|
""" |
|
Genkit-Enhanced Cybersecurity AI System Integration |
|
Integrates Google Genkit with existing Phase 9 cognitive architecture |
|
""" |
|
|
|
import os |
|
import json |
|
from typing import Dict, List, Any, Optional |
|
from datetime import datetime |
|
import asyncio |
|
from pydantic import BaseModel, Field |
|
|
|
try: |
|
from genkit.ai import Genkit |
|
from genkit.plugins.google_genai import GoogleAI |
|
from genkit.plugins.dev_local_vectorstore import devLocalVectorstore, devLocalRetrieverRef |
|
from genkit import z |
|
GENKIT_AVAILABLE = True |
|
except ImportError: |
|
GENKIT_AVAILABLE = False |
|
print("Google Genkit not available - run: pip install genkit genkit-plugin-google-genai") |
|
|
|
|
|
import sys |
|
sys.path.append('/home/o1/Desktop/cyber_llm/src') |
|
|
|
from cognitive.advanced_cognitive_system import AdvancedCognitiveSystem |
|
from agents.orchestrator import SecurityOrchestrator |
|
from agents.recon_agent import ReconAgent |
|
from agents.safety_agent import SafetyAgent |
|
from agents.c2_agent import C2Agent |
|
from agents.explainability_agent import ExplainabilityAgent |
|
|
|
|
|
class ThreatIntelligence(BaseModel): |
|
"""Structured threat intelligence output""" |
|
threat_type: str = Field(description="Type of threat identified") |
|
severity: str = Field(description="Threat severity: low, medium, high, critical") |
|
indicators: List[str] = Field(description="Indicators of compromise") |
|
recommendations: List[str] = Field(description="Mitigation recommendations") |
|
confidence_score: float = Field(description="Confidence in assessment (0.0-1.0)") |
|
timestamp: str = Field(description="Analysis timestamp") |
|
|
|
|
|
class SecurityAnalysis(BaseModel): |
|
"""Structured security analysis result""" |
|
analysis_type: str = Field(description="Type of analysis performed") |
|
findings: List[str] = Field(description="Security findings") |
|
risk_score: int = Field(description="Risk score (1-10)") |
|
affected_systems: List[str] = Field(description="Systems affected") |
|
mitigation_steps: List[str] = Field(description="Steps to mitigate risks") |
|
|
|
|
|
class GenkitEnhancedOrchestrator: |
|
""" |
|
Enhanced cybersecurity orchestrator using Google Genkit framework |
|
Integrates with existing Phase 9 cognitive architecture |
|
""" |
|
|
|
def __init__(self, config: Optional[Dict] = None): |
|
self.config = config or {} |
|
self.cognitive_system = None |
|
self.legacy_orchestrator = None |
|
|
|
if not GENKIT_AVAILABLE: |
|
raise ImportError("Google Genkit not available. Install with: pip install genkit genkit-plugin-google-genai") |
|
|
|
|
|
self.ai = Genkit( |
|
plugins=[ |
|
GoogleAI(), |
|
devLocalVectorstore([ |
|
{ |
|
'indexName': 'threatIntel', |
|
'embedder': 'googleai/gemini-embedding-001', |
|
}, |
|
{ |
|
'indexName': 'vulnerabilities', |
|
'embedder': 'googleai/gemini-embedding-001', |
|
} |
|
]) |
|
], |
|
model='googleai/gemini-2.5-flash' |
|
) |
|
|
|
|
|
self.threat_retriever = devLocalRetrieverRef('threatIntel') |
|
self.vuln_retriever = devLocalRetrieverRef('vulnerabilities') |
|
|
|
|
|
self._setup_agents() |
|
|
|
def _setup_agents(self): |
|
"""Setup Genkit-enhanced specialized agents""" |
|
|
|
|
|
self.recon_agent = self.ai.definePrompt({ |
|
'name': 'reconAgent', |
|
'description': 'Advanced reconnaissance agent for threat discovery', |
|
'tools': [self._create_network_scan_tool(), self._create_port_scan_tool()], |
|
'system': '''You are an advanced cybersecurity reconnaissance agent. |
|
Your role is to discover and analyze potential threats, vulnerabilities, and attack vectors. |
|
Use available tools to gather intelligence and provide structured analysis. |
|
Always prioritize stealth and minimize impact on target systems. |
|
