cyber_llm / src /optimization /performance_optimizer.py
unit731's picture
Upload core Cyber-LLM platform components
23804b3 verified
"""
Advanced Performance Optimization System for Cyber-LLM
GPU optimization, memory management, distributed inference, and scaling
Author: Muzan Sano <[email protected]>
"""
import asyncio
import json
import logging
import time
import threading
from datetime import datetime, timedelta
from typing import Dict, List, Any, Optional, Tuple, Union
from dataclasses import dataclass, field
from enum import Enum
import psutil
import gc
import torch
import numpy as np
from pathlib import Path
from collections import defaultdict, deque
import multiprocessing as mp
from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor
from ..utils.logging_system import CyberLLMLogger, CyberLLMError, ErrorCategory
from ..memory.persistent_memory import PersistentMemoryManager, MemoryType
class OptimizationTarget(Enum):
"""Performance optimization targets"""
LATENCY = "latency"
THROUGHPUT = "throughput"
MEMORY_EFFICIENCY = "memory_efficiency"
GPU_UTILIZATION = "gpu_utilization"
POWER_EFFICIENCY = "power_efficiency"
COST_EFFICIENCY = "cost_efficiency"
class ResourceType(Enum):
"""Types of system resources"""
CPU = "cpu"
GPU = "gpu"
MEMORY = "memory"
STORAGE = "storage"
NETWORK = "network"
POWER = "power"
@dataclass
class PerformanceMetrics:
"""Performance metrics tracking"""
timestamp: datetime
# Latency metrics (milliseconds)
inference_latency: float = 0.0
preprocessing_latency: float = 0.0
postprocessing_latency: float = 0.0
total_latency: float = 0.0
# Throughput metrics (requests/second)
requests_per_second: float = 0.0
tokens_per_second: float = 0.0
# Resource utilization (0-1)
cpu_utilization: float = 0.0
gpu_utilization: float = 0.0
memory_utilization: float = 0.0
# Memory metrics (MB)
cpu_memory_used: float = 0.0
gpu_memory_used: float = 0.0
gpu_memory_reserved: float = 0.0
# Quality metrics
accuracy: float = 0.0
safety_score: float = 0.0
# Cost metrics
compute_cost: float = 0.0
power_consumption: float = 0.0
@dataclass
class OptimizationConfiguration:
"""Performance optimization configuration"""
optimization_targets: List[OptimizationTarget] = field(default_factory=lambda: [OptimizationTarget.LATENCY])
# Model optimization
use_mixed_precision: bool = True
use_gradient_checkpointing: bool = False
use_model_compilation: bool = True
batch_size: int = 8
max_sequence_length: int = 2048
# Memory optimization
enable_memory_pooling: bool = True
memory_pool_size_mb: int = 4096
enable_garbage_collection: bool = True
gc_frequency: int = 100 # requests
# Concurrency optimization
max_concurrent_requests: int = 32
request_queue_size: int = 128
worker_processes: int = 4
worker_threads_per_process: int = 8
# Caching optimization
enable_result_caching: bool = True
cache_size_mb: int = 1024
cache_ttl_seconds: int = 3600
# GPU optimization
enable_tensor_parallelism: bool = False
enable_pipeline_parallelism: bool = False
gpu_memory_fraction: float = 0.9
# Monitoring
metrics_collection_interval: float = 1.0 # seconds
performance_logging_enabled: bool = True
class AdvancedPerformanceOptimizer:
"""Advanced performance optimization system with adaptive tuning"""
def __init__(self,
config: OptimizationConfiguration = None,
memory_manager: Optional[PersistentMemoryManager] = None,
logger: Optional[CyberLLMLogger] = None):
self.config = config or OptimizationConfiguration()
self.memory_manager = memory_manager
self.logger = logger or CyberLLMLogger(name="performance_optimizer")
# Performance tracking
self.metrics_history = deque(maxlen=10000)
self.current_metrics = PerformanceMetrics(timestamp=datetime.now())
# Resource management
self.resource_monitors = {}
self.memory_pool = None
self.result_cache = {}
# Concurrency management
self.request_queue = asyncio.Queue(maxsize=self.config.request_queue_size)
self.worker_pool = None
self.processing_semaphore = asyncio.Semaphore(self.config.max_concurrent_requests)
# Optimization state
self.optimization_history = []
self.current_optimization_strategy = {}
self.adaptive_tuning_enabled = True
# Monitoring and alerting
self.performance_alerts = []
self.monitoring_active = False
self.monitoring_task = None
# Initialize optimizer
asyncio.create_task(self._initialize_optimizer())
self.logger.info("Advanced Performance Optimizer initialized")
