cyber_llm / src /integration /knowledge_graph.py
unit731's picture
Upload core Cyber-LLM platform components
23804b3 verified
"""
Knowledge Graph Integration for Cyber-LLM
Real-time threat intelligence and cybersecurity knowledge management
Author: Muzan Sano <[email protected]>
"""
import asyncio
import json
import logging
from datetime import datetime, timedelta
from typing import Dict, List, Any, Optional, Tuple, Union, Set
from dataclasses import dataclass, field
from enum import Enum
import numpy as np
import networkx as nx
from neo4j import GraphDatabase
import requests
import feedparser
from bs4 import BeautifulSoup
from ..utils.logging_system import CyberLLMLogger, CyberLLMError, ErrorCategory
from ..memory.persistent_memory import PersistentMemoryManager
class EntityType(Enum):
"""Knowledge graph entity types"""
VULNERABILITY = "vulnerability"
THREAT_ACTOR = "threat_actor"
MALWARE = "malware"
ATTACK_TECHNIQUE = "attack_technique"
INDICATOR = "indicator"
ASSET = "asset"
ORGANIZATION = "organization"
CAMPAIGN = "campaign"
TOOL = "tool"
MITIGATION = "mitigation"
class RelationType(Enum):
"""Knowledge graph relationship types"""
EXPLOITS = "exploits"
MITIGATES = "mitigates"
TARGETS = "targets"
USES = "uses"
ATTRIBUTED_TO = "attributed_to"
SIMILAR_TO = "similar_to"
PART_OF = "part_of"
DETECTS = "detects"
IMPLEMENTS = "implements"
COMMUNICATES_WITH = "communicates_with"
class ConfidenceLevel(Enum):
"""Confidence levels for knowledge assertions"""
LOW = 0.3
MEDIUM = 0.6
HIGH = 0.8
VERY_HIGH = 0.95
@dataclass
class KnowledgeEntity:
"""Knowledge graph entity"""
entity_id: str
entity_type: EntityType
name: str
# Properties
properties: Dict[str, Any] = field(default_factory=dict)
# Metadata
created_at: datetime = field(default_factory=datetime.now)
updated_at: datetime = field(default_factory=datetime.now)
source: Optional[str] = None
confidence: float = 0.8
# Relationships
relationships: List['KnowledgeRelationship'] = field(default_factory=list)
# Tags and classification
tags: Set[str] = field(default_factory=set)
classification: Optional[str] = None
@dataclass
class KnowledgeRelationship:
"""Knowledge graph relationship"""
relationship_id: str
source_entity: str
target_entity: str
relationship_type: RelationType
# Properties
properties: Dict[str, Any] = field(default_factory=dict)
# Metadata
created_at: datetime = field(default_factory=datetime.now)
confidence: float = 0.8
source: Optional[str] = None
# Temporal aspects
valid_from: Optional[datetime] = None
valid_until: Optional[datetime] = None
@dataclass
class ThreatIntelligenceData:
"""Threat intelligence data structure"""
intel_id: str
title: str
description: str
# Classification
threat_type: str
severity: str
confidence: ConfidenceLevel
# Temporal information
discovered_at: datetime
published_at: Optional[datetime] = None
expires_at: Optional[datetime] = None
# Indicators
indicators: List[Dict[str, Any]] = field(default_factory=list)
# Attribution
threat_actors: List[str] = field(default_factory=list)
campaigns: List[str] = field(default_factory=list)
# Source information
source: str
source_reliability: str
# References
references: List[str] = field(default_factory=list)
# Structured data
mitre_techniques: List[str] = field(default_factory=list)
affected_products: List[str] = field(default_factory=list)
class CyberKnowledgeGraph:
"""Comprehensive cybersecurity knowledge graph"""
def __init__(self,
neo4j_uri: str,
neo4j_user: str,
neo4j_password: str,
memory_manager: PersistentMemoryManager,
logger: Optional[CyberLLMLogger] = None):
self.memory_manager = memory_manager
self.logger = logger or CyberLLMLogger(name="knowledge_graph")
# Graph database connection
self.driver = GraphDatabase.driver(neo4j_uri, auth=(neo4j_user, neo4j_password))
# In-memory graph for fast operations
self.graph = nx.MultiDiGraph()
# Entity and relationship tracking
self.entities = {}
self.relationships = {}
# Intelligence sources
self.threat_intel_sources = {}
