|
""" |
|
Meta-Cognitive Capabilities for Cyber-LLM |
|
Self-reflection, adaptation, and cognitive load management |
|
|
|
Author: Muzan Sano <[email protected]> |
|
""" |
|
|
|
import asyncio |
|
import json |
|
import logging |
|
import numpy as np |
|
from datetime import datetime, timedelta |
|
from typing import Dict, List, Any, Optional, Tuple, Union |
|
from dataclasses import dataclass, field |
|
from enum import Enum |
|
import torch |
|
import torch.nn as nn |
|
from collections import deque |
|
|
|
from ..utils.logging_system import CyberLLMLogger, CyberLLMError, ErrorCategory |
|
from ..memory.persistent_memory import PersistentMemoryManager |
|
from ..memory.strategic_planning import StrategicPlanningEngine |
|
|
|
class CognitiveState(Enum): |
|
"""Cognitive processing states""" |
|
OPTIMAL = "optimal" |
|
MODERATE_LOAD = "moderate_load" |
|
HIGH_LOAD = "high_load" |
|
OVERLOADED = "overloaded" |
|
RECOVERING = "recovering" |
|
|
|
class AdaptationStrategy(Enum): |
|
"""Learning adaptation strategies""" |
|
AGGRESSIVE = "aggressive" |
|
MODERATE = "moderate" |
|
CONSERVATIVE = "conservative" |
|
CAUTIOUS = "cautious" |
|
|
|
@dataclass |
|
class CognitiveMetrics: |
|
"""Cognitive performance metrics""" |
|
timestamp: datetime |
|
|
|
|
|
task_completion_rate: float |
|
accuracy_score: float |
|
response_time: float |
|
resource_utilization: float |
|
|
|
|
|
attention_fragmentation: float |
|
working_memory_usage: float |
|
processing_complexity: float |
|
|
|
|
|
learning_rate: float |
|
confidence_level: float |
|
adaptation_success_rate: float |
|
|
|
|
|
error_count: int |
|
critical_errors: int |
|
recovery_time: Optional[float] = None |
|
|
|
@dataclass |
|
class SelfReflectionResult: |
|
"""Results from self-reflection analysis""" |
|
reflection_id: str |
|
timestamp: datetime |
|
|
|
|
|
strengths: List[str] |
|
weaknesses: List[str] |
|
improvement_areas: List[str] |
|
|
|
|
|
effective_strategies: List[str] |
|
ineffective_strategies: List[str] |
|
recommended_changes: List[str] |
|
|
|
|
|
cognitive_patterns: Dict[str, Any] |
|
load_management_insights: List[str] |
|
attention_allocation_insights: List[str] |
|
|
|
|
|
immediate_adjustments: List[str] |
|
medium_term_goals: List[str] |
|
long_term_objectives: List[str] |
|
|
|
class MetaCognitiveEngine: |
|
"""Advanced meta-cognitive capabilities for self-reflection and adaptation""" |
|
|
|
def __init__(self, |
|
memory_manager: PersistentMemoryManager, |
|
strategic_planner: StrategicPlanningEngine, |
|
logger: Optional[CyberLLMLogger] = None): |
|
|
|
self.memory_manager = memory_manager |
|
self.strategic_planner = strategic_planner |
|
self.logger = logger or CyberLLMLogger(name="meta_cognitive") |
|
|
|
|
|
self.current_state = CognitiveState.OPTIMAL |
|
self.state_history = deque(maxlen=1000) |
|
self.cognitive_metrics = deque(maxlen=10000) |
|
|
|
|
|
self.reflection_history = {} |
|
self.performance_baselines = {} |
|
self.adaptation_strategies = {} |
|
|
|
|
|
self.attention_allocator = AttentionAllocator() |
|
self.cognitive_load_monitor = CognitiveLoadMonitor() |
|
|
|
|
|
self.learning_rate_optimizer = LearningRateOptimizer() |
|
self.strategy_evaluator = StrategyEvaluator() |
|
|
|
|
|
self.performance_predictor = self._build_performance_predictor() |
|
self.strategy_selector = self._build_strategy_selector() |
|
|
|
self.logger.info("Meta-Cognitive Engine initialized") |
|
|
|
async def conduct_self_reflection(self, |
|
time_period: timedelta = timedelta(hours=1)) -> SelfReflectionResult: |
|
"""Conduct comprehensive self-reflection analysis""" |
|
|
|
reflection_id = f"reflection_{datetime.now().strftime('%Y%m%d_%H%M%S')}" |
|
|
|
try: |
|
self.logger.info("Starting self-reflection analysis", reflection_id=reflection_id) |
|
|
