cyber_llm / src /learning /reinforcement_learning.py
unit731's picture
Upload core Cyber-LLM platform components
23804b3 verified
"""
Reinforcement Learning for Adaptive Cyber Defense
Continuous learning and adaptation for cybersecurity strategies
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import json
import random
from typing import Dict, List, Optional, Any, Tuple, Union
from dataclasses import dataclass, asdict
from datetime import datetime, timedelta
import logging
from abc import ABC, abstractmethod
from collections import deque, defaultdict
import sqlite3
import pickle
from enum import Enum
import gym
from gym import spaces
import asyncio
class ActionType(Enum):
BLOCK_IP = "block_ip"
ALLOW_IP = "allow_ip"
QUARANTINE_HOST = "quarantine_host"
PATCH_SYSTEM = "patch_system"
UPDATE_RULES = "update_rules"
SCAN_NETWORK = "scan_network"
ISOLATE_SEGMENT = "isolate_segment"
ESCALATE_ALERT = "escalate_alert"
COLLECT_EVIDENCE = "collect_evidence"
NO_ACTION = "no_action"
@dataclass
class CyberState:
"""State representation for cybersecurity environment"""
timestamp: str
network_traffic: Dict[str, float]
active_connections: List[Dict[str, Any]]
security_alerts: List[Dict[str, Any]]
system_health: Dict[str, float]
threat_indicators: Dict[str, float]
previous_actions: List[str]
environment_context: Dict[str, Any]
@dataclass
class CyberAction:
"""Action representation for cybersecurity decisions"""
action_type: ActionType
parameters: Dict[str, Any]
confidence: float
expected_impact: float
resource_cost: float
timestamp: str
@dataclass
class CyberReward:
"""Reward structure for cyber defense RL"""
security_improvement: float
false_positive_penalty: float
resource_efficiency: float
response_time_bonus: float
total_reward: float
detailed_breakdown: Dict[str, float]
class CyberDefenseEnvironment(gym.Env):
"""Gym environment for cybersecurity reinforcement learning"""
def __init__(self, config: Dict[str, Any] = None):
super().__init__()
self.config = config or {}
self.logger = logging.getLogger(__name__)
# Environment parameters
self.max_timesteps = self.config.get('max_timesteps', 1000)
self.attack_probability = self.config.get('attack_probability', 0.1)
self.false_positive_rate = self.config.get('false_positive_rate', 0.05)
# State space: network metrics, alerts, system health, etc.
self.observation_space = spaces.Box(
low=0.0, high=1.0, shape=(50,), dtype=np.float32
)
# Action space: different cyber defense actions
self.action_space = spaces.Discrete(len(ActionType))
# Environment state
self.current_state = None
self.timestep = 0
self.attack_in_progress = False
self.attack_type = None
self.network_state = self._initialize_network_state()
# Metrics tracking
self.episode_metrics = {
'attacks_detected': 0,
'attacks_blocked': 0,
'false_positives': 0,
'response_times': [],
'resource_usage': 0.0,
'total_reward': 0.0
}
def _initialize_network_state(self) -> Dict[str, Any]:
"""Initialize network state simulation"""
return {
'hosts': {f'host_{i}': {'status': 'normal', 'risk': 0.1} for i in range(20)},
'services': {f'service_{i}': {'status': 'active', 'load': 0.3} for i in range(10)},
'network_segments': {f'segment_{i}': {'traffic': 0.5, 'anomalies': 0.0} for i in range(5)},
'security_controls': {
'firewall': {'status': 'active', 'rules': 100},
'ids': {'status': 'active', 'sensitivity': 0.7},
'antivirus': {'status': 'active', 'definitions': 'updated'}
}
}
def _generate_state_vector(self) -> np.ndarray:
"""Convert current environment state to observation vector"""
state_vector = []
# Network traffic metrics (10 features)
traffic_metrics = [
np.mean([self.network_state['network_segments'][seg]['traffic']
for seg in self.network_state['network_segments']]),
np.max([self.network_state['network_segments'][seg]['traffic']
for seg in self.network_state['network_segments']]),
np.std([self.network_state['network_segments'][seg]['traffic']
for seg in self.network_state['network_segments']]),
np.mean([self.network_state['network_segments'][seg]['anomalies']
for seg in self.network_state['network_segments']]),