async def _initialize_optimizer(self):
"""Initialize the performance optimization system"""
try:
# Initialize GPU optimization
if torch.cuda.is_available():
await self._initialize_gpu_optimization()
# Initialize memory management
await self._initialize_memory_management()
# Initialize resource monitoring
await self._initialize_resource_monitoring()
# Initialize worker pools
await self._initialize_worker_pools()
# Start performance monitoring
await self._start_performance_monitoring()
self.logger.info("Performance optimizer initialization completed")
except Exception as e:
self.logger.error("Failed to initialize performance optimizer", error=str(e))
raise CyberLLMError("Performance optimizer initialization failed", ErrorCategory.SYSTEM)
async def _initialize_gpu_optimization(self):
"""Initialize GPU performance optimizations"""
if not torch.cuda.is_available():
self.logger.warning("CUDA not available, skipping GPU optimization")
return
try:
# Set memory fraction
torch.cuda.set_per_process_memory_fraction(self.config.gpu_memory_fraction)
# Enable mixed precision if supported
if self.config.use_mixed_precision and torch.cuda.is_bf16_supported():
torch.backends.cuda.matmul.allow_bf16_reduced_precision_reduction = True
torch.backends.cudnn.allow_tf32 = True
# Initialize memory pool
if self.config.enable_memory_pooling:
torch.cuda.empty_cache()
# Custom memory pool (simplified)
self.memory_pool = {
"allocated": 0,
"reserved": 0,
"max_reserved": self.config.memory_pool_size_mb * 1024 * 1024
}
# Initialize tensor parallelism if enabled
if self.config.enable_tensor_parallelism:
await self._setup_tensor_parallelism()
self.logger.info("GPU optimization initialized",
devices=torch.cuda.device_count(),
memory_fraction=self.config.gpu_memory_fraction)
except Exception as e:
self.logger.error("GPU optimization initialization failed", error=str(e))
async def _initialize_memory_management(self):
"""Initialize advanced memory management"""
try:
# Configure garbage collection
if self.config.enable_garbage_collection:
gc.set_threshold(700, 10, 10) # Aggressive GC for memory efficiency
# Initialize result cache
if self.config.enable_result_caching:
self.result_cache = {
"cache": {},
"access_times": {},
"max_size_mb": self.config.cache_size_mb,
"ttl_seconds": self.config.cache_ttl_seconds,
"current_size_mb": 0
}
# Set memory optimization flags
if hasattr(torch.backends, 'opt_einsum'):
torch.backends.opt_einsum.enabled = True
self.logger.info("Memory management initialized")
except Exception as e:
self.logger.error("Memory management initialization failed", error=str(e))
async def _initialize_resource_monitoring(self):
"""Initialize comprehensive resource monitoring"""
try:
# CPU monitoring
self.resource_monitors['cpu'] = {
'utilization_history': deque(maxlen=100),
'temperature_history': deque(maxlen=100),
'frequency_history': deque(maxlen=100)
}
# Memory monitoring
self.resource_monitors['memory'] = {
'usage_history': deque(maxlen=100),
'swap_history': deque(maxlen=100),
'cache_history': deque(maxlen=100)
}
# GPU monitoring (if available)
if torch.cuda.is_available():
self.resource_monitors['gpu'] = {
'utilization_history': deque(maxlen=100),
'memory_history': deque(maxlen=100),
'temperature_history': deque(maxlen=100),
'power_history': deque(maxlen=100)
}
# Network monitoring
self.resource_monitors['network'] = {
'throughput_history': deque(maxlen=100),
'latency_history': deque(maxlen=100),
'error_history': deque(maxlen=100)
}
self.logger.info("Resource monitoring initialized")
except Exception as e:
self.logger.error("Resource monitoring initialization failed", error=str(e))
async def _initialize_worker_pools(self):
"""Initialize worker pools for concurrent processing"""
try:
# Process pool for CPU-intensive tasks
self.worker_pool = {
'process_pool': ProcessPoolExecutor(max_workers=self.config.worker_processes),
'thread_pool': ThreadPoolExecutor(max_workers=self.config.worker_threads_per_process * self.config.worker_processes)
}
self.logger.info("Worker pools initialized",
processes=self.config.worker_processes,
threads=self.config.worker_threads_per_process * self.config.worker_processes)
except Exception as e:
self.logger.error("Worker pool initialization failed", error=str(e))
async def _start_performance_monitoring(self):
"""Start continuous performance monitoring"""
self.monitoring_active = True
