cyber_llm / src /cognitive /meta_cognitive.py
unit731's picture
Upload core Cyber-LLM platform components
23804b3 verified
"""
Meta-Cognitive Capabilities for Cyber-LLM
Self-reflection, adaptation, and cognitive load management
Author: Muzan Sano <[email protected]>
"""
import asyncio
import json
import logging
import numpy as np
from datetime import datetime, timedelta
from typing import Dict, List, Any, Optional, Tuple, Union
from dataclasses import dataclass, field
from enum import Enum
import torch
import torch.nn as nn
from collections import deque
from ..utils.logging_system import CyberLLMLogger, CyberLLMError, ErrorCategory
from ..memory.persistent_memory import PersistentMemoryManager
from ..memory.strategic_planning import StrategicPlanningEngine
class CognitiveState(Enum):
"""Cognitive processing states"""
OPTIMAL = "optimal"
MODERATE_LOAD = "moderate_load"
HIGH_LOAD = "high_load"
OVERLOADED = "overloaded"
RECOVERING = "recovering"
class AdaptationStrategy(Enum):
"""Learning adaptation strategies"""
AGGRESSIVE = "aggressive"
MODERATE = "moderate"
CONSERVATIVE = "conservative"
CAUTIOUS = "cautious"
@dataclass
class CognitiveMetrics:
"""Cognitive performance metrics"""
timestamp: datetime
# Performance metrics
task_completion_rate: float
accuracy_score: float
response_time: float
resource_utilization: float
# Cognitive load indicators
attention_fragmentation: float # 0-1, higher = more fragmented
working_memory_usage: float # 0-1, percentage used
processing_complexity: float # 0-1, task complexity measure
# Adaptation metrics
learning_rate: float
confidence_level: float
adaptation_success_rate: float
# Error metrics
error_count: int
critical_errors: int
recovery_time: Optional[float] = None
@dataclass
class SelfReflectionResult:
"""Results from self-reflection analysis"""
reflection_id: str
timestamp: datetime
# Performance assessment
strengths: List[str]
weaknesses: List[str]
improvement_areas: List[str]
# Strategy effectiveness
effective_strategies: List[str]
ineffective_strategies: List[str]
recommended_changes: List[str]
# Cognitive insights
cognitive_patterns: Dict[str, Any]
load_management_insights: List[str]
attention_allocation_insights: List[str]
# Action items
immediate_adjustments: List[str]
medium_term_goals: List[str]
long_term_objectives: List[str]
class MetaCognitiveEngine:
"""Advanced meta-cognitive capabilities for self-reflection and adaptation"""
def __init__(self,
memory_manager: PersistentMemoryManager,
strategic_planner: StrategicPlanningEngine,
logger: Optional[CyberLLMLogger] = None):
self.memory_manager = memory_manager
self.strategic_planner = strategic_planner
self.logger = logger or CyberLLMLogger(name="meta_cognitive")
# Cognitive state tracking
self.current_state = CognitiveState.OPTIMAL
self.state_history = deque(maxlen=1000)
self.cognitive_metrics = deque(maxlen=10000)
# Self-reflection system
self.reflection_history = {}
self.performance_baselines = {}
self.adaptation_strategies = {}
# Cognitive load management
self.attention_allocator = AttentionAllocator()
self.cognitive_load_monitor = CognitiveLoadMonitor()
# Learning optimization
self.learning_rate_optimizer = LearningRateOptimizer()
self.strategy_evaluator = StrategyEvaluator()
# Neural networks for meta-learning
self.performance_predictor = self._build_performance_predictor()
self.strategy_selector = self._build_strategy_selector()
self.logger.info("Meta-Cognitive Engine initialized")
async def conduct_self_reflection(self,
time_period: timedelta = timedelta(hours=1)) -> SelfReflectionResult:
"""Conduct comprehensive self-reflection analysis"""
reflection_id = f"reflection_{datetime.now().strftime('%Y%m%d_%H%M%S')}"
try:
self.logger.info("Starting self-reflection analysis", reflection_id=reflection_id)