self.cve_sources = {}
self.news_sources = {}
# Update tracking
self.last_update = {}
self.update_frequencies = {}
# Initialize knowledge graph
asyncio.create_task(self._initialize_knowledge_graph())
self.logger.info("Cyber Knowledge Graph initialized")
async def _initialize_knowledge_graph(self):
"""Initialize knowledge graph with base data"""
try:
# Create database constraints and indexes
await self._create_database_schema()
# Load base cybersecurity ontology
await self._load_base_ontology()
# Initialize threat intelligence sources
await self._initialize_threat_intel_sources()
# Start periodic updates
asyncio.create_task(self._periodic_updates())
self.logger.info("Knowledge graph initialization completed")
except Exception as e:
self.logger.error("Knowledge graph initialization failed", error=str(e))
async def add_entity(self, entity: KnowledgeEntity) -> bool:
"""Add entity to knowledge graph"""
try:
# Store in Neo4j
with self.driver.session() as session:
query = f"""
CREATE (e:{entity.entity_type.value.title()} {{
entity_id: $entity_id,
name: $name,
properties: $properties,
created_at: $created_at,
updated_at: $updated_at,
source: $source,
confidence: $confidence,
tags: $tags,
classification: $classification
}})
"""
session.run(query, {
"entity_id": entity.entity_id,
"name": entity.name,
"properties": json.dumps(entity.properties),
"created_at": entity.created_at.isoformat(),
"updated_at": entity.updated_at.isoformat(),
"source": entity.source,
"confidence": entity.confidence,
"tags": list(entity.tags),
"classification": entity.classification
})
# Store in memory
self.entities[entity.entity_id] = entity
self.graph.add_node(entity.entity_id, **entity.properties)
self.logger.info("Entity added to knowledge graph",
entity_id=entity.entity_id,
entity_type=entity.entity_type.value)
return True
except Exception as e:
self.logger.error("Failed to add entity", error=str(e))
return False
async def add_relationship(self, relationship: KnowledgeRelationship) -> bool:
"""Add relationship to knowledge graph"""
try:
# Store in Neo4j
with self.driver.session() as session:
query = f"""
MATCH (source {{entity_id: $source_entity}})
MATCH (target {{entity_id: $target_entity}})
CREATE (source)-[r:{relationship.relationship_type.value.upper()} {{
relationship_id: $relationship_id,
properties: $properties,
created_at: $created_at,
confidence: $confidence,
source: $source,
valid_from: $valid_from,
valid_until: $valid_until
}}]->(target)
"""
session.run(query, {
"source_entity": relationship.source_entity,
"target_entity": relationship.target_entity,
"relationship_id": relationship.relationship_id,
"properties": json.dumps(relationship.properties),
"created_at": relationship.created_at.isoformat(),
"confidence": relationship.confidence,
"source": relationship.source,
"valid_from": relationship.valid_from.isoformat() if relationship.valid_from else None,
"valid_until": relationship.valid_until.isoformat() if relationship.valid_until else None
})
# Store in memory
self.relationships[relationship.relationship_id] = relationship
self.graph.add_edge(
relationship.source_entity,
relationship.target_entity,
key=relationship.relationship_id,
relationship_type=relationship.relationship_type.value,
**relationship.properties
)
self.logger.info("Relationship added to knowledge graph",
relationship_id=relationship.relationship_id,
relationship_type=relationship.relationship_type.value)
return True
except Exception as e:
self.logger.error("Failed to add relationship", error=str(e))
return False
async def query_entities(self,
entity_type: Optional[EntityType] = None,
properties: Optional[Dict[str, Any]] = None,
tags: Optional[Set[str]] = None) -> List[KnowledgeEntity]:
"""Query entities from knowledge graph"""
try:
# Build query
conditions = []
params = {}
if entity_type:
label = entity_type.value.title()
else:
label = ""
if properties:
for key, value in properties.items():
