cyber_llm / src /deployment /deployment_orchestrator.py
unit731's picture
Upload core Cyber-LLM platform components
23804b3 verified
"""
Project Deployment Orchestrator for Cyber-LLM
Complete deployment automation across cloud platforms with enterprise features
Author: Muzan Sano <[email protected]>
"""
import asyncio
import json
import logging
import subprocess
from datetime import datetime, timedelta
from typing import Dict, List, Any, Optional, Tuple, Union
from dataclasses import dataclass, field
from enum import Enum
from pathlib import Path
import yaml
import boto3
import kubernetes
from azure.identity import DefaultAzureCredential
from azure.mgmt.containerservice import ContainerServiceClient
from google.cloud import container_v1
from ..utils.logging_system import CyberLLMLogger, CyberLLMError, ErrorCategory
from ..monitoring.prometheus import PrometheusMonitoring
from ..governance.enterprise_governance import EnterpriseGovernanceManager
class DeploymentPlatform(Enum):
"""Supported deployment platforms"""
AWS_EKS = "aws_eks"
AZURE_AKS = "azure_aks"
GCP_GKE = "gcp_gke"
ON_PREMISE = "on_premise"
HYBRID_CLOUD = "hybrid_cloud"
MULTI_CLOUD = "multi_cloud"
class DeploymentEnvironment(Enum):
"""Deployment environments"""
DEVELOPMENT = "development"
STAGING = "staging"
PRODUCTION = "production"
DISASTER_RECOVERY = "disaster_recovery"
class DeploymentStatus(Enum):
"""Deployment status"""
PENDING = "pending"
DEPLOYING = "deploying"
DEPLOYED = "deployed"
FAILED = "failed"
ROLLING_BACK = "rolling_back"
ROLLED_BACK = "rolled_back"
UPDATING = "updating"
@dataclass
class DeploymentConfiguration:
"""Deployment configuration"""
platform: DeploymentPlatform
environment: DeploymentEnvironment
# Resource configuration
cpu_requests: str = "1000m"
memory_requests: str = "2Gi"
cpu_limits: str = "2000m"
memory_limits: str = "4Gi"
# Scaling configuration
min_replicas: int = 2
max_replicas: int = 10
target_cpu_utilization: int = 70
# Security configuration
enable_security_policies: bool = True
enable_network_policies: bool = True
enable_pod_security_policies: bool = True
# Storage configuration
storage_class: str = "fast-ssd"
persistent_volume_size: str = "100Gi"
# Monitoring configuration
enable_monitoring: bool = True
monitoring_namespace: str = "monitoring"
# Additional configuration
custom_annotations: Dict[str, str] = field(default_factory=dict)
custom_labels: Dict[str, str] = field(default_factory=dict)
environment_variables: Dict[str, str] = field(default_factory=dict)
@dataclass
class DeploymentResult:
"""Deployment result"""
deployment_id: str
status: DeploymentStatus
platform: DeploymentPlatform
environment: DeploymentEnvironment
# Deployment details
deployed_at: Optional[datetime] = None
deployment_duration: Optional[timedelta] = None
# Resources created
services_created: List[str] = field(default_factory=list)
deployments_created: List[str] = field(default_factory=list)
configmaps_created: List[str] = field(default_factory=list)
secrets_created: List[str] = field(default_factory=list)
# Access information
external_endpoints: List[str] = field(default_factory=list)
internal_endpoints: List[str] = field(default_factory=list)
# Monitoring information
monitoring_dashboard_url: Optional[str] = None
health_check_endpoint: Optional[str] = None
# Error information
error_message: Optional[str] = None
rollback_available: bool = False
class ProjectDeploymentOrchestrator:
"""Complete project deployment orchestration system"""
def __init__(self,
governance_manager: EnterpriseGovernanceManager,
monitoring: PrometheusMonitoring,
logger: Optional[CyberLLMLogger] = None):
self.governance_manager = governance_manager
self.monitoring = monitoring
self.logger = logger or CyberLLMLogger(name="deployment_orchestrator")
# Deployment tracking
self.active_deployments = {}
self.deployment_history = {}
# Platform clients
self._aws_client = None
self._azure_client = None
self._gcp_client = None
self._k8s_client = None
# Deployment templates
self.deployment_templates = {}
self.logger.info("Project Deployment Orchestrator initialized")
async def deploy_complete_project(self,
platform: DeploymentPlatform,
environment: DeploymentEnvironment,
config: Optional[DeploymentConfiguration] = None) -> DeploymentResult:
"""Deploy complete Cyber-LLM project"""
deployment_id = f"cyber_llm_{environment.value}_{datetime.now().strftime('%Y%m%d_%H%M%S')}"
try:
self.logger.info("Starting complete project deployment",
deployment_id=deployment_id,
platform=platform.value,
environment=environment.value)
# Initialize deployment configuration
if not config:
config = self._get_default_configuration(platform, environment)
# Mark deployment as starting
deployment_result = DeploymentResult(
deployment_id=deployment_id,
status=DeploymentStatus.DEPLOYING,
platform=platform,
environment=environment
)
self.active_deployments[deployment_id] = deployment_result
start_time = datetime.now()
# Phase 1: Infrastructure setup
await self._setup_infrastructure(deployment_id, platform, environment, config)
# Phase 2: Deploy core services
await self._deploy_core_services(deployment_id, platform, environment, config)
# Phase 3: Deploy AI agents
await self._deploy_ai_agents(deployment_id, platform, environment, config)
# Phase 4: Deploy orchestration layer
await self._deploy_orchestration_layer(deployment_id, platform, environment, config)
# Phase 5: Deploy API gateway and web interface
await self._deploy_api_gateway(deployment_id, platform, environment, config)
# Phase 6: Setup monitoring and observability
await self._setup_monitoring(deployment_id, platform, environment, config)
# Phase 7: Configure security and compliance
await self._configure_security(deployment_id, platform, environment, config)
# Phase 8: Run deployment validation
await self._validate_deployment(deployment_id, platform, environment, config)
# Update deployment result
end_time = datetime.now()
deployment_result.status = DeploymentStatus.DEPLOYED
deployment_result.deployed_at = end_time
deployment_result.deployment_duration = end_time - start_time
# Move to history
self.deployment_history[deployment_id] = deployment_result
del self.active_deployments[deployment_id]
self.logger.info("Project deployment completed successfully",
deployment_id=deployment_id,
duration=deployment_result.deployment_duration)
return deployment_result
except Exception as e:
self.logger.error("Project deployment failed",
deployment_id=deployment_id,
error=str(e))
# Update deployment result with failure
deployment_result.status = DeploymentStatus.FAILED
deployment_result.error_message = str(e)
deployment_result.rollback_available = True
# Attempt rollback
await self._rollback_deployment(deployment_id)
return deployment_result
async def _setup_infrastructure(self, deployment_id: str,
platform: DeploymentPlatform,
environment: DeploymentEnvironment,
config: DeploymentConfiguration):
"""Setup underlying infrastructure"""
self.logger.info("Setting up infrastructure", deployment_id=deployment_id)
if platform == DeploymentPlatform.AWS_EKS:
await self._setup_aws_infrastructure(deployment_id, environment, config)
elif platform == DeploymentPlatform.AZURE_AKS:
await self._setup_azure_infrastructure(deployment_id, environment, config)
elif platform == DeploymentPlatform.GCP_GKE:
await self._setup_gcp_infrastructure(deployment_id, environment, config)
elif platform == DeploymentPlatform.ON_PREMISE:
await self._setup_onpremise_infrastructure(deployment_id, environment, config)
# Create namespace
await self._create_namespace(deployment_id, environment)
# Setup RBAC
await self._setup_rbac(deployment_id, environment, config)
# Create secrets and configmaps
await self._create_secrets_configmaps(deployment_id, environment, config)
async def _deploy_core_services(self, deployment_id: str,
platform: DeploymentPlatform,
environment: DeploymentEnvironment,
config: DeploymentConfiguration):
"""Deploy core services"""
self.logger.info("Deploying core services", deployment_id=deployment_id)
# Deploy databases
await self._deploy_databases(deployment_id, environment, config)
# Deploy message queues
await self._deploy_message_queues(deployment_id, environment, config)
# Deploy caching layer
await self._deploy_caching_layer(deployment_id, environment, config)
# Deploy logging and metrics collection
await self._deploy_logging_metrics(deployment_id, environment, config)
async def _deploy_ai_agents(self, deployment_id: str,
platform: DeploymentPlatform,
environment: DeploymentEnvironment,
config: DeploymentConfiguration):