self.monitoring_task = asyncio.create_task(self._performance_monitoring_loop())
self.logger.info("Performance monitoring started")
async def _performance_monitoring_loop(self):
"""Continuous performance monitoring loop"""
while self.monitoring_active:
try:
# Collect current metrics
current_metrics = await self._collect_performance_metrics()
# Update metrics history
self.metrics_history.append(current_metrics)
self.current_metrics = current_metrics
# Check for performance alerts
await self._check_performance_alerts(current_metrics)
# Adaptive optimization
if self.adaptive_tuning_enabled:
await self._adaptive_performance_tuning(current_metrics)
# Store metrics in memory system if available
if self.memory_manager:
await self.memory_manager.store_memory(
memory_type=MemoryType.PROCEDURAL,
content=current_metrics.__dict__,
importance=0.3,
context_tags=["performance_metrics", "monitoring"],
agent_id="performance_optimizer"
)
await asyncio.sleep(self.config.metrics_collection_interval)
except Exception as e:
self.logger.error("Performance monitoring error", error=str(e))
await asyncio.sleep(5) # Error recovery delay
async def _collect_performance_metrics(self) -> PerformanceMetrics:
"""Collect comprehensive performance metrics"""
metrics = PerformanceMetrics(timestamp=datetime.now())
try:
# CPU metrics
cpu_percent = psutil.cpu_percent(interval=None)
metrics.cpu_utilization = cpu_percent / 100.0
# Memory metrics
memory_info = psutil.virtual_memory()
metrics.memory_utilization = memory_info.percent / 100.0
metrics.cpu_memory_used = memory_info.used / (1024 * 1024) # MB
# GPU metrics (if available)
if torch.cuda.is_available():
gpu_memory = torch.cuda.memory_stats()
metrics.gpu_memory_used = gpu_memory.get('allocated_bytes.all.current', 0) / (1024 * 1024)
metrics.gpu_memory_reserved = gpu_memory.get('reserved_bytes.all.current', 0) / (1024 * 1024)
# GPU utilization (approximated)
metrics.gpu_utilization = min(1.0, metrics.gpu_memory_used / (torch.cuda.get_device_properties(0).total_memory / (1024 * 1024)))
# Network metrics (simplified)
network_io = psutil.net_io_counters()
if hasattr(self, '_last_network_io'):
bytes_sent_diff = network_io.bytes_sent - self._last_network_io.bytes_sent
bytes_recv_diff = network_io.bytes_recv - self._last_network_io.bytes_recv
time_diff = time.time() - self._last_network_time
if time_diff > 0:
network_throughput = (bytes_sent_diff + bytes_recv_diff) / time_diff / (1024 * 1024) # MB/s
self._last_network_io = network_io
self._last_network_time = time.time()
# Update resource monitors
self.resource_monitors['cpu']['utilization_history'].append(cpu_percent)
self.resource_monitors['memory']['usage_history'].append(memory_info.percent)
if torch.cuda.is_available():
self.resource_monitors['gpu']['memory_history'].append(metrics.gpu_memory_used)
self.resource_monitors['gpu']['utilization_history'].append(metrics.gpu_utilization * 100)
except Exception as e:
self.logger.error("Failed to collect performance metrics", error=str(e))
return metrics
async def optimize_inference_request(self,
request_data: Dict[str, Any],
priority: int = 5) -> Dict[str, Any]:
"""Optimize and process an inference request"""
request_id = request_data.get('request_id', f"req_{int(time.time())}")
start_time = time.time()
try:
# Acquire processing semaphore
async with self.processing_semaphore:
# Check result cache first
if self.config.enable_result_caching:
cached_result = await self._check_result_cache(request_data)
if cached_result:
self.logger.debug(f"Returning cached result for request: {request_id}")
return cached_result
# Preprocess request
preprocessing_start = time.time()
preprocessed_data = await self._optimize_preprocessing(request_data)
preprocessing_time = time.time() - preprocessing_start
# Execute inference with optimizations
inference_start = time.time()
inference_result = await self._execute_optimized_inference(preprocessed_data)
inference_time = time.time() - inference_start
# Postprocess result
postprocessing_start = time.time()
final_result = await self._optimize_postprocessing(inference_result, request_data)
postprocessing_time = time.time() - postprocessing_start
total_time = time.time() - start_time
# Update performance metrics
await self._update_request_metrics(
total_time, preprocessing_time, inference_time, postprocessing_time
)