Report findings in structured format with confidence scores.''' |
|
}) |
|
|
|
|
|
self.safety_agent = self.ai.definePrompt({ |
|
'name': 'safetyAgent', |
|
'description': 'Threat analysis and safety assessment agent', |
|
'tools': [self._create_threat_analysis_tool(), self._create_vulnerability_assessment_tool()], |
|
'system': '''You are a cybersecurity threat analysis expert. |
|
Analyze threats, assess risks, and provide safety recommendations. |
|
Use threat intelligence databases and vulnerability assessments. |
|
Provide structured threat intelligence with severity ratings and mitigation steps. |
|
Always err on the side of caution for safety-critical assessments.''' |
|
}) |
|
|
|
|
|
self.c2_agent = self.ai.definePrompt({ |
|
'name': 'c2Agent', |
|
'description': 'Command and control coordination agent', |
|
'tools': [self._create_response_coordination_tool(), self._create_incident_management_tool()], |
|
'system': '''You are a cybersecurity command and control coordinator. |
|
Coordinate incident response, manage security operations, and orchestrate defensive measures. |
|
Prioritize actions based on threat severity and business impact. |
|
Ensure proper communication and documentation of all actions taken.''' |
|
}) |
|
|
|
|
|
self.explainability_agent = self.ai.definePrompt({ |
|
'name': 'explainabilityAgent', |
|
'description': 'AI decision explanation and transparency agent', |
|
'tools': [self._create_analysis_explanation_tool()], |
|
'system': '''You are an AI explainability expert for cybersecurity decisions. |
|
Provide clear, understandable explanations of AI-driven security decisions. |
|
Break down complex analysis into human-readable insights. |
|
Include confidence levels, reasoning chains, and alternative perspectives. |
|
Help security teams understand and trust AI recommendations.''' |
|
}) |
|
|
|
|
|
self.orchestrator_agent = self.ai.definePrompt({ |
|
'name': 'orchestratorAgent', |
|
'description': 'Main cybersecurity orchestration and triage agent', |
|
'tools': [self.recon_agent, self.safety_agent, self.c2_agent, self.explainability_agent], |
|
'system': '''You are the main cybersecurity AI orchestrator. |
|
Coordinate and delegate tasks to specialized agents based on the situation. |
|
Prioritize threats, manage resources, and ensure comprehensive security coverage. |
|
Make strategic decisions about which agents to deploy for specific scenarios. |
|
Maintain situational awareness and provide executive-level security insights.''' |
|
}) |
|
|
|
def _create_network_scan_tool(self): |
|
"""Create network scanning tool for reconnaissance""" |
|
return self.ai.defineTool( |
|
{ |
|
'name': 'networkScanTool', |
|
'description': 'Perform network reconnaissance and discovery', |
|
'inputSchema': z.object({ |
|
'target': z.string().describe('Target IP range or hostname'), |
|
'scan_type': z.string().describe('Type of scan: ping, port, service'), |
|
'stealth': z.boolean().describe('Use stealth scanning techniques') |
|
}), |
|
'outputSchema': z.string().describe('Scan results in JSON format') |
|
}, |
|
async_tool_impl=self._network_scan_impl |
|
) |
|
|
|
def _create_port_scan_tool(self): |
|
"""Create port scanning tool""" |
|
return self.ai.defineTool( |
|
{ |
|
'name': 'portScanTool', |
|
'description': 'Scan for open ports and services', |
|
'inputSchema': z.object({ |
|
'target': z.string().describe('Target IP or hostname'), |
|
'port_range': z.string().describe('Port range to scan (e.g., 1-1000)'), |
|
'scan_technique': z.string().describe('Scan technique: tcp, udp, syn') |
|
}), |
|
'outputSchema': z.string().describe('Port scan results') |
|
}, |
|
async_tool_impl=self._port_scan_impl |
|
) |
|
|
|
def _create_threat_analysis_tool(self): |
|
"""Create threat analysis tool""" |
|
return self.ai.defineTool( |
|
{ |
|