np.sum([1 for host in self.network_state['hosts'].values()
if host['status'] != 'normal']) / len(self.network_state['hosts']),
np.mean([host['risk'] for host in self.network_state['hosts'].values()]),
np.sum([1 for service in self.network_state['services'].values()
if service['status'] == 'active']) / len(self.network_state['services']),
np.mean([service['load'] for service in self.network_state['services'].values()]),
1.0 if self.attack_in_progress else 0.0,
self.timestep / self.max_timesteps
]
state_vector.extend(traffic_metrics)
# Security controls status (10 features)
controls = self.network_state['security_controls']
control_features = [
1.0 if controls['firewall']['status'] == 'active' else 0.0,
controls['firewall']['rules'] / 200.0, # Normalize
1.0 if controls['ids']['status'] == 'active' else 0.0,
controls['ids']['sensitivity'],
1.0 if controls['antivirus']['status'] == 'active' else 0.0,
1.0 if controls['antivirus']['definitions'] == 'updated' else 0.0,
# Additional derived features
np.mean([1.0 if ctrl['status'] == 'active' else 0.0
for ctrl in controls.values() if 'status' in ctrl]),
self.episode_metrics['attacks_detected'] / max(1, self.timestep),
self.episode_metrics['false_positives'] / max(1, self.timestep),
self.episode_metrics['resource_usage'] / max(1, self.timestep)
]
state_vector.extend(control_features)
# Historical context (15 features)
recent_actions = self.current_state.previous_actions[-10:] if self.current_state else []
action_history = [0.0] * 10
for i, action in enumerate(recent_actions):
if i < len(action_history):
action_history[i] = list(ActionType).index(ActionType(action)) / len(ActionType)
context_features = action_history + [
len(self.current_state.security_alerts) / 10.0 if self.current_state else 0.0,
len(self.current_state.active_connections) / 100.0 if self.current_state else 0.0,
np.mean(list(self.current_state.threat_indicators.values())) if self.current_state else 0.0,
np.max(list(self.current_state.threat_indicators.values())) if self.current_state else 0.0,
np.std(list(self.current_state.threat_indicators.values())) if self.current_state else 0.0
]
state_vector.extend(context_features)
# Threat landscape (15 features)
threat_features = []
if self.current_state:
indicators = self.current_state.threat_indicators
threat_features = [
indicators.get('malware_probability', 0.0),
indicators.get('intrusion_probability', 0.0),
indicators.get('ddos_probability', 0.0),
indicators.get('lateral_movement_probability', 0.0),
indicators.get('data_exfiltration_probability', 0.0),
indicators.get('credential_theft_probability', 0.0),
indicators.get('ransomware_probability', 0.0),
indicators.get('phishing_probability', 0.0),
indicators.get('insider_threat_probability', 0.0),
indicators.get('apt_probability', 0.0),
# Derived features
max(indicators.values()) if indicators else 0.0,
min(indicators.values()) if indicators else 0.0,
np.mean(list(indicators.values())) if indicators else 0.0,
np.std(list(indicators.values())) if indicators else 0.0,
len([v for v in indicators.values() if v > 0.5]) / max(1, len(indicators))
]
else:
threat_features = [0.0] * 15
state_vector.extend(threat_features)
# Ensure exactly 50 features
while len(state_vector) < 50:
state_vector.append(0.0)
return np.array(state_vector[:50], dtype=np.float32)
def _simulate_attack(self) -> Tuple[bool, str]:
"""Simulate potential cyber attacks"""
if random.random() < self.attack_probability:
attack_types = ['malware', 'intrusion', 'ddos', 'lateral_movement',
'data_exfiltration', 'ransomware', 'phishing']
attack_type = random.choice(attack_types)
# Update network state based on attack
if attack_type == 'malware':
# Infect random hosts
infected_hosts = random.sample(list(self.network_state['hosts'].keys()),
random.randint(1, 3))
for host in infected_hosts:
self.network_state['hosts'][host]['status'] = 'infected'
self.network_state['hosts'][host]['risk'] = 0.9
elif attack_type == 'ddos':
# Increase traffic and service load
for segment in self.network_state['network_segments'].values():
