cyber_llm / src /integration /universal_tool_framework.py
unit731's picture
Upload core Cyber-LLM platform components
23804b3 verified
"""
Universal Tool Integration Framework for Cyber-LLM
Plugin architecture and standardized API for external security tools
Author: Muzan Sano <[email protected]>
"""
import asyncio
import json
import logging
import importlib
import inspect
from datetime import datetime, timedelta
from typing import Dict, List, Any, Optional, Tuple, Union, Callable
from dataclasses import dataclass, field
from enum import Enum
from pathlib import Path
import yaml
import aiohttp
import docker
import subprocess
from ..utils.logging_system import CyberLLMLogger, CyberLLMError, ErrorCategory
from ..memory.persistent_memory import PersistentMemoryManager
class ToolType(Enum):
"""Types of security tools"""
SCANNER = "scanner"
ANALYZER = "analyzer"
MONITOR = "monitor"
FORENSICS = "forensics"
THREAT_INTEL = "threat_intel"
VULNERABILITY_MGMT = "vulnerability_mgmt"
INCIDENT_RESPONSE = "incident_response"
COMPLIANCE = "compliance"
REPORTING = "reporting"
AUTOMATION = "automation"
class IntegrationMethod(Enum):
"""Tool integration methods"""
REST_API = "rest_api"
CLI_WRAPPER = "cli_wrapper"
PYTHON_LIBRARY = "python_library"
DOCKER_CONTAINER = "docker_container"
WEBHOOK = "webhook"
SOCKET = "socket"
DATABASE = "database"
FILE_SYSTEM = "file_system"
class ToolStatus(Enum):
"""Tool availability status"""
AVAILABLE = "available"
BUSY = "busy"
ERROR = "error"
OFFLINE = "offline"
MAINTENANCE = "maintenance"
@dataclass
class ToolCapability:
"""Tool capability definition"""
capability_id: str
name: str
description: str
# Input/Output specification
input_schema: Dict[str, Any]
output_schema: Dict[str, Any]
# Performance characteristics
typical_execution_time: float # seconds
resource_requirements: Dict[str, float]
# Reliability metrics
success_rate: float = 0.95
error_rate: float = 0.05
# Dependencies
required_credentials: List[str] = field(default_factory=list)
required_permissions: List[str] = field(default_factory=list)
@dataclass
class ToolMetadata:
"""Comprehensive tool metadata"""
tool_id: str
name: str
version: str
vendor: str
# Classification
tool_type: ToolType
integration_method: IntegrationMethod
# Capabilities
capabilities: List[ToolCapability]
supported_formats: List[str]
# Integration details
endpoint_url: Optional[str] = None
api_key_required: bool = False
authentication_method: Optional[str] = None
# Docker configuration (if applicable)
docker_image: Optional[str] = None
docker_config: Dict[str, Any] = field(default_factory=dict)
# CLI configuration (if applicable)
executable_path: Optional[str] = None
command_template: Optional[str] = None
# Status and monitoring
status: ToolStatus = ToolStatus.OFFLINE
last_health_check: Optional[datetime] = None
health_check_interval: int = 300 # seconds
# Usage statistics
total_invocations: int = 0
successful_invocations: int = 0
average_response_time: float = 0.0
@dataclass
class ToolExecutionRequest:
"""Tool execution request"""
request_id: str
tool_id: str
capability_id: str
# Input data
input_data: Dict[str, Any]
parameters: Dict[str, Any] = field(default_factory=dict)
# Execution settings
timeout: int = 300 # seconds
priority: int = 5 # 1-10
retry_count: int = 3
# Context
correlation_id: Optional[str] = None
requested_by: Optional[str] = None
timestamp: datetime = field(default_factory=datetime.now)
@dataclass
class ToolExecutionResult:
"""Tool execution result"""
request_id: str
tool_id: str
capability_id: str
# Results
success: bool
output_data: Dict[str, Any]
error_message: Optional[str] = None
# Performance metrics
execution_time: float = 0.0
resource_usage: Dict[str, float] = field(default_factory=dict)
# Metadata
executed_at: datetime = field(default_factory=datetime.now)
tool_version: Optional[str] = None
class UniversalToolRegistry:
"""Central registry for all integrated tools"""
def __init__(self, logger: Optional[CyberLLMLogger] = None):
self.logger = logger or CyberLLMLogger(name="tool_registry")
# Tool storage
self.registered_tools = {}
self.tool_instances = {}
self.capability_index = {} # capability_id -> tool_id mapping
# Discovery and validation
self.discovery_paths = []
self.validation_rules = {}
# Monitoring
self.health_monitors = {}
self.usage_statistics = {}
self.logger.info("Universal Tool Registry initialized")
async def register_tool(self, metadata: ToolMetadata) -> bool:
"""Register a new tool"""
try:
# Validate tool metadata
if not await self._validate_tool_metadata(metadata):
self.logger.error("Invalid tool metadata", tool_id=metadata.tool_id)
return False
# Check for conflicts
if metadata.tool_id in self.registered_tools:
self.logger.warning("Tool already registered", tool_id=metadata.tool_id)
return False
# Create tool instance
tool_instance = await self._create_tool_instance(metadata)