'name': 'threatAnalysisTool', |
|
'description': 'Analyze threats using intelligence databases', |
|
'inputSchema': z.object({ |
|
'indicators': z.array(z.string()).describe('List of IOCs to analyze'), |
|
'analysis_depth': z.string().describe('Analysis depth: quick, standard, deep') |
|
}), |
|
'outputSchema': z.string().describe('Threat analysis results') |
|
}, |
|
async_tool_impl=self._threat_analysis_impl |
|
) |
|
|
|
def _create_vulnerability_assessment_tool(self): |
|
"""Create vulnerability assessment tool""" |
|
return self.ai.defineTool( |
|
{ |
|
'name': 'vulnerabilityAssessmentTool', |
|
'description': 'Assess system vulnerabilities', |
|
'inputSchema': z.object({ |
|
'target': z.string().describe('Target system or service'), |
|
'assessment_type': z.string().describe('Assessment type: basic, comprehensive') |
|
}), |
|
'outputSchema': z.string().describe('Vulnerability assessment results') |
|
}, |
|
async_tool_impl=self._vulnerability_assessment_impl |
|
) |
|
|
|
def _create_response_coordination_tool(self): |
|
"""Create incident response coordination tool""" |
|
return self.ai.defineTool( |
|
{ |
|
'name': 'responseCoordinationTool', |
|
'description': 'Coordinate incident response activities', |
|
'inputSchema': z.object({ |
|
'incident_id': z.string().describe('Incident identifier'), |
|
'response_actions': z.array(z.string()).describe('List of response actions to coordinate') |
|
}), |
|
'outputSchema': z.string().describe('Coordination results') |
|
}, |
|
async_tool_impl=self._response_coordination_impl |
|
) |
|
|
|
def _create_incident_management_tool(self): |
|
"""Create incident management tool""" |
|
return self.ai.defineTool( |
|
{ |
|
'name': 'incidentManagementTool', |
|
'description': 'Manage security incidents', |
|
'inputSchema': z.object({ |
|
'incident_data': z.string().describe('Incident information'), |
|
'action': z.string().describe('Action: create, update, escalate, close') |
|
}), |
|
'outputSchema': z.string().describe('Incident management results') |
|
}, |
|
async_tool_impl=self._incident_management_impl |
|
) |
|
|
|
def _create_analysis_explanation_tool(self): |
|
"""Create analysis explanation tool""" |
|
return self.ai.defineTool( |
|
{ |
|
'name': 'analysisExplanationTool', |
|
'description': 'Explain AI security decisions and analysis', |
|
'inputSchema': z.object({ |
|
'decision': z.string().describe('AI decision or analysis to explain'), |
|
'audience': z.string().describe('Target audience: technical, executive, general') |
|
}), |
|
'outputSchema': z.string().describe('Human-readable explanation') |
|
}, |
|
async_tool_impl=self._analysis_explanation_impl |
|
) |
|
|
|
|
|
async def _network_scan_impl(self, input_data): |
|
"""Implement network scanning functionality""" |
|
|
|
try: |
|
if self.legacy_orchestrator and hasattr(self.legacy_orchestrator, 'recon_agent'): |
|
result = await self.legacy_orchestrator.recon_agent.scan_network( |
|
input_data['target'], |
|
input_data['scan_type'], |
|
input_data.get('stealth', False) |
|
) |
|
return json.dumps(result) |
|
else: |
|
return json.dumps({ |
|
"status": "simulated", |
|
"target": input_data['target'], |
|
"scan_type": input_data['scan_type'], |
|
"results": ["Simulated network scan results - integrate with real scanning tools"] |
|
}) |
|
except Exception as e: |
|
return json.dumps({"error": str(e)}) |
|
|
|
async def _port_scan_impl(self, input_data): |
|
"""Implement port scanning functionality""" |
|
try: |
|
return json.dumps({ |
|
"status": "simulated", |
|
"target": input_data['target'], |
|
"port_range": input_data['port_range'], |
|
"open_ports": [22, 80, 443, 3389], |
|
"services": { |
|
"22": "SSH", |
|
"80": "HTTP", |
|
"443": "HTTPS", |
|
"3389": "RDP" |
|
} |
|
}) |
|
except Exception as e: |
|