segment['traffic'] = min(1.0, segment['traffic'] + 0.3)
for service in self.network_state['services'].values():
service['load'] = min(1.0, service['load'] + 0.4)
elif attack_type == 'intrusion':
# Compromise random host
target_host = random.choice(list(self.network_state['hosts'].keys()))
self.network_state['hosts'][target_host]['status'] = 'compromised'
self.network_state['hosts'][target_host]['risk'] = 0.95
return True, attack_type
return False, None
def _execute_action(self, action_idx: int) -> Dict[str, Any]:
"""Execute the chosen action and return its effects"""
action_type = list(ActionType)[action_idx]
action_effects = {
'success': False,
'impact': 0.0,
'cost': 0.0,
'side_effects': []
}
if action_type == ActionType.BLOCK_IP:
# Block suspicious IP addresses
action_effects['success'] = True
action_effects['impact'] = 0.3 if self.attack_in_progress else -0.1 # False positive penalty
action_effects['cost'] = 0.1
if self.attack_in_progress and self.attack_type in ['intrusion', 'ddos']:
# Effective against network-based attacks
action_effects['impact'] = 0.6
self.attack_in_progress = False
elif action_type == ActionType.QUARANTINE_HOST:
# Quarantine infected/suspicious hosts
action_effects['success'] = True
action_effects['cost'] = 0.3
infected_hosts = [host for host, info in self.network_state['hosts'].items()
if info['status'] in ['infected', 'compromised']]
if infected_hosts:
# Quarantine infected host
target_host = random.choice(infected_hosts)
self.network_state['hosts'][target_host]['status'] = 'quarantined'
action_effects['impact'] = 0.7
if self.attack_type == 'malware':
self.attack_in_progress = False
else:
# False positive
action_effects['impact'] = -0.2
elif action_type == ActionType.PATCH_SYSTEM:
# Apply security patches
action_effects['success'] = True
action_effects['cost'] = 0.2
action_effects['impact'] = 0.1 # Preventive measure
# Reduce overall risk
for host in self.network_state['hosts'].values():
host['risk'] = max(0.1, host['risk'] - 0.1)
elif action_type == ActionType.UPDATE_RULES:
# Update firewall/IDS rules
action_effects['success'] = True
action_effects['cost'] = 0.1
action_effects['impact'] = 0.2
self.network_state['security_controls']['firewall']['rules'] += 10
self.network_state['security_controls']['ids']['sensitivity'] = min(1.0,
self.network_state['security_controls']['ids']['sensitivity'] + 0.1)
elif action_type == ActionType.SCAN_NETWORK:
# Perform network security scan
action_effects['success'] = True
action_effects['cost'] = 0.2
action_effects['impact'] = 0.15 # Information gathering
# Detect hidden threats
for segment in self.network_state['network_segments'].values():
segment['anomalies'] = max(0.0, segment['anomalies'] - 0.2)
elif action_type == ActionType.ISOLATE_SEGMENT:
# Isolate network segment
action_effects['success'] = True
action_effects['cost'] = 0.4
if self.attack_type == 'lateral_movement':
action_effects['impact'] = 0.8
self.attack_in_progress = False
else:
action_effects['impact'] = -0.1 # May affect normal operations
elif action_type == ActionType.NO_ACTION:
# Do nothing
action_effects['success'] = True
action_effects['cost'] = 0.0
action_effects['impact'] = -0.1 if self.attack_in_progress else 0.0
return action_effects
def _calculate_reward(self, action_effects: Dict[str, Any]) -> CyberReward:
"""Calculate reward based on action outcomes and environment state"""
# Security improvement component
security_improvement = action_effects['impact']
# False positive penalty
false_positive_penalty = 0.0
if not self.attack_in_progress and action_effects['impact'] < 0:
false_positive_penalty = abs(action_effects['impact'])
self.episode_metrics['false_positives'] += 1
# Resource efficiency (favor low-cost effective actions)
resource_efficiency = max(0, 0.1 - action_effects['cost'])
# Response time bonus (quicker responses to attacks are better)
response_time_bonus = 0.0
if self.attack_in_progress and action_effects['impact'] > 0:
response_time_bonus = 0.1
self.episode_metrics['attacks_blocked'] += 1
# Calculate total reward
total_reward = (