# Gather performance data
end_time = datetime.now()
start_time = end_time - time_period
performance_data = await self._gather_performance_data(start_time, end_time)
cognitive_data = await self._gather_cognitive_data(start_time, end_time)
strategy_data = await self._gather_strategy_data(start_time, end_time)
# Analyze strengths and weaknesses
strengths, weaknesses = await self._analyze_performance_patterns(performance_data)
# Evaluate strategy effectiveness
effective_strategies, ineffective_strategies = await self._evaluate_strategies(strategy_data)
# Generate insights
cognitive_patterns = await self._analyze_cognitive_patterns(cognitive_data)
load_insights = await self._analyze_load_management(cognitive_data)
attention_insights = await self._analyze_attention_allocation(cognitive_data)
# Generate recommendations
immediate_adjustments = await self._generate_immediate_adjustments(
weaknesses, ineffective_strategies, cognitive_patterns)
medium_term_goals = await self._generate_medium_term_goals(
strengths, weaknesses, cognitive_patterns)
long_term_objectives = await self._generate_long_term_objectives(
performance_data, cognitive_patterns)
# Create reflection result
reflection_result = SelfReflectionResult(
reflection_id=reflection_id,
timestamp=datetime.now(),
strengths=strengths,
weaknesses=weaknesses,
improvement_areas=list(set(weaknesses + [adj.split(':')[0] for adj in immediate_adjustments])),
effective_strategies=effective_strategies,
ineffective_strategies=ineffective_strategies,
recommended_changes=immediate_adjustments + medium_term_goals,
cognitive_patterns=cognitive_patterns,
load_management_insights=load_insights,
attention_allocation_insights=attention_insights,
immediate_adjustments=immediate_adjustments,
medium_term_goals=medium_term_goals,
long_term_objectives=long_term_objectives
)
# Store reflection result
self.reflection_history[reflection_id] = reflection_result
# Store in persistent memory
await self.memory_manager.store_reasoning_chain(
chain_id=f"self_reflection_{reflection_id}",
steps=[
f"Analyzed performance over {time_period}",
f"Identified {len(strengths)} strengths and {len(weaknesses)} weaknesses",
f"Evaluated {len(effective_strategies)} effective strategies",
f"Generated {len(immediate_adjustments)} immediate adjustments"
],
conclusion=f"Self-reflection completed with actionable insights",
confidence=0.85,
metadata={
"reflection_type": "comprehensive_analysis",
"time_period": str(time_period),
"performance_score": np.mean([m.accuracy_score for m in self.cognitive_metrics if m.timestamp >= start_time])
}
)
self.logger.info("Self-reflection analysis completed",
reflection_id=reflection_id,
strengths_count=len(strengths),
weaknesses_count=len(weaknesses),
recommendations_count=len(immediate_adjustments))
return reflection_result
except Exception as e:
self.logger.error("Self-reflection analysis failed", error=str(e))
raise CyberLLMError("Self-reflection failed", ErrorCategory.COGNITIVE_ERROR)
async def optimize_learning_rate(self,
recent_performance: List[float],
task_complexity: float) -> float:
"""Optimize learning rate based on recent performance and task complexity"""
try:
# Analyze performance trends
performance_trend = self._calculate_performance_trend(recent_performance)
performance_variance = np.var(recent_performance)
# Current learning rate
current_lr = self.learning_rate_optimizer.get_current_rate()
# Adaptation strategy based on performance
if performance_trend > 0.1 and performance_variance < 0.05:
# Good performance, stable -> slightly increase learning rate
adaptation_factor = 1.1
strategy = AdaptationStrategy.AGGRESSIVE
elif performance_trend > 0.05:
# Moderate improvement -> maintain or slight increase
adaptation_factor = 1.05
strategy = AdaptationStrategy.MODERATE