return json.dumps({"error": str(e)}) |
|
|
|
async def _threat_analysis_impl(self, input_data): |
|
"""Implement threat analysis functionality""" |
|
try: |
|
|
|
docs = await self.ai.retrieve({ |
|
'retriever': self.threat_retriever, |
|
'query': ' '.join(input_data['indicators']), |
|
'options': {'k': 5} |
|
}) |
|
|
|
analysis_result = { |
|
"indicators_analyzed": input_data['indicators'], |
|
"threat_level": "medium", |
|
"related_threats": [doc.content for doc in docs[:3]], |
|
"confidence": 0.75, |
|
"timestamp": datetime.now().isoformat() |
|
} |
|
return json.dumps(analysis_result) |
|
except Exception as e: |
|
return json.dumps({"error": str(e)}) |
|
|
|
async def _vulnerability_assessment_impl(self, input_data): |
|
"""Implement vulnerability assessment functionality""" |
|
try: |
|
|
|
docs = await self.ai.retrieve({ |
|
'retriever': self.vuln_retriever, |
|
'query': input_data['target'], |
|
'options': {'k': 3} |
|
}) |
|
|
|
assessment_result = { |
|
"target": input_data['target'], |
|
"assessment_type": input_data['assessment_type'], |
|
"vulnerabilities": [doc.content for doc in docs], |
|
"risk_score": 7, |
|
"recommendations": [ |
|
"Apply latest security patches", |
|
"Update security configurations", |
|
"Implement additional monitoring" |
|
] |
|
} |
|
return json.dumps(assessment_result) |
|
except Exception as e: |
|
return json.dumps({"error": str(e)}) |
|
|
|
async def _response_coordination_impl(self, input_data): |
|
"""Implement response coordination functionality""" |
|
try: |
|
coordination_result = { |
|
"incident_id": input_data['incident_id'], |
|
"actions_coordinated": input_data['response_actions'], |
|
"status": "coordinated", |
|
"next_steps": ["Monitor execution", "Report status", "Update stakeholders"] |
|
} |
|
return json.dumps(coordination_result) |
|
except Exception as e: |
|
return json.dumps({"error": str(e)}) |
|
|
|
async def _incident_management_impl(self, input_data): |
|
"""Implement incident management functionality""" |
|
try: |
|
management_result = { |
|
"action": input_data['action'], |
|
"incident_data": input_data['incident_data'], |
|
"status": "processed", |
|
"incident_id": f"INC-{datetime.now().strftime('%Y%m%d-%H%M%S')}" |
|
} |
|
return json.dumps(management_result) |
|
except Exception as e: |
|
return json.dumps({"error": str(e)}) |
|
|
|
async def _analysis_explanation_impl(self, input_data): |
|
"""Implement analysis explanation functionality""" |
|
try: |
|
explanation = f""" |
|
Analysis Explanation for {input_data['audience']} audience: |
|
|
|
Decision/Analysis: {input_data['decision']} |
|
|
|
Reasoning Process: |
|
1. Data collection and preprocessing |
|
2. Pattern recognition and anomaly detection |
|
3. Risk assessment and scoring |
|
4. Recommendation generation |
|
|
|
Key Factors Considered: |
|
- Historical threat patterns |
|
- System criticality |
|
- Business impact |
|
- Available countermeasures |
|
|
|
Confidence Level: High (based on multiple data sources and validation) |
|
""" |
|
return explanation.strip() |
|
except Exception as e: |
|
return f"Error explaining analysis: {str(e)}" |
|
|
|
async def initialize_legacy_integration(self): |
|
"""Initialize integration with existing cognitive system""" |
|
try: |
|
|
|
self.cognitive_system = AdvancedCognitiveSystem() |
|
await self.cognitive_system.initialize() |
|
|
|
|
|
self.legacy_orchestrator = SecurityOrchestrator() |
|
await self.legacy_orchestrator.initialize() |
|
|
|
print("✅ Legacy system integration initialized") |
|
return True |
|
except Exception as e: |
|
print(f"❌ Failed to initialize legacy integration: {e}") |
|
return False |
|
|
|
@asyncio.coroutine |
|
def analyze_security_threat(self, threat_data: str) -> ThreatIntelligence: |
|
""" |
|
Main security threat analysis using Genkit-enhanced agents |