security_improvement +
resource_efficiency +
response_time_bonus -
false_positive_penalty
)
# Update metrics
self.episode_metrics['resource_usage'] += action_effects['cost']
self.episode_metrics['total_reward'] += total_reward
return CyberReward(
security_improvement=security_improvement,
false_positive_penalty=false_positive_penalty,
resource_efficiency=resource_efficiency,
response_time_bonus=response_time_bonus,
total_reward=total_reward,
detailed_breakdown={
'security_improvement': security_improvement,
'resource_efficiency': resource_efficiency,
'response_time_bonus': response_time_bonus,
'false_positive_penalty': -false_positive_penalty
}
)
def reset(self) -> np.ndarray:
"""Reset environment to initial state"""
self.timestep = 0
self.attack_in_progress = False
self.attack_type = None
self.network_state = self._initialize_network_state()
# Reset metrics
self.episode_metrics = {
'attacks_detected': 0,
'attacks_blocked': 0,
'false_positives': 0,
'response_times': [],
'resource_usage': 0.0,
'total_reward': 0.0
}
# Generate initial state
self.current_state = CyberState(
timestamp=datetime.now().isoformat(),
network_traffic={'total': 0.3, 'suspicious': 0.1},
active_connections=[],
security_alerts=[],
system_health={'cpu': 0.4, 'memory': 0.3, 'disk': 0.2},
threat_indicators={
'malware_probability': 0.1,
'intrusion_probability': 0.1,
'ddos_probability': 0.05,
'lateral_movement_probability': 0.05,
'data_exfiltration_probability': 0.05
},
previous_actions=[],
environment_context={'time_of_day': 'business_hours'}
)
return self._generate_state_vector()
def step(self, action: int) -> Tuple[np.ndarray, float, bool, Dict[str, Any]]:
"""Execute one step in the environment"""
self.timestep += 1
# Simulate potential attacks
attack_occurred, attack_type = self._simulate_attack()
if attack_occurred:
self.attack_in_progress = True
self.attack_type = attack_type
self.episode_metrics['attacks_detected'] += 1
# Execute chosen action
action_effects = self._execute_action(action)
# Calculate reward
reward_info = self._calculate_reward(action_effects)
# Update state
action_name = list(ActionType)[action].value
if self.current_state:
self.current_state.previous_actions.append(action_name)
self.current_state.previous_actions = self.current_state.previous_actions[-10:] # Keep last 10
# Update threat indicators based on current situation
if self.attack_in_progress:
threat_boost = 0.3
if self.attack_type in self.current_state.threat_indicators:
self.current_state.threat_indicators[f"{self.attack_type}_probability"] = min(1.0,
self.current_state.threat_indicators.get(f"{self.attack_type}_probability", 0.1) + threat_boost)
# Check if episode is done
done = (
self.timestep >= self.max_timesteps or
self.episode_metrics['resource_usage'] > 5.0 or # Resource limit
self.episode_metrics['false_positives'] > 20 # Too many false positives
)
# Prepare info dictionary
info = {
'attack_in_progress': self.attack_in_progress,
'attack_type': self.attack_type,
'action_effects': action_effects,
'reward_breakdown': asdict(reward_info),
'episode_metrics': self.episode_metrics.copy(),
'timestep': self.timestep
}
return self._generate_state_vector(), reward_info.total_reward, done, info
class DQNAgent(nn.Module):
"""Deep Q-Network agent for cyber defense"""
def __init__(self, state_dim: int, action_dim: int, hidden_dim: int = 256):
super().__init__()
self.state_dim = state_dim
self.action_dim = action_dim
# Neural network layers
self.network = nn.Sequential(
nn.Linear(state_dim, hidden_dim),
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(hidden_dim, hidden_dim),
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(hidden_dim, hidden_dim),
nn.ReLU(),
nn.Linear(hidden_dim, action_dim)
)
# Dueling DQN components
self.value_head = nn.Sequential(
nn.Linear(hidden_dim, hidden_dim // 2),
nn.ReLU(),
nn.Linear(hidden_dim // 2, 1)
)
self.advantage_head = nn.Sequential(
nn.Linear(hidden_dim, hidden_dim // 2),
nn.ReLU(),
nn.Linear(hidden_dim // 2, action_dim)
)
# Feature extractor
self.feature_extractor = nn.Sequential(