conditions.append(f"e.properties CONTAINS $prop_{key}")
params[f"prop_{key}"] = json.dumps({key: value})
if tags:
for i, tag in enumerate(tags):
conditions.append(f"$tag_{i} IN e.tags")
params[f"tag_{i}"] = tag
where_clause = " AND ".join(conditions) if conditions else ""
if where_clause:
where_clause = "WHERE " + where_clause
query = f"""
MATCH (e{':' + label if label else ''})
{where_clause}
RETURN e
"""
# Execute query
with self.driver.session() as session:
result = session.run(query, params)
entities = []
for record in result:
node = record["e"]
entity = KnowledgeEntity(
entity_id=node["entity_id"],
entity_type=EntityType(node.labels),
name=node["name"],
properties=json.loads(node.get("properties", "{}")),
created_at=datetime.fromisoformat(node["created_at"]),
updated_at=datetime.fromisoformat(node["updated_at"]),
source=node.get("source"),
confidence=node.get("confidence", 0.8),
tags=set(node.get("tags", [])),
classification=node.get("classification")
)
entities.append(entity)
return entities
except Exception as e:
self.logger.error("Entity query failed", error=str(e))
return []
async def find_paths(self,
source_entity: str,
target_entity: str,
max_depth: int = 3) -> List[List[str]]:
"""Find paths between entities"""
try:
# Use NetworkX for efficient path finding
if self.graph.has_node(source_entity) and self.graph.has_node(target_entity):
paths = list(nx.all_simple_paths(
self.graph,
source_entity,
target_entity,
cutoff=max_depth
))
return paths
return []
except Exception as e:
self.logger.error("Path finding failed", error=str(e))
return []
async def get_entity_neighbors(self, entity_id: str, relationship_types: Optional[List[RelationType]] = None) -> List[KnowledgeEntity]:
"""Get neighboring entities"""
try:
neighbors = []
if entity_id in self.graph:
for neighbor in self.graph.neighbors(entity_id):
if relationship_types:
# Check if any edge has the required relationship type
edges = self.graph[entity_id][neighbor]
for edge_data in edges.values():
if edge_data.get('relationship_type') in [rt.value for rt in relationship_types]:
if neighbor in self.entities:
neighbors.append(self.entities[neighbor])
break
else:
if neighbor in self.entities:
neighbors.append(self.entities[neighbor])
return neighbors
except Exception as e:
self.logger.error("Failed to get entity neighbors", error=str(e))
return []
class ThreatIntelligenceAggregator:
"""Aggregates threat intelligence from multiple sources"""
def __init__(self,
knowledge_graph: CyberKnowledgeGraph,
logger: Optional[CyberLLMLogger] = None):
self.knowledge_graph = knowledge_graph
self.logger = logger or CyberLLMLogger(name="threat_intel")
# Intelligence sources
self.sources = {
"cve": {
"url": "https://cve.mitre.org/data/downloads/",
"update_frequency": timedelta(hours=6)
},
"mitre_attack": {
"url": "https://attack.mitre.org/",
"update_frequency": timedelta(days=1)
},
"threat_feeds": []
}
# Processing state
self.last_updates = {}
self.processing_queue = asyncio.Queue()
# Start processing worker
asyncio.create_task(self._processing_worker())
self.logger.info("Threat Intelligence Aggregator initialized")
async def aggregate_cve_data(self) -> int:
"""Aggregate CVE data from MITRE"""
try:
self.logger.info("Starting CVE data aggregation")
# Fetch CVE JSON feed
cve_url = "https://cve.mitre.org/data/downloads/allitems.json"
async with aiohttp.ClientSession() as session:
async with session.get(cve_url) as response:
if response.status == 200:
cve_data = await response.json()
else:
raise Exception(f"Failed to fetch CVE data: {response.status}")
processed_count = 0
# Process CVE entries
for cve_item in cve_data.get("CVE_Items", []):
cve_id = cve_item["cve"]["CVE_data_meta"]["ID"]
# Create CVE entity
entity = KnowledgeEntity(
entity_id=cve_id,
entity_type=EntityType.VULNERABILITY,
name=cve_id,
properties={
"description": cve_item["cve"]["description"]["description_data"][0]["value"],
"published_date": cve_item.get("publishedDate"),