elif performance_trend < -0.1 or performance_variance > 0.2:
# Poor performance or high variance -> decrease learning rate
adaptation_factor = 0.8
strategy = AdaptationStrategy.CAUTIOUS
else:
# Stable performance -> minor adjustment based on complexity
adaptation_factor = 1.0 - (task_complexity - 0.5) * 0.1
strategy = AdaptationStrategy.CONSERVATIVE
# Apply complexity adjustment
complexity_factor = 1.0 - (task_complexity * 0.3)
final_factor = adaptation_factor * complexity_factor
# Calculate new learning rate
new_lr = current_lr * final_factor
new_lr = np.clip(new_lr, 0.0001, 0.1) # Keep within reasonable bounds
# Update learning rate optimizer
self.learning_rate_optimizer.update_rate(new_lr, strategy)
self.logger.info("Learning rate optimized",
old_rate=current_lr,
new_rate=new_lr,
strategy=strategy.value,
performance_trend=performance_trend)
return new_lr
except Exception as e:
self.logger.error("Learning rate optimization failed", error=str(e))
return self.learning_rate_optimizer.get_current_rate()
async def manage_cognitive_load(self,
current_tasks: List[Dict[str, Any]],
available_resources: Dict[str, float]) -> Dict[str, Any]:
"""Manage cognitive load and optimize task allocation"""
try:
# Calculate current cognitive load
current_load = await self._calculate_cognitive_load(current_tasks)
# Determine cognitive state
new_state = self._determine_cognitive_state(current_load, available_resources)
# Update state if changed
if new_state != self.current_state:
self.logger.info("Cognitive state changed",
old_state=self.current_state.value,
new_state=new_state.value)
self.current_state = new_state
self.state_history.append((datetime.now(), new_state))
# Generate load management strategy
management_strategy = await self._generate_load_management_strategy(
current_load, new_state, current_tasks, available_resources)
# Apply attention allocation optimization
attention_allocation = await self.attention_allocator.optimize_allocation(
current_tasks, available_resources, new_state)
# Generate recommendations
recommendations = await self._generate_load_management_recommendations(
current_load, new_state, management_strategy)
result = {
"cognitive_state": new_state.value,
"cognitive_load": current_load,
"management_strategy": management_strategy,
"attention_allocation": attention_allocation,
"recommendations": recommendations,
"resource_adjustments": await self._calculate_resource_adjustments(
new_state, available_resources)
}
self.logger.info("Cognitive load management completed",
state=new_state.value,
load=current_load,
recommendations_count=len(recommendations))
return result
except Exception as e:
self.logger.error("Cognitive load management failed", error=str(e))
return {"error": str(e)}
def _build_performance_predictor(self) -> nn.Module:
"""Build neural network for performance prediction"""
class PerformancePredictor(nn.Module):
def __init__(self):
super().__init__()
self.fc1 = nn.Linear(20, 64) # Input: various metrics
self.fc2 = nn.Linear(64, 32)
self.fc3 = nn.Linear(32, 16)
self.fc4 = nn.Linear(16, 1) # Output: predicted performance
self.dropout = nn.Dropout(0.2)
def forward(self, x):
x = torch.relu(self.fc1(x))
x = self.dropout(x)
x = torch.relu(self.fc2(x))
x = self.dropout(x)
x = torch.relu(self.fc3(x))
x = torch.sigmoid(self.fc4(x))
return x
return PerformancePredictor()
def _build_strategy_selector(self) -> nn.Module:
"""Build neural network for strategy selection"""
class StrategySelector(nn.Module):
def __init__(self):
super().__init__()
self.fc1 = nn.Linear(15, 48) # Input: context features
self.fc2 = nn.Linear(48, 24)
self.fc3 = nn.Linear(24, 8) # Output: strategy probabilities
self.dropout = nn.Dropout(0.15)
def forward(self, x):
x = torch.relu(self.fc1(x))
x = self.dropout(x)