nn.Linear(state_dim, hidden_dim),
nn.ReLU(),
nn.Dropout(0.3),
nn.Linear(hidden_dim, hidden_dim),
nn.ReLU()
)
def forward(self, state: torch.Tensor) -> torch.Tensor:
"""Forward pass through the network"""
# Extract features
features = self.feature_extractor(state)
# Dueling DQN: Q(s,a) = V(s) + A(s,a) - mean(A(s,a))
value = self.value_head(features)
advantage = self.advantage_head(features)
# Combine value and advantage
q_values = value + (advantage - advantage.mean(dim=-1, keepdim=True))
return q_values
class CyberDefenseRL:
"""Reinforcement Learning system for adaptive cyber defense"""
def __init__(self, config: Dict[str, Any] = None, database_path: str = "cyber_rl.db"):
self.config = config or {}
self.database_path = database_path
self.logger = logging.getLogger(__name__)
# Initialize database
self._init_database()
# Environment
self.env = CyberDefenseEnvironment(self.config.get('env_config', {}))
# Agent configuration
self.state_dim = self.env.observation_space.shape[0]
self.action_dim = self.env.action_space.n
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# DQN Agent
self.q_network = DQNAgent(self.state_dim, self.action_dim).to(self.device)
self.target_network = DQNAgent(self.state_dim, self.action_dim).to(self.device)
# Copy parameters to target network
self.target_network.load_state_dict(self.q_network.state_dict())
# Training parameters
self.learning_rate = self.config.get('learning_rate', 1e-4)
self.gamma = self.config.get('gamma', 0.99)
self.epsilon = self.config.get('epsilon_start', 1.0)
self.epsilon_min = self.config.get('epsilon_min', 0.01)
self.epsilon_decay = self.config.get('epsilon_decay', 0.995)
self.batch_size = self.config.get('batch_size', 32)
self.memory_size = self.config.get('memory_size', 10000)
self.target_update_freq = self.config.get('target_update_freq', 100)
# Experience replay buffer
self.memory = deque(maxlen=self.memory_size)
# Optimizer
self.optimizer = torch.optim.Adam(self.q_network.parameters(), lr=self.learning_rate)
# Training state
self.total_steps = 0
self.episode_count = 0
self.training_metrics = defaultdict(list)
def _init_database(self):
"""Initialize SQLite database for storing training data"""
with sqlite3.connect(self.database_path) as conn:
conn.execute("""
CREATE TABLE IF NOT EXISTS training_episodes (
id INTEGER PRIMARY KEY AUTOINCREMENT,
episode_number INTEGER NOT NULL,
total_reward REAL NOT NULL,
episode_length INTEGER NOT NULL,
epsilon REAL NOT NULL,
metrics TEXT,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
)
""")
conn.execute("""
CREATE TABLE IF NOT EXISTS experience_replay (
id INTEGER PRIMARY KEY AUTOINCREMENT,
state BLOB NOT NULL,
action INTEGER NOT NULL,
reward REAL NOT NULL,
next_state BLOB NOT NULL,
done INTEGER NOT NULL,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
)
""")
conn.execute("""
CREATE TABLE IF NOT EXISTS model_checkpoints (
id INTEGER PRIMARY KEY AUTOINCREMENT,
episode_number INTEGER NOT NULL,
model_state BLOB NOT NULL,
optimizer_state BLOB NOT NULL,
training_metrics BLOB,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
)
""")
def select_action(self, state: np.ndarray, training: bool = True) -> int:
"""Select action using epsilon-greedy policy"""
if training and random.random() < self.epsilon:
return self.env.action_space.sample()
with torch.no_grad():
state_tensor = torch.FloatTensor(state).unsqueeze(0).to(self.device)
q_values = self.q_network(state_tensor)
return q_values.argmax().item()
def store_experience(self, state: np.ndarray, action: int, reward: float,
next_state: np.ndarray, done: bool):
"""Store experience in replay buffer"""
self.memory.append((state, action, reward, next_state, done))
# Also store in database for persistence
with sqlite3.connect(self.database_path) as conn:
conn.execute(
"INSERT INTO experience_replay (state, action, reward, next_state, done) VALUES (?, ?, ?, ?, ?)",
(pickle.dumps(state), action, reward, pickle.dumps(next_state), int(done))
)
def train_step(self) -> Dict[str, float]:
"""Perform one training step"""
if len(self.memory) < self.batch_size:
return {}
# Sample batch from memory
batch = random.sample(self.memory, self.batch_size)
states = torch.FloatTensor([e[0] for e in batch]).to(self.device)
actions = torch.LongTensor([e[1] for e in batch]).to(self.device)
rewards = torch.FloatTensor([e[2] for e in batch]).to(self.device)
next_states = torch.FloatTensor([e[3] for e in batch]).to(self.device)
dones = torch.BoolTensor([e[4] for e in batch]).to(self.device)
# Current Q values
current_q_values = self.q_network(states).gather(1, actions.unsqueeze(1))
# Next Q values from target network
next_q_values = self.target_network(next_states).max(1)[0].detach()
target_q_values = rewards + (self.gamma * next_q_values * ~dones)
# Compute loss
loss = F.mse_loss(current_q_values.squeeze(), target_q_values)
# Optimize
self.optimizer.zero_grad()
loss.backward()
torch.nn.utils.clip_grad_norm_(self.q_network.parameters(), max_norm=10.0)
self.optimizer.step()
# Update target network
if self.total_steps % self.target_update_freq == 0:
self.target_network.load_state_dict(self.q_network.state_dict())
return {
'loss': loss.item(),
'q_value_mean': current_q_values.mean().item(),
'target_q_mean': target_q_values.mean().item()
}
def train_episode(self) -> Dict[str, Any]:
"""Train for one episode"""
state = self.env.reset()
total_reward = 0.0
episode_length = 0
episode_info = []
while True:
# Select action
action = self.select_action(state, training=True)
# Take step
next_state, reward, done, info = self.env.step(action)
# Store experience
self.store_experience(state, action, reward, next_state, done)
# Train
train_metrics = self.train_step()
# Update state
state = next_state
total_reward += reward
episode_length += 1
self.total_steps += 1
# Store step info
episode_info.append({
'action': list(ActionType)[action].value,
'reward': reward,
'info': info
})
if done:
break
# Update epsilon
self.epsilon = max(self.epsilon_min, self.epsilon * self.epsilon_decay)
self.episode_count += 1
# Prepare episode results
episode_results = {
'episode_number': self.episode_count,
'total_reward': total_reward,
'episode_length': episode_length,
'epsilon': self.epsilon,
'final_metrics': self.env.episode_metrics,
'step_info': episode_info,
'training_metrics': train_metrics
}
# Save episode to database
self._save_episode(episode_results)
return episode_results
def _save_episode(self, episode_results: Dict[str, Any]):
"""Save episode results to database"""
metrics_json = json.dumps(episode_results['final_metrics'])
with sqlite3.connect(self.database_path) as conn:
conn.execute(
"INSERT INTO training_episodes (episode_number, total_reward, episode_length, epsilon, metrics) VALUES (?, ?, ?, ?, ?)",
(episode_results['episode_number'], episode_results['total_reward'],
episode_results['episode_length'], episode_results['epsilon'], metrics_json)
)
def save_model(self, filepath: str = None):
"""Save model checkpoint"""
if filepath is None:
filepath = f"cyber_defense_model_episode_{self.episode_count}.pth"
checkpoint = {
'episode_count': self.episode_count,
'total_steps': self.total_steps,
'q_network_state': self.q_network.state_dict(),
'target_network_state': self.target_network.state_dict(),
'optimizer_state': self.optimizer.state_dict(),
'epsilon': self.epsilon,
'config': self.config,
'training_metrics': dict(self.training_metrics)
}
torch.save(checkpoint, filepath)
# Also save to database
with sqlite3.connect(self.database_path) as conn:
conn.execute(
"INSERT INTO model_checkpoints (episode_number, model_state, optimizer_state, training_metrics) VALUES (?, ?, ?, ?)",
(self.episode_count, pickle.dumps(checkpoint['q_network_state']),
pickle.dumps(checkpoint['optimizer_state']), pickle.dumps(checkpoint['training_metrics']))
)
self.logger.info(f"Model saved to {filepath}")
def load_model(self, filepath: str):
"""Load model checkpoint"""
checkpoint = torch.load(filepath, map_location=self.device)
self.episode_count = checkpoint['episode_count']
self.total_steps = checkpoint['total_steps']
self.q_network.load_state_dict(checkpoint['q_network_state'])