"modified_date": cve_item.get("lastModifiedDate"),
"cvss_score": self._extract_cvss_score(cve_item),
"severity": self._determine_severity(cve_item),
"affected_products": self._extract_affected_products(cve_item)
},
source="mitre_cve",
confidence=0.95
)
await self.knowledge_graph.add_entity(entity)
processed_count += 1
# Add relationships to affected products
for product in entity.properties.get("affected_products", []):
# Create or get product entity
product_entity = await self._get_or_create_product_entity(product)
# Create vulnerability relationship
relationship = KnowledgeRelationship(
relationship_id=f"{cve_id}_affects_{product_entity.entity_id}",
source_entity=cve_id,
target_entity=product_entity.entity_id,
relationship_type=RelationType.TARGETS,
confidence=0.9,
source="mitre_cve"
)
await self.knowledge_graph.add_relationship(relationship)
self.last_updates["cve"] = datetime.now()
self.logger.info("CVE data aggregation completed",
processed_count=processed_count)
return processed_count
except Exception as e:
self.logger.error("CVE data aggregation failed", error=str(e))
return 0
async def aggregate_mitre_attack(self) -> int:
"""Aggregate MITRE ATT&CK framework data"""
try:
self.logger.info("Starting MITRE ATT&CK data aggregation")
# MITRE ATT&CK STIX data
attack_url = "https://raw.githubusercontent.com/mitre/cti/master/enterprise-attack/enterprise-attack.json"
async with aiohttp.ClientSession() as session:
async with session.get(attack_url) as response:
if response.status == 200:
attack_data = await response.json()
else:
raise Exception(f"Failed to fetch MITRE ATT&CK data: {response.status}")
processed_count = 0
# Process STIX objects
for stix_object in attack_data.get("objects", []):
if stix_object["type"] == "attack-pattern":
# Create technique entity
technique_id = stix_object.get("external_references", [{}])[0].get("external_id", "")
entity = KnowledgeEntity(
entity_id=technique_id,
entity_type=EntityType.ATTACK_TECHNIQUE,
name=stix_object["name"],
properties={
"description": stix_object.get("description", ""),
"kill_chain_phases": [phase["phase_name"] for phase in stix_object.get("kill_chain_phases", [])],
"platforms": stix_object.get("x_mitre_platforms", []),
"tactics": [ref["external_id"] for ref in stix_object.get("external_references", []) if ref.get("source_name") == "mitre-attack"]
},
source="mitre_attack",
confidence=0.98
)
await self.knowledge_graph.add_entity(entity)
processed_count += 1
self.last_updates["mitre_attack"] = datetime.now()
self.logger.info("MITRE ATT&CK data aggregation completed",
processed_count=processed_count)
return processed_count
except Exception as e:
self.logger.error("MITRE ATT&CK data aggregation failed", error=str(e))
return 0
async def _processing_worker(self):
"""Background worker for processing intelligence data"""
while True:
try:
# Check for scheduled updates
for source, config in self.sources.items():
last_update = self.last_updates.get(source)
update_frequency = config.get("update_frequency")
if not last_update or (datetime.now() - last_update) > update_frequency:
if source == "cve":
await self.aggregate_cve_data()
elif source == "mitre_attack":
await self.aggregate_mitre_attack()
# Wait before next check
await asyncio.sleep(3600) # Check every hour
except Exception as e:
self.logger.error("Intelligence processing worker error", error=str(e))
await asyncio.sleep(300) # Wait 5 minutes on error
# Factory functions
def create_knowledge_graph(neo4j_uri: str,
neo4j_user: str,
neo4j_password: str,
memory_manager: PersistentMemoryManager,
**kwargs) -> CyberKnowledgeGraph:
"""Create cyber knowledge graph"""
return CyberKnowledgeGraph(neo4j_uri, neo4j_user, neo4j_password, memory_manager, **kwargs)
def create_threat_intelligence_aggregator(knowledge_graph: CyberKnowledgeGraph,
**kwargs) -> ThreatIntelligenceAggregator:
"""Create threat intelligence aggregator"""
return ThreatIntelligenceAggregator(knowledge_graph, **kwargs)