|
|
|
end_time = datetime.now() |
|
start_time = end_time - time_period |
|
|
|
performance_data = await self._gather_performance_data(start_time, end_time) |
|
cognitive_data = await self._gather_cognitive_data(start_time, end_time) |
|
strategy_data = await self._gather_strategy_data(start_time, end_time) |
|
|
|
|
|
strengths, weaknesses = await self._analyze_performance_patterns(performance_data) |
|
|
|
|
|
effective_strategies, ineffective_strategies = await self._evaluate_strategies(strategy_data) |
|
|
|
|
|
cognitive_patterns = await self._analyze_cognitive_patterns(cognitive_data) |
|
load_insights = await self._analyze_load_management(cognitive_data) |
|
attention_insights = await self._analyze_attention_allocation(cognitive_data) |
|
|
|
|
|
immediate_adjustments = await self._generate_immediate_adjustments( |
|
weaknesses, ineffective_strategies, cognitive_patterns) |
|
medium_term_goals = await self._generate_medium_term_goals( |
|
strengths, weaknesses, cognitive_patterns) |
|
long_term_objectives = await self._generate_long_term_objectives( |
|
performance_data, cognitive_patterns) |
|
|
|
|
|
reflection_result = SelfReflectionResult( |
|
reflection_id=reflection_id, |
|
timestamp=datetime.now(), |
|
strengths=strengths, |
|
weaknesses=weaknesses, |
|
improvement_areas=list(set(weaknesses + [adj.split(':')[0] for adj in immediate_adjustments])), |
|
effective_strategies=effective_strategies, |
|
ineffective_strategies=ineffective_strategies, |
|
recommended_changes=immediate_adjustments + medium_term_goals, |
|
cognitive_patterns=cognitive_patterns, |
|
load_management_insights=load_insights, |
|
attention_allocation_insights=attention_insights, |
|
immediate_adjustments=immediate_adjustments, |
|
medium_term_goals=medium_term_goals, |
|
long_term_objectives=long_term_objectives |
|
) |
|
|
|
|
|
self.reflection_history[reflection_id] = reflection_result |
|
|
|
|
|
await self.memory_manager.store_reasoning_chain( |
|
chain_id=f"self_reflection_{reflection_id}", |
|
steps=[ |
|
f"Analyzed performance over {time_period}", |
|
f"Identified {len(strengths)} strengths and {len(weaknesses)} weaknesses", |
|
f"Evaluated {len(effective_strategies)} effective strategies", |
|
f"Generated {len(immediate_adjustments)} immediate adjustments" |
|
], |
|
conclusion=f"Self-reflection completed with actionable insights", |
|
confidence=0.85, |
|
metadata={ |
|
"reflection_type": "comprehensive_analysis", |
|
"time_period": str(time_period), |
|
"performance_score": np.mean([m.accuracy_score for m in self.cognitive_metrics if m.timestamp >= start_time]) |
|
} |
|
) |
|
|
|
self.logger.info("Self-reflection analysis completed", |
|
reflection_id=reflection_id, |
|
strengths_count=len(strengths), |
|
weaknesses_count=len(weaknesses), |
|
recommendations_count=len(immediate_adjustments)) |
|
|
|
return reflection_result |
|
|
|
except Exception as e: |
|
self.logger.error("Self-reflection analysis failed", error=str(e)) |
|
raise CyberLLMError("Self-reflection failed", ErrorCategory.COGNITIVE_ERROR) |
|
|
|
async def optimize_learning_rate(self, |
|
recent_performance: List[float], |
|
task_complexity: float) -> float: |
|
"""Optimize learning rate based on recent performance and task complexity""" |
|
|
|
try: |
|
|
|
performance_trend = self._calculate_performance_trend(recent_performance) |
|
performance_variance = np.var(recent_performance) |
|
|
|
|
|
current_lr = self.learning_rate_optimizer.get_current_rate() |
|
|
|
|
|
if performance_trend > 0.1 and performance_variance < 0.05: |
|
|
|
adaptation_factor = 1.1 |
|
strategy = AdaptationStrategy.AGGRESSIVE |
|
elif performance_trend > 0.05: |
|
|
|
adaptation_factor = 1.05 |
|
strategy = AdaptationStrategy.MODERATE |
|
elif performance_trend < -0.1 or performance_variance > 0.2: |