"""Deploy AI agent services"""
self.logger.info("Deploying AI agents", deployment_id=deployment_id)
# Deploy reconnaissance agent
await self._deploy_service("recon-agent", deployment_id, environment, config)
# Deploy C2 agent
await self._deploy_service("c2-agent", deployment_id, environment, config)
# Deploy post-exploit agent
await self._deploy_service("post-exploit-agent", deployment_id, environment, config)
# Deploy explainability agent
await self._deploy_service("explainability-agent", deployment_id, environment, config)
# Deploy safety agent
await self._deploy_service("safety-agent", deployment_id, environment, config)
async def _deploy_orchestration_layer(self, deployment_id: str,
platform: DeploymentPlatform,
environment: DeploymentEnvironment,
config: DeploymentConfiguration):
"""Deploy orchestration layer"""
self.logger.info("Deploying orchestration layer", deployment_id=deployment_id)
# Deploy main orchestrator
await self._deploy_service("orchestrator", deployment_id, environment, config)
# Deploy workflow engine
await self._deploy_service("workflow-engine", deployment_id, environment, config)
# Deploy external tool integration
await self._deploy_service("tool-integration", deployment_id, environment, config)
# Deploy learning systems
await self._deploy_service("learning-system", deployment_id, environment, config)
async def _deploy_api_gateway(self, deployment_id: str,
platform: DeploymentPlatform,
environment: DeploymentEnvironment,
config: DeploymentConfiguration):
"""Deploy API gateway and web interface"""
self.logger.info("Deploying API gateway", deployment_id=deployment_id)
# Deploy API gateway
await self._deploy_service("api-gateway", deployment_id, environment, config)
# Deploy web interface
await self._deploy_service("web-interface", deployment_id, environment, config)
# Deploy CLI interface
await self._deploy_service("cli-interface", deployment_id, environment, config)
# Setup ingress/load balancer
await self._setup_ingress(deployment_id, environment, config)
async def _setup_monitoring(self, deployment_id: str,
platform: DeploymentPlatform,
environment: DeploymentEnvironment,
config: DeploymentConfiguration):
"""Setup monitoring and observability"""
if not config.enable_monitoring:
return
self.logger.info("Setting up monitoring", deployment_id=deployment_id)
# Deploy Prometheus
await self._deploy_prometheus(deployment_id, environment, config)
# Deploy Grafana
await self._deploy_grafana(deployment_id, environment, config)
# Deploy alerting
await self._deploy_alertmanager(deployment_id, environment, config)
# Deploy distributed tracing
await self._deploy_jaeger(deployment_id, environment, config)
# Setup custom dashboards
await self._setup_custom_dashboards(deployment_id, environment, config)
async def _configure_security(self, deployment_id: str,
platform: DeploymentPlatform,
environment: DeploymentEnvironment,
config: DeploymentConfiguration):
"""Configure security and compliance"""
self.logger.info("Configuring security", deployment_id=deployment_id)
# Setup network policies
if config.enable_network_policies:
await self._setup_network_policies(deployment_id, environment, config)
# Setup security policies
if config.enable_security_policies:
await self._setup_security_policies(deployment_id, environment, config)
# Setup pod security policies
if config.enable_pod_security_policies:
await self._setup_pod_security_policies(deployment_id, environment, config)
# Setup certificate management
await self._setup_certificate_management(deployment_id, environment, config)
# Setup secrets management
await self._setup_secrets_management(deployment_id, environment, config)
async def _validate_deployment(self, deployment_id: str,
platform: DeploymentPlatform,
environment: DeploymentEnvironment,
config: DeploymentConfiguration):
"""Validate deployment"""
self.logger.info("Validating deployment", deployment_id=deployment_id)
# Health checks
await self._run_health_checks(deployment_id, environment)
# Connectivity tests
await self._run_connectivity_tests(deployment_id, environment)
# Performance tests
await self._run_performance_tests(deployment_id, environment)
# Security validation
await self._run_security_validation(deployment_id, environment)