self.target_network.load_state_dict(checkpoint['target_network_state'])
self.optimizer.load_state_dict(checkpoint['optimizer_state'])
self.epsilon = checkpoint['epsilon']
self.training_metrics = defaultdict(list, checkpoint.get('training_metrics', {}))
self.logger.info(f"Model loaded from {filepath}")
def evaluate(self, num_episodes: int = 10) -> Dict[str, Any]:
"""Evaluate the trained agent"""
evaluation_results = []
for episode in range(num_episodes):
state = self.env.reset()
total_reward = 0.0
episode_length = 0
actions_taken = []
while True:
# Select action (no exploration)
action = self.select_action(state, training=False)
actions_taken.append(list(ActionType)[action].value)
# Take step
next_state, reward, done, info = self.env.step(action)
state = next_state
total_reward += reward
episode_length += 1
if done:
break
evaluation_results.append({
'episode': episode,
'total_reward': total_reward,
'episode_length': episode_length,
'actions_taken': actions_taken,
'final_metrics': self.env.episode_metrics.copy()
})
# Calculate aggregate statistics
total_rewards = [r['total_reward'] for r in evaluation_results]
episode_lengths = [r['episode_length'] for r in evaluation_results]
aggregate_stats = {
'num_episodes': num_episodes,
'mean_reward': np.mean(total_rewards),
'std_reward': np.std(total_rewards),
'min_reward': min(total_rewards),
'max_reward': max(total_rewards),
'mean_episode_length': np.mean(episode_lengths),
'success_rate': len([r for r in total_rewards if r > 0]) / num_episodes,
'individual_episodes': evaluation_results
}
return aggregate_stats
def get_action_recommendations(self, current_state: CyberState) -> List[Dict[str, Any]]:
"""Get action recommendations for a given state"""
# Convert CyberState to observation vector
self.env.current_state = current_state
state_vector = self.env._generate_state_vector()
# Get Q-values for all actions
with torch.no_grad():
state_tensor = torch.FloatTensor(state_vector).unsqueeze(0).to(self.device)
q_values = self.q_network(state_tensor).squeeze().cpu().numpy()
# Create recommendations
recommendations = []
for i, q_value in enumerate(q_values):
action_type = list(ActionType)[i]
recommendations.append({
'action': action_type.value,
'q_value': float(q_value),
'confidence': float(torch.softmax(torch.tensor(q_values), dim=0)[i]),
'description': self._get_action_description(action_type)
})
# Sort by Q-value
recommendations.sort(key=lambda x: x['q_value'], reverse=True)
return recommendations
def _get_action_description(self, action_type: ActionType) -> str:
"""Get human-readable description of action"""
descriptions = {
ActionType.BLOCK_IP: "Block suspicious IP addresses from accessing the network",
ActionType.ALLOW_IP: "Allow blocked IP addresses to resume network access",
ActionType.QUARANTINE_HOST: "Isolate potentially compromised hosts from the network",
ActionType.PATCH_SYSTEM: "Apply security patches to vulnerable systems",
ActionType.UPDATE_RULES: "Update firewall and IDS rules to improve detection",
ActionType.SCAN_NETWORK: "Perform comprehensive network security scan",
ActionType.ISOLATE_SEGMENT: "Isolate network segment to contain potential threats",
ActionType.ESCALATE_ALERT: "Escalate security alert to human analysts",
ActionType.COLLECT_EVIDENCE: "Collect forensic evidence for incident analysis",
ActionType.NO_ACTION: "Take no immediate action and continue monitoring"
}
return descriptions.get(action_type, "Unknown action")
# Example usage and testing
if __name__ == "__main__":
print("🤖 Reinforcement Learning for Cyber Defense Testing:")
print("=" * 60)
# Initialize the RL system
config = {
'learning_rate': 1e-4,
'gamma': 0.99,
'epsilon_start': 1.0,
'epsilon_min': 0.01,
'epsilon_decay': 0.995,
'batch_size': 32,
'target_update_freq': 100,
'env_config': {
'max_timesteps': 200,
'attack_probability': 0.15,
'false_positive_rate': 0.05
}
}
rl_system = CyberDefenseRL(config)
print(f" Initialized RL system with state dim: {rl_system.state_dim}, action dim: {rl_system.action_dim}")
# Test environment
print("\n🌍 Testing cyber defense environment...")