x = torch.relu(self.fc2(x))
x = torch.softmax(self.fc3(x), dim=-1)
return x
return StrategySelector()
class AttentionAllocator:
"""Manages dynamic attention allocation across tasks"""
def __init__(self):
self.attention_weights = {}
self.priority_scores = {}
self.allocation_history = deque(maxlen=1000)
async def optimize_allocation(self,
tasks: List[Dict[str, Any]],
resources: Dict[str, float],
cognitive_state: CognitiveState) -> Dict[str, float]:
"""Optimize attention allocation across tasks"""
# Calculate base priority scores
for task in tasks:
task_id = task.get('id', str(hash(str(task))))
priority = task.get('priority', 0.5)
complexity = task.get('complexity', 0.5)
deadline_pressure = task.get('deadline_pressure', 0.0)
# Adjust priority based on cognitive state
state_multiplier = {
CognitiveState.OPTIMAL: 1.0,
CognitiveState.MODERATE_LOAD: 0.9,
CognitiveState.HIGH_LOAD: 0.7,
CognitiveState.OVERLOADED: 0.5,
CognitiveState.RECOVERING: 0.6
}.get(cognitive_state, 1.0)
adjusted_priority = (priority * 0.4 +
deadline_pressure * 0.4 +
(1.0 - complexity) * 0.2) * state_multiplier
self.priority_scores[task_id] = adjusted_priority
# Normalize allocation
total_priority = sum(self.priority_scores.values())
if total_priority > 0:
allocation = {task_id: score / total_priority
for task_id, score in self.priority_scores.items()}
else:
# Equal allocation if no priorities
equal_weight = 1.0 / len(tasks) if tasks else 0.0
allocation = {task.get('id', str(i)): equal_weight
for i, task in enumerate(tasks)}
# Store allocation history
self.allocation_history.append((datetime.now(), allocation))
return allocation
class CognitiveLoadMonitor:
"""Monitors and analyzes cognitive load patterns"""
def __init__(self):
self.load_history = deque(maxlen=10000)
self.load_patterns = {}
def calculate_load(self,
active_tasks: int,
task_complexity: float,
resource_usage: float,
error_rate: float) -> float:
"""Calculate current cognitive load"""
# Base load from task count (logarithmic scaling)
task_load = min(np.log(active_tasks + 1) / np.log(10), 1.0)
# Complexity contribution
complexity_load = task_complexity * 0.3
# Resource pressure
resource_load = resource_usage * 0.25
# Error pressure (exponential)
error_load = min(error_rate ** 0.5, 1.0) * 0.2
total_load = task_load + complexity_load + resource_load + error_load
# Store in history
self.load_history.append((datetime.now(), total_load))
return min(total_load, 1.0)
class LearningRateOptimizer:
"""Optimizes learning rates based on performance feedback"""
def __init__(self, initial_rate: float = 0.001):
self.current_rate = initial_rate
self.rate_history = deque(maxlen=1000)
self.performance_history = deque(maxlen=1000)
self.strategy_effectiveness = {}
def get_current_rate(self) -> float:
return self.current_rate
def update_rate(self, new_rate: float, strategy: AdaptationStrategy):
self.rate_history.append((datetime.now(), self.current_rate, new_rate, strategy))
self.current_rate = new_rate
class StrategyEvaluator:
"""Evaluates effectiveness of different strategies"""
def __init__(self):
self.strategy_outcomes = {}
self.strategy_scores = {}
def record_strategy_outcome(self, strategy: str, outcome_score: float):
if strategy not in self.strategy_outcomes:
self.strategy_outcomes[strategy] = deque(maxlen=100)
self.strategy_outcomes[strategy].append((datetime.now(), outcome_score))
# Update average score
scores = [score for _, score in self.strategy_outcomes[strategy]]
self.strategy_scores[strategy] = np.mean(scores)
# Factory function
def create_meta_cognitive_engine(memory_manager: PersistentMemoryManager,
strategic_planner: StrategicPlanningEngine,
**kwargs) -> MetaCognitiveEngine:
"""Create meta-cognitive engine"""
return MetaCognitiveEngine(memory_manager, strategic_planner, **kwargs)