|
|
|
adaptation_factor = 0.8 |
|
strategy = AdaptationStrategy.CAUTIOUS |
|
else: |
|
|
|
adaptation_factor = 1.0 - (task_complexity - 0.5) * 0.1 |
|
strategy = AdaptationStrategy.CONSERVATIVE |
|
|
|
|
|
complexity_factor = 1.0 - (task_complexity * 0.3) |
|
final_factor = adaptation_factor * complexity_factor |
|
|
|
|
|
new_lr = current_lr * final_factor |
|
new_lr = np.clip(new_lr, 0.0001, 0.1) |
|
|
|
|
|
self.learning_rate_optimizer.update_rate(new_lr, strategy) |
|
|
|
self.logger.info("Learning rate optimized", |
|
old_rate=current_lr, |
|
new_rate=new_lr, |
|
strategy=strategy.value, |
|
performance_trend=performance_trend) |
|
|
|
return new_lr |
|
|
|
except Exception as e: |
|
self.logger.error("Learning rate optimization failed", error=str(e)) |
|
return self.learning_rate_optimizer.get_current_rate() |
|
|
|
async def manage_cognitive_load(self, |
|
current_tasks: List[Dict[str, Any]], |
|
available_resources: Dict[str, float]) -> Dict[str, Any]: |
|
"""Manage cognitive load and optimize task allocation""" |
|
|
|
try: |
|
|
|
current_load = await self._calculate_cognitive_load(current_tasks) |
|
|
|
|
|
new_state = self._determine_cognitive_state(current_load, available_resources) |
|
|
|
|
|
if new_state != self.current_state: |
|
self.logger.info("Cognitive state changed", |
|
old_state=self.current_state.value, |
|
new_state=new_state.value) |
|
self.current_state = new_state |
|
self.state_history.append((datetime.now(), new_state)) |
|
|
|
|
|
management_strategy = await self._generate_load_management_strategy( |
|
current_load, new_state, current_tasks, available_resources) |
|
|
|
|
|
attention_allocation = await self.attention_allocator.optimize_allocation( |
|
current_tasks, available_resources, new_state) |
|
|
|
|
|
recommendations = await self._generate_load_management_recommendations( |
|
current_load, new_state, management_strategy) |
|
|
|
result = { |
|
"cognitive_state": new_state.value, |
|
"cognitive_load": current_load, |
|
"management_strategy": management_strategy, |
|
"attention_allocation": attention_allocation, |
|
"recommendations": recommendations, |
|
"resource_adjustments": await self._calculate_resource_adjustments( |
|
new_state, available_resources) |
|
} |
|
|
|
self.logger.info("Cognitive load management completed", |
|
state=new_state.value, |
|
load=current_load, |
|
recommendations_count=len(recommendations)) |
|
|
|
return result |
|
|
|
except Exception as e: |
|
self.logger.error("Cognitive load management failed", error=str(e)) |
|
return {"error": str(e)} |
|
|
|
def _build_performance_predictor(self) -> nn.Module: |
|
"""Build neural network for performance prediction""" |
|
|
|
class PerformancePredictor(nn.Module): |
|
def __init__(self): |
|
super().__init__() |
|
self.fc1 = nn.Linear(20, 64) |
|
self.fc2 = nn.Linear(64, 32) |
|
self.fc3 = nn.Linear(32, 16) |
|
self.fc4 = nn.Linear(16, 1) |
|
self.dropout = nn.Dropout(0.2) |
|
|
|
def forward(self, x): |
|
x = torch.relu(self.fc1(x)) |
|
x = self.dropout(x) |
|
x = torch.relu(self.fc2(x)) |
|
x = self.dropout(x) |
|
x = torch.relu(self.fc3(x)) |
|
x = torch.sigmoid(self.fc4(x)) |
|
return x |
|
|
|
return PerformancePredictor() |
|
|
|
def _build_strategy_selector(self) -> nn.Module: |
|
"""Build neural network for strategy selection""" |
|
|
|
class StrategySelector(nn.Module): |
|
def __init__(self): |
|
super().__init__() |
|
self.fc1 = nn.Linear(15, 48) |
|
self.fc2 = nn.Linear(48, 24) |
|
self.fc3 = nn.Linear(24, 8) |
|
self.dropout = nn.Dropout(0.15) |
|
|
|
def forward(self, x): |
|
x = torch.relu(self.fc1(x)) |
|
x = self.dropout(x) |
|
x = torch.relu(self.fc2(x)) |
|
x = torch.softmax(self.fc3(x), dim=-1) |
|
return x |
|
|
|
return StrategySelector() |
|
|
|
class AttentionAllocator: |