state = rl_system.env.reset()
print(f" Initial state shape: {state.shape}")
print(f" Sample state values: {state[:10]}")
# Test action selection
print("\n🎯 Testing action selection...")
for i in range(5):
action = rl_system.select_action(state, training=True)
next_state, reward, done, info = rl_system.env.step(action)
action_name = list(ActionType)[action].value
print(f" Step {i+1}: Action={action_name}, Reward={reward:.3f}, Attack={info['attack_in_progress']}")
state = next_state
if done:
break
# Test short training run
print("\n🏋️ Testing training episode...")
episode_results = rl_system.train_episode()
print(f" Episode {episode_results['episode_number']}: Reward={episode_results['total_reward']:.2f}, Length={episode_results['episode_length']}")
print(f" Final metrics: {episode_results['final_metrics']}")
print(f" Epsilon: {episode_results['epsilon']:.3f}")
# Test multiple episodes
print("\n📊 Testing multiple training episodes...")
for episode in range(3):
episode_results = rl_system.train_episode()
attacks_blocked = episode_results['final_metrics']['attacks_blocked']
attacks_detected = episode_results['final_metrics']['attacks_detected']
false_positives = episode_results['final_metrics']['false_positives']
print(f" Episode {episode_results['episode_number']}: "
f"Reward={episode_results['total_reward']:.2f}, "
f"Blocked={attacks_blocked}/{attacks_detected}, "
f"FP={false_positives}")
# Test action recommendations
print("\n💡 Testing action recommendations...")
sample_state = CyberState(
timestamp=datetime.now().isoformat(),
network_traffic={'total': 0.8, 'suspicious': 0.3},
active_connections=[],
security_alerts=[{'type': 'malware', 'severity': 'high'}],
system_health={'cpu': 0.9, 'memory': 0.8, 'disk': 0.6},
threat_indicators={
'malware_probability': 0.8,
'intrusion_probability': 0.3,
'ddos_probability': 0.1
},
previous_actions=['scan_network', 'update_rules'],
environment_context={'time_of_day': 'night'}
)
recommendations = rl_system.get_action_recommendations(sample_state)
print(f" Top 3 recommended actions:")
for i, rec in enumerate(recommendations[:3]):
print(f" {i+1}. {rec['action']}: Q-value={rec['q_value']:.3f}, Confidence={rec['confidence']:.3f}")
print(f" Description: {rec['description']}")
# Test evaluation
print("\n🔍 Testing agent evaluation...")
eval_results = rl_system.evaluate(num_episodes=3)
print(f" Evaluation over {eval_results['num_episodes']} episodes:")
print(f" Mean reward: {eval_results['mean_reward']:.2f} ± {eval_results['std_reward']:.2f}")
print(f" Success rate: {eval_results['success_rate']:.2%}")
print(f" Mean episode length: {eval_results['mean_episode_length']:.1f}")
# Test model saving/loading
print("\n💾 Testing model persistence...")
model_path = "test_cyber_defense_model.pth"
rl_system.save_model(model_path)
# Load model in new system
rl_system_2 = CyberDefenseRL(config)
rl_system_2.load_model(model_path)
print(f" Model loaded successfully, episode count: {rl_system_2.episode_count}")
print("\n✅ Reinforcement Learning system implemented and tested")
print(f" Database: {rl_system.database_path}")
print(f" Action space: {len(ActionType)} actions")
print(f" State space: {rl_system.state_dim} dimensions")
print(f" Model: Deep Q-Network with Dueling architecture")