if not tool_instance:
self.logger.error("Failed to create tool instance", tool_id=metadata.tool_id)
return False
# Perform health check
health_status = await self._perform_health_check(tool_instance)
metadata.status = ToolStatus.AVAILABLE if health_status else ToolStatus.ERROR
metadata.last_health_check = datetime.now()
# Register tool
self.registered_tools[metadata.tool_id] = metadata
self.tool_instances[metadata.tool_id] = tool_instance
# Index capabilities
for capability in metadata.capabilities:
self.capability_index[capability.capability_id] = metadata.tool_id
# Start health monitoring
asyncio.create_task(self._monitor_tool_health(metadata.tool_id))
self.logger.info("Tool registered successfully",
tool_id=metadata.tool_id,
name=metadata.name,
capabilities_count=len(metadata.capabilities))
return True
except Exception as e:
self.logger.error("Tool registration failed",
tool_id=metadata.tool_id,
error=str(e))
return False
async def discover_tools(self, discovery_paths: List[str]) -> List[ToolMetadata]:
"""Discover tools from specified paths"""
discovered_tools = []
for path in discovery_paths:
try:
if Path(path).is_file() and path.endswith('.yaml'):
# Tool definition file
metadata = await self._load_tool_from_yaml(path)
if metadata:
discovered_tools.append(metadata)
elif Path(path).is_dir():
# Directory with tool definitions
for yaml_file in Path(path).glob('*.yaml'):
metadata = await self._load_tool_from_yaml(str(yaml_file))
if metadata:
discovered_tools.append(metadata)
except Exception as e:
self.logger.error("Tool discovery failed for path",
path=path,
error=str(e))
self.logger.info("Tool discovery completed",
discovered_count=len(discovered_tools))
return discovered_tools
async def get_tool_by_capability(self, capability_id: str) -> Optional[ToolMetadata]:
"""Get tool that provides specific capability"""
tool_id = self.capability_index.get(capability_id)
if tool_id:
return self.registered_tools.get(tool_id)
return None
async def list_tools_by_type(self, tool_type: ToolType) -> List[ToolMetadata]:
"""List all tools of specified type"""
return [tool for tool in self.registered_tools.values()
if tool.tool_type == tool_type and tool.status == ToolStatus.AVAILABLE]
class ToolExecutionEngine:
"""Engine for executing tools with advanced features"""
def __init__(self,
registry: UniversalToolRegistry,
memory_manager: PersistentMemoryManager,
logger: Optional[CyberLLMLogger] = None):
self.registry = registry
self.memory_manager = memory_manager
self.logger = logger or CyberLLMLogger(name="tool_execution")
# Execution management
self.active_executions = {}
self.execution_queue = asyncio.Queue()
self.execution_history = []
# Resource management
self.resource_limits = {
"max_concurrent_executions": 10,
"max_memory_per_execution": 2048, # MB
"max_cpu_per_execution": 2.0 # cores
}
# Performance optimization
self.execution_cache = {}
self.load_balancing = True
# Start execution worker
asyncio.create_task(self._execution_worker())
self.logger.info("Tool Execution Engine initialized")
async def execute_tool(self, request: ToolExecutionRequest) -> ToolExecutionResult:
"""Execute a tool with specified capability"""
try:
self.logger.info("Tool execution requested",
request_id=request.request_id,
tool_id=request.tool_id,
capability=request.capability_id)
# Get tool metadata
tool_metadata = self.registry.registered_tools.get(request.tool_id)
if not tool_metadata:
return ToolExecutionResult(
request_id=request.request_id,
tool_id=request.tool_id,
capability_id=request.capability_id,
success=False,
output_data={},
error_message="Tool not found"
)
# Check tool availability
if tool_metadata.status != ToolStatus.AVAILABLE:
return ToolExecutionResult(
request_id=request.request_id,
tool_id=request.tool_id,
capability_id=request.capability_id,
success=False,
output_data={},
error_message=f"Tool not available: {tool_metadata.status.value}"
)
# Check cache for identical requests
cache_key = self._generate_cache_key(request)
if cache_key in self.execution_cache:
cached_result = self.execution_cache[cache_key]
if self._is_cache_valid(cached_result):
self.logger.info("Returning cached result", request_id=request.request_id)
return cached_result
# Execute tool
tool_instance = self.registry.tool_instances[request.tool_id]
start_time = datetime.now()
try:
# Execute based on integration method
if tool_metadata.integration_method == IntegrationMethod.REST_API:
result = await self._execute_rest_api(tool_instance, request)
elif tool_metadata.integration_method == IntegrationMethod.CLI_WRAPPER:
result = await self._execute_cli_wrapper(tool_instance, request)
elif tool_metadata.integration_method == IntegrationMethod.PYTHON_LIBRARY:
result = await self._execute_python_library(tool_instance, request)
elif tool_metadata.integration_method == IntegrationMethod.DOCKER_CONTAINER:
result = await self._execute_docker_container(tool_instance, request)
else:
raise NotImplementedError(f"Integration method {tool_metadata.integration_method} not implemented")
execution_time = (datetime.now() - start_time).total_seconds()
execution_result = ToolExecutionResult(
request_id=request.request_id,
tool_id=request.tool_id,
capability_id=request.capability_id,
success=True,
output_data=result,
execution_time=execution_time,
executed_at=start_time,
tool_version=tool_metadata.version
)
# Cache successful result
self.execution_cache[cache_key] = execution_result
# Update statistics
self._update_execution_statistics(tool_metadata, execution_result)
self.logger.info("Tool execution completed",
request_id=request.request_id,
execution_time=execution_time,
success=True)
return execution_result
except asyncio.TimeoutError:
return ToolExecutionResult(
request_id=request.request_id,
tool_id=request.tool_id,
capability_id=request.capability_id,
success=False,
output_data={},
error_message="Execution timeout",
execution_time=(datetime.now() - start_time).total_seconds()
)
except Exception as e:
self.logger.error("Tool execution failed",
request_id=request.request_id,
error=str(e))
return ToolExecutionResult(
request_id=request.request_id,
tool_id=request.tool_id,
capability_id=request.capability_id,
success=False,
output_data={},
error_message=str(e)
)
async def _execute_rest_api(self, tool_instance: Any, request: ToolExecutionRequest) -> Dict[str, Any]:
"""Execute REST API based tool"""
async with aiohttp.ClientSession() as session:
headers = await self._get_api_headers(tool_instance, request)
async with session.post(
tool_instance.endpoint,
json=request.input_data,
headers=headers,
timeout=aiohttp.ClientTimeout(total=request.timeout)
) as response:
if response.status == 200:
return await response.json()
else:
raise Exception(f"API call failed with status {response.status}: {await response.text()}")
async def _execute_cli_wrapper(self, tool_instance: Any, request: ToolExecutionRequest) -> Dict[str, Any]:
"""Execute CLI wrapper based tool"""
# Build command from template
command = tool_instance.command_template.format(**request.input_data)
# Execute command
process = await asyncio.create_subprocess_shell(
command,
stdout=asyncio.subprocess.PIPE,
stderr=asyncio.subprocess.PIPE
)
try:
stdout, stderr = await asyncio.wait_for(
process.communicate(),
timeout=request.timeout
)
if process.returncode == 0:
return {"stdout": stdout.decode(), "stderr": stderr.decode()}
else:
raise Exception(f"Command failed with return code {process.returncode}: {stderr.decode()}")
finally:
if process.returncode is None:
process.terminate()
await process.wait()
class PluginManager:
"""Manager for dynamic plugin loading and lifecycle"""
def __init__(self,
registry: UniversalToolRegistry,
logger: Optional[CyberLLMLogger] = None):
self.registry = registry
self.logger = logger or CyberLLMLogger(name="plugin_manager")
# Plugin management
self.loaded_plugins = {}
self.plugin_hooks = {}
self.plugin_dependencies = {}
self.logger.info("Plugin Manager initialized")
async def load_plugin(self, plugin_path: str) -> bool:
"""Dynamically load a plugin"""
try:
# Import plugin module
spec = importlib.util.spec_from_file_location("plugin", plugin_path)
plugin_module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(plugin_module)
# Validate plugin interface
if not hasattr(plugin_module, 'PLUGIN_METADATA'):
raise Exception("Plugin missing PLUGIN_METADATA")
if not hasattr(plugin_module, 'initialize_plugin'):
raise Exception("Plugin missing initialize_plugin function")
# Initialize plugin
plugin_metadata = plugin_module.PLUGIN_METADATA
plugin_instance = await plugin_module.initialize_plugin()
# Register with tool registry
if hasattr(plugin_instance, 'get_tool_metadata'):
tool_metadata = await plugin_instance.get_tool_metadata()
await self.registry.register_tool(tool_metadata)
# Store plugin
plugin_id = plugin_metadata['id']
self.loaded_plugins[plugin_id] = {
'module': plugin_module,
'instance': plugin_instance,
'metadata': plugin_metadata,
'path': plugin_path
}
self.logger.info("Plugin loaded successfully",
plugin_id=plugin_id,
name=plugin_metadata.get('name'))
return True
except Exception as e:
self.logger.error("Plugin loading failed",
plugin_path=plugin_path,
error=str(e))
return False
# Factory functions
def create_tool_registry(**kwargs) -> UniversalToolRegistry:
"""Create universal tool registry"""
return UniversalToolRegistry(**kwargs)
def create_tool_execution_engine(registry: UniversalToolRegistry,
memory_manager: PersistentMemoryManager,
**kwargs) -> ToolExecutionEngine:
"""Create tool execution engine"""
return ToolExecutionEngine(registry, memory_manager, **kwargs)
def create_plugin_manager(registry: UniversalToolRegistry,
**kwargs) -> PluginManager:
"""Create plugin manager"""
return PluginManager(registry, **kwargs)