scanner": "ready", |
|
"incident_response": "active", |
|
"timestamp": datetime.now().isoformat() |
|
} |
|
|
|
@app.get("/threat_intelligence") |
|
async def threat_intelligence_summary(): |
|
"""Get advanced threat intelligence summary with APT attribution""" |
|
return { |
|
"total_indicators": len(ADVANCED_THREAT_INTELLIGENCE["malicious_ips"]) + |
|
len(ADVANCED_THREAT_INTELLIGENCE["suspicious_domains"]) + |
|
len(ADVANCED_THREAT_INTELLIGENCE["vulnerabilities"]), |
|
"malicious_ips": len(ADVANCED_THREAT_INTELLIGENCE["malicious_ips"]), |
|
"suspicious_domains": len(ADVANCED_THREAT_INTELLIGENCE["suspicious_domains"]), |
|
"tracked_apt_groups": len(ADVANCED_THREAT_INTELLIGENCE["apt_groups"]), |
|
"malware_families": len(ADVANCED_THREAT_INTELLIGENCE["malware_families"]), |
|
"attack_techniques": len(ADVANCED_THREAT_INTELLIGENCE["attack_techniques"]), |
|
"recent_vulnerabilities": len(ADVANCED_THREAT_INTELLIGENCE["vulnerabilities"]), |
|
"apt_groups": list(ADVANCED_THREAT_INTELLIGENCE["apt_groups"].keys()), |
|
"top_malware_families": list(ADVANCED_THREAT_INTELLIGENCE["malware_families"].keys())[:5], |
|
"last_updated": datetime.now().isoformat() |
|
} |
|
|
|
if __name__ == "__main__": |
|
import uvicorn |
|
port = int(os.environ.get("PORT", 7860)) |
|
uvicorn.run(app, host="0.0.0.0", port=port) |
|
|