# Cache result if enabled
if self.config.enable_result_caching:
await self._cache_result(request_data, final_result)
# Add performance metadata
final_result['performance'] = {
'total_latency_ms': total_time * 1000,
'preprocessing_latency_ms': preprocessing_time * 1000,
'inference_latency_ms': inference_time * 1000,
'postprocessing_latency_ms': postprocessing_time * 1000,
'cache_hit': False,
'optimization_applied': True
}
return final_result
except Exception as e:
self.logger.error(f"Request optimization failed: {request_id}", error=str(e))
raise CyberLLMError("Request optimization failed", ErrorCategory.PROCESSING)
async def _optimize_preprocessing(self, request_data: Dict[str, Any]) -> Dict[str, Any]:
"""Optimize preprocessing with batching and parallelization"""
try:
# Batch similar requests for efficiency
if 'batch_processing' in request_data:
return await self._batch_preprocess(request_data)
# Standard preprocessing with optimizations
optimized_data = {
'processed_input': request_data.get('input', ''),
'max_length': min(request_data.get('max_length', 512), self.config.max_sequence_length),
'optimization_flags': {
'use_mixed_precision': self.config.use_mixed_precision,
'gradient_checkpointing': self.config.use_gradient_checkpointing
}
}
return optimized_data
except Exception as e:
self.logger.error("Preprocessing optimization failed", error=str(e))
return request_data
async def _execute_optimized_inference(self, preprocessed_data: Dict[str, Any]) -> Dict[str, Any]:
"""Execute inference with performance optimizations"""
try:
# Apply memory optimizations
if self.config.enable_garbage_collection and hasattr(self, '_request_count'):
self._request_count += 1
if self._request_count % self.config.gc_frequency == 0:
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
# Simulate optimized inference (in production, would call actual model)
await asyncio.sleep(0.01) # Simulate inference time
result = {
'output': f"Optimized inference result for: {preprocessed_data.get('processed_input', '')[:50]}...",
'confidence': 0.95,
'optimization_metrics': {
'memory_efficient': True,
'gpu_accelerated': torch.cuda.is_available(),
'mixed_precision': self.config.use_mixed_precision
}
}
return result
except Exception as e:
self.logger.error("Optimized inference failed", error=str(e))
raise
async def _optimize_postprocessing(self,
inference_result: Dict[str, Any],
original_request: Dict[str, Any]) -> Dict[str, Any]:
"""Optimize postprocessing with parallel operations"""
try:
# Parallel postprocessing tasks
tasks = []
# Format output
tasks.append(self._format_output(inference_result))
# Apply safety filters
tasks.append(self._apply_safety_filters(inference_result))
# Generate metadata
tasks.append(self._generate_response_metadata(inference_result, original_request))
# Execute tasks in parallel
formatted_output, safety_filtered, metadata = await asyncio.gather(*tasks)
final_result = {
'response': formatted_output,
'safety_score': safety_filtered.get('safety_score', 1.0),
'metadata': metadata,
'request_id': original_request.get('request_id'),
'timestamp': datetime.now().isoformat()
}
return final_result
except Exception as e:
self.logger.error("Postprocessing optimization failed", error=str(e))
return inference_result
async def _adaptive_performance_tuning(self, current_metrics: PerformanceMetrics):
"""Adaptive performance tuning based on current metrics"""
try:
# Analyze performance trends
if len(self.metrics_history) < 10:
return # Need more data for adaptive tuning
recent_metrics = list(self.metrics_history)[-10:]
# Calculate performance trends
latency_trend = self._calculate_trend([m.total_latency for m in recent_metrics])
memory_trend = self._calculate_trend([m.memory_utilization for m in recent_metrics])
gpu_trend = self._calculate_trend([m.gpu_utilization for m in recent_metrics])
adaptations = []
# Latency optimization
if latency_trend > 0.1: # Latency increasing
if current_metrics.memory_utilization < 0.7:
# Increase batch size for better throughput
new_batch_size = min(self.config.batch_size * 2, 32)
if new_batch_size != self.config.batch_size:
self.config.batch_size = new_batch_size
adaptations.append(f"Increased batch size to {new_batch_size}")
if not self.config.use_mixed_precision and torch.cuda.is_available():
self.config.use_mixed_precision = True
adaptations.append("Enabled mixed precision training")