|
"""Manages dynamic attention allocation across tasks""" |
|
|
|
def __init__(self): |
|
self.attention_weights = {} |
|
self.priority_scores = {} |
|
self.allocation_history = deque(maxlen=1000) |
|
|
|
async def optimize_allocation(self, |
|
tasks: List[Dict[str, Any]], |
|
resources: Dict[str, float], |
|
cognitive_state: CognitiveState) -> Dict[str, float]: |
|
"""Optimize attention allocation across tasks""" |
|
|
|
|
|
for task in tasks: |
|
task_id = task.get('id', str(hash(str(task)))) |
|
priority = task.get('priority', 0.5) |
|
complexity = task.get('complexity', 0.5) |
|
deadline_pressure = task.get('deadline_pressure', 0.0) |
|
|
|
|
|
state_multiplier = { |
|
CognitiveState.OPTIMAL: 1.0, |
|
CognitiveState.MODERATE_LOAD: 0.9, |
|
CognitiveState.HIGH_LOAD: 0.7, |
|
CognitiveState.OVERLOADED: 0.5, |
|
CognitiveState.RECOVERING: 0.6 |
|
}.get(cognitive_state, 1.0) |
|
|
|
adjusted_priority = (priority * 0.4 + |
|
deadline_pressure * 0.4 + |
|
(1.0 - complexity) * 0.2) * state_multiplier |
|
|
|
self.priority_scores[task_id] = adjusted_priority |
|
|
|
|
|
total_priority = sum(self.priority_scores.values()) |
|
if total_priority > 0: |
|
allocation = {task_id: score / total_priority |
|
for task_id, score in self.priority_scores.items()} |
|
else: |
|
|
|
equal_weight = 1.0 / len(tasks) if tasks else 0.0 |
|
allocation = {task.get('id', str(i)): equal_weight |
|
for i, task in enumerate(tasks)} |
|
|
|
|
|
self.allocation_history.append((datetime.now(), allocation)) |
|
|
|
return allocation |
|
|
|
class CognitiveLoadMonitor: |
|
"""Monitors and analyzes cognitive load patterns""" |
|
|
|
def __init__(self): |
|
self.load_history = deque(maxlen=10000) |
|
self.load_patterns = {} |
|
|
|
def calculate_load(self, |
|
active_tasks: int, |
|
task_complexity: float, |
|
resource_usage: float, |
|
error_rate: float) -> float: |
|
"""Calculate current cognitive load""" |
|
|
|
|
|
task_load = min(np.log(active_tasks + 1) / np.log(10), 1.0) |
|
|
|
|
|
complexity_load = task_complexity * 0.3 |
|
|
|
|
|
resource_load = resource_usage * 0.25 |
|
|
|
|
|
error_load = min(error_rate ** 0.5, 1.0) * 0.2 |
|
|
|
total_load = task_load + complexity_load + resource_load + error_load |
|
|
|
|
|
self.load_history.append((datetime.now(), total_load)) |
|
|
|
return min(total_load, 1.0) |
|
|
|
class LearningRateOptimizer: |
|
"""Optimizes learning rates based on performance feedback""" |
|
|
|
def __init__(self, initial_rate: float = 0.001): |
|
self.current_rate = initial_rate |
|
self.rate_history = deque(maxlen=1000) |
|
self.performance_history = deque(maxlen=1000) |
|
self.strategy_effectiveness = {} |
|
|
|
def get_current_rate(self) -> float: |
|
return self.current_rate |
|
|
|
def update_rate(self, new_rate: float, strategy: AdaptationStrategy): |
|
self.rate_history.append((datetime.now(), self.current_rate, new_rate, strategy)) |
|
self.current_rate = new_rate |
|
|
|
class StrategyEvaluator: |
|
"""Evaluates effectiveness of different strategies""" |
|
|
|
def __init__(self): |
|
self.strategy_outcomes = {} |
|
self.strategy_scores = {} |
|
|
|
def record_strategy_outcome(self, strategy: str, outcome_score: float): |
|
if strategy not in self.strategy_outcomes: |
|
self.strategy_outcomes[strategy] = deque(maxlen=100) |
|
|
|
self.strategy_outcomes[strategy].append((datetime.now(), outcome_score)) |
|
|
|
|
|
scores = [score for _, score in self.strategy_outcomes[strategy]] |
|
self.strategy_scores[strategy] = np.mean(scores) |
|
|
|
|
|
def create_meta_cognitive_engine(memory_manager: PersistentMemoryManager, |
|
strategic_planner: StrategicPlanningEngine, |
|
**kwargs) -> MetaCognitiveEngine: |
|
"""Create meta-cognitive engine""" |
|
return MetaCognitiveEngine(memory_manager, strategic_planner, **kwargs) |
|
|