# Compliance validation
await self._run_compliance_validation(deployment_id, environment)
async def _deploy_service(self, service_name: str,
deployment_id: str,
environment: DeploymentEnvironment,
config: DeploymentConfiguration):
"""Deploy a specific service"""
self.logger.info(f"Deploying {service_name}", deployment_id=deployment_id)
# Generate Kubernetes manifests
manifests = self._generate_service_manifests(service_name, environment, config)
# Apply manifests
for manifest in manifests:
await self._apply_k8s_manifest(manifest)
# Wait for deployment to be ready
await self._wait_for_deployment_ready(service_name, environment)
# Update deployment result
if deployment_id in self.active_deployments:
self.active_deployments[deployment_id].deployments_created.append(service_name)
def _generate_service_manifests(self, service_name: str,
environment: DeploymentEnvironment,
config: DeploymentConfiguration) -> List[Dict[str, Any]]:
"""Generate Kubernetes manifests for a service"""
namespace = f"cyber-llm-{environment.value}"
# Deployment manifest
deployment = {
"apiVersion": "apps/v1",
"kind": "Deployment",
"metadata": {
"name": service_name,
"namespace": namespace,
"labels": {
"app": service_name,
"version": "v1.0.0",
"environment": environment.value,
**config.custom_labels
},
"annotations": config.custom_annotations
},
"spec": {
"replicas": config.min_replicas,
"selector": {
"matchLabels": {
"app": service_name
}
},
"template": {
"metadata": {
"labels": {
"app": service_name,
"version": "v1.0.0"
}
},
"spec": {
"containers": [{
"name": service_name,
"image": f"cyber-llm/{service_name}:latest",
"ports": [{
"containerPort": 8080,
"name": "http"
}],
"resources": {
"requests": {
"cpu": config.cpu_requests,
"memory": config.memory_requests
},
"limits": {
"cpu": config.cpu_limits,
"memory": config.memory_limits
}
},
"env": [
{"name": k, "value": v}
for k, v in config.environment_variables.items()
],
"livenessProbe": {
"httpGet": {
"path": "/health",
"port": 8080
},
"initialDelaySeconds": 30,
"periodSeconds": 10
},
"readinessProbe": {
"httpGet": {
"path": "/ready",
"port": 8080
},
"initialDelaySeconds": 5,
"periodSeconds": 5
}
}]
}
}
}
}
# Service manifest
service = {
"apiVersion": "v1",
"kind": "Service",
"metadata": {
"name": service_name,
"namespace": namespace,
"labels": {
"app": service_name
}
},
"spec": {
"selector": {
"app": service_name
},
"ports": [{
"port": 80,
"targetPort": 8080,
"name": "http"
}],
"type": "ClusterIP"
}
}
# HPA manifest
hpa = {
"apiVersion": "autoscaling/v2",
"kind": "HorizontalPodAutoscaler",
"metadata": {
"name": f"{service_name}-hpa",
"namespace": namespace
},
"spec": {
"scaleTargetRef": {
"apiVersion": "apps/v1",
"kind": "Deployment",
"name": service_name
},
"minReplicas": config.min_replicas,
"maxReplicas": config.max_replicas,
"metrics": [{
"type": "Resource",
"resource": {
"name": "cpu",
"target": {
"type": "Utilization",
"averageUtilization": config.target_cpu_utilization
}
}
}]
}
}
return [deployment, service, hpa]
def _get_default_configuration(self, platform: DeploymentPlatform,
environment: DeploymentEnvironment) -> DeploymentConfiguration:
"""Get default deployment configuration"""
# Adjust resources based on environment
if environment == DeploymentEnvironment.PRODUCTION:
return DeploymentConfiguration(
platform=platform,
environment=environment,
cpu_requests="2000m",
memory_requests="4Gi",
cpu_limits="4000m",
memory_limits="8Gi",
min_replicas=3,
max_replicas=20,
target_cpu_utilization=70
)
elif environment == DeploymentEnvironment.STAGING:
return DeploymentConfiguration(
platform=platform,
environment=environment,
cpu_requests="1000m",
memory_requests="2Gi",
cpu_limits="2000m",
memory_limits="4Gi",
min_replicas=2,
max_replicas=10,
target_cpu_utilization=75
)
else:
return DeploymentConfiguration(
platform=platform,
environment=environment,
cpu_requests="500m",
memory_requests="1Gi",
cpu_limits="1000m",
memory_limits="2Gi",
min_replicas=1,
max_replicas=5,
target_cpu_utilization=80
)
# Factory function
def create_deployment_orchestrator(governance_manager: EnterpriseGovernanceManager,
monitoring: PrometheusMonitoring,
**kwargs) -> ProjectDeploymentOrchestrator:
"""Create project deployment orchestrator"""
return ProjectDeploymentOrchestrator(governance_manager, monitoring, **kwargs)