# Memory optimization
if memory_trend > 0.1 and current_metrics.memory_utilization > 0.8:
# Increase garbage collection frequency
self.config.gc_frequency = max(self.config.gc_frequency // 2, 10)
adaptations.append(f"Increased GC frequency to {self.config.gc_frequency}")
# Reduce batch size if memory pressure
if self.config.batch_size > 1:
self.config.batch_size = max(self.config.batch_size // 2, 1)
adaptations.append(f"Reduced batch size to {self.config.batch_size}")
# GPU optimization
if torch.cuda.is_available() and gpu_trend < -0.1: # GPU underutilized
if current_metrics.gpu_utilization < 0.5:
# Increase concurrent requests
new_max_concurrent = min(self.config.max_concurrent_requests + 8, 64)
if new_max_concurrent != self.config.max_concurrent_requests:
self.config.max_concurrent_requests = new_max_concurrent
self.processing_semaphore = asyncio.Semaphore(new_max_concurrent)
adaptations.append(f"Increased max concurrent requests to {new_max_concurrent}")
# Log adaptations
if adaptations:
adaptation_record = {
'timestamp': datetime.now().isoformat(),
'adaptations': adaptations,
'trigger_metrics': {
'latency_trend': latency_trend,
'memory_trend': memory_trend,
'gpu_trend': gpu_trend
}
}
self.optimization_history.append(adaptation_record)
if self.memory_manager:
await self.memory_manager.store_memory(
memory_type=MemoryType.PROCEDURAL,
content=adaptation_record,
importance=0.7,
context_tags=["adaptive_tuning", "performance_optimization"],
agent_id="performance_optimizer"
)
self.logger.info("Applied adaptive optimizations", adaptations=adaptations)
except Exception as e:
self.logger.error("Adaptive tuning failed", error=str(e))
def _calculate_trend(self, values: List[float]) -> float:
"""Calculate trend in performance metrics"""
if len(values) < 2:
return 0.0
# Simple linear trend calculation
x = np.arange(len(values))
y = np.array(values)
if np.std(y) == 0:
return 0.0
correlation = np.corrcoef(x, y)[0, 1]
return correlation if not np.isnan(correlation) else 0.0
def get_performance_dashboard(self) -> Dict[str, Any]:
"""Get comprehensive performance dashboard data"""
if not self.metrics_history:
return {"status": "No metrics available"}
recent_metrics = list(self.metrics_history)[-100:] # Last 100 measurements
return {
"current_metrics": self.current_metrics.__dict__,
"performance_trends": {
"latency_trend": self._calculate_trend([m.total_latency for m in recent_metrics]),
"throughput_trend": self._calculate_trend([m.requests_per_second for m in recent_metrics]),
"memory_trend": self._calculate_trend([m.memory_utilization for m in recent_metrics]),
"gpu_trend": self._calculate_trend([m.gpu_utilization for m in recent_metrics])
},
"optimization_config": {
"batch_size": self.config.batch_size,
"max_concurrent_requests": self.config.max_concurrent_requests,
"gc_frequency": self.config.gc_frequency,
"mixed_precision_enabled": self.config.use_mixed_precision,
"caching_enabled": self.config.enable_result_caching
},
"system_resources": {
"cpu_count": mp.cpu_count(),
"gpu_count": torch.cuda.device_count() if torch.cuda.is_available() else 0,
"total_memory_gb": psutil.virtual_memory().total / (1024**3),
"available_memory_gb": psutil.virtual_memory().available / (1024**3)
},
"recent_adaptations": self.optimization_history[-10:] if self.optimization_history else [],
"monitoring_status": {
"active": self.monitoring_active,
"metrics_collected": len(self.metrics_history),
"adaptive_tuning_enabled": self.adaptive_tuning_enabled
}
}
async def shutdown(self):
"""Graceful shutdown of performance optimizer"""
self.logger.info("Shutting down performance optimizer")
# Stop monitoring
self.monitoring_active = False
if self.monitoring_task:
self.monitoring_task.cancel()
try:
await self.monitoring_task
except asyncio.CancelledError:
pass
# Shutdown worker pools
if self.worker_pool:
self.worker_pool['process_pool'].shutdown(wait=True)
self.worker_pool['thread_pool'].shutdown(wait=True)
# Clear GPU memory
if torch.cuda.is_available():
torch.cuda.empty_cache()
# Final garbage collection
gc.collect()
self.logger.info("Performance optimizer shutdown completed")
# Factory function
def create_performance_optimizer(config: OptimizationConfiguration = None, **kwargs) -> AdvancedPerformanceOptimizer:
"""Create advanced performance optimizer with configuration"""
return AdvancedPerformanceOptimizer(config, **kwargs)