|
""" |
|
try: |
|
|
|
chat = self.ai.chat(self.orchestrator_agent) |
|
|
|
|
|
response = await chat.send( |
|
f"Analyze this security threat and provide structured intelligence: {threat_data}" |
|
) |
|
|
|
|
|
result = await self.ai.generate({ |
|
'model': 'googleai/gemini-2.5-flash', |
|
'prompt': f"Convert this threat analysis into structured intelligence: {response.content}", |
|
'output_schema': ThreatIntelligence |
|
}) |
|
|
|
return result.output |
|
except Exception as e: |
|
|
|
return ThreatIntelligence( |
|
threat_type="unknown", |
|
severity="medium", |
|
indicators=[], |
|
recommendations=["Manual review required"], |
|
confidence_score=0.5, |
|
timestamp=datetime.now().isoformat() |
|
) |
|
|
|
@asyncio.coroutine |
|
def perform_security_analysis(self, target: str, analysis_type: str = "comprehensive") -> SecurityAnalysis: |
|
""" |
|
Perform comprehensive security analysis using specialized agents |
|
""" |
|
try: |
|
|
|
chat = self.ai.chat(self.orchestrator_agent) |
|
|
|
analysis_request = f""" |
|
Perform {analysis_type} security analysis of target: {target} |
|
Coordinate with appropriate specialized agents to gather intelligence. |
|
""" |
|
|
|
response = await chat.send(analysis_request) |
|
|
|
|
|
result = await self.ai.generate({ |
|
'model': 'googleai/gemini-2.5-flash', |
|
'prompt': f"Structure this security analysis: {response.content}", |
|
'output_schema': SecurityAnalysis |
|
}) |
|
|
|
return result.output |
|
except Exception as e: |
|
return SecurityAnalysis( |
|
analysis_type=analysis_type, |
|
findings=[f"Analysis error: {str(e)}"], |
|
risk_score=5, |
|
affected_systems=[target], |
|
mitigation_steps=["Manual investigation required"] |
|
) |
|
|
|
async def get_threat_explanation(self, threat_analysis: str, audience: str = "technical") -> str: |
|
""" |
|
Get human-readable explanation of threat analysis |
|
""" |
|
try: |
|
chat = self.ai.chat(self.explainability_agent) |
|
|
|
explanation_request = f""" |
|
Explain this threat analysis for a {audience} audience: |
|
{threat_analysis} |
|
|
|
Provide clear, actionable insights. |
|
""" |
|
|
|
response = await chat.send(explanation_request) |
|
return response.content |
|
except Exception as e: |
|
return f"Unable to generate explanation: {str(e)}" |
|
|
|
|
|
|
|
def create_genkit_enhanced_system(config: Optional[Dict] = None) -> Optional[GenkitEnhancedOrchestrator]: |
|
""" |
|
Factory function to create Genkit-enhanced cybersecurity system |
|
""" |
|
if not GENKIT_AVAILABLE: |
|
print("❌ Google Genkit not available") |
|
return None |
|
|
|
try: |
|
orchestrator = GenkitEnhancedOrchestrator(config) |
|
print("✅ Genkit-enhanced cybersecurity system created") |
|
return orchestrator |
|
except Exception as e: |
|
print(f"❌ Failed to create Genkit system: {e}") |
|
return None |
|
|
|
|
|
|
|
async def main(): |
|
"""Example usage of Genkit-enhanced system""" |
|
|
|
|
|
genkit_system = create_genkit_enhanced_system() |
|
if not genkit_system: |
|
return |
|
|
|
|
|
await genkit_system.initialize_legacy_integration() |
|
|
|
|
|
threat_data = "Suspicious network activity detected from IP 192.168.1.100, multiple failed login attempts" |
|
|
|
try: |
|
|
|
threat_intel = await genkit_system.analyze_security_threat(threat_data) |
|
print(f"Threat Analysis: {threat_intel}") |
|
|
|
|
|
security_analysis = await genkit_system.perform_security_analysis("192.168.1.0/24") |
|
print(f"Security Analysis: {security_analysis}") |
|
|
|
|
|
explanation = await genkit_system.get_threat_explanation( |
|
str(threat_intel), |
|
audience="executive" |
|
) |
|
print(f"Executive Explanation: {explanation}") |
|
|
|
except Exception as e: |
|
print(f"Error during analysis: {e}") |
|
|
|
|
|
if __name__ == "__main__": |
|
asyncio.run(main()) |
|
|