cyber_llm / src /utils /dvc_integration.py
unit731's picture
Upload core Cyber-LLM platform components
23804b3 verified
"""
DVC (Data Version Control) Integration for Cyber-LLM
Provides data versioning, experiment tracking, and pipeline management
"""
import os
import json
import yaml
import subprocess
import asyncio
from typing import Dict, List, Any, Optional, Tuple, Union
from datetime import datetime
from pathlib import Path
from dataclasses import dataclass, asdict
import hashlib
import tempfile
from .logging_system import CyberLLMLogger, CyberLLMError, ErrorCategory, retry_with_backoff
@dataclass
class DVCMetrics:
"""DVC metrics for model evaluation"""
accuracy: float
precision: float
recall: float
f1_score: float
loss: float
stealth_score: Optional[float] = None
chain_success_rate: Optional[float] = None
false_positive_rate: Optional[float] = None
safety_compliance: Optional[float] = None
@dataclass
class DVCParameters:
"""DVC parameters for experiments"""
learning_rate: float
batch_size: int
epochs: int
model_name: str
dataset_version: str
adapter_rank: Optional[int] = None
dropout_rate: Optional[float] = None
warmup_steps: Optional[int] = None
@dataclass
class DVCExperiment:
"""DVC experiment information"""
id: str
name: str
timestamp: datetime
parameters: DVCParameters
metrics: DVCMetrics
git_commit: str
status: str
duration: Optional[float] = None
class DVCManager:
"""DVC integration manager for data versioning and experiment tracking"""
def __init__(self,
repo_path: str = ".",
remote_name: str = "origin",
logger: Optional[CyberLLMLogger] = None):
self.repo_path = Path(repo_path).resolve()
self.remote_name = remote_name
self.logger = logger or CyberLLMLogger(name="dvc_manager")
# DVC configuration paths
self.dvc_dir = self.repo_path / ".dvc"
self.params_file = self.repo_path / "params.yaml"
self.metrics_file = self.repo_path / "metrics.yaml"
self.dvcfile = self.repo_path / "dvc.yaml"
# Initialize DVC if not already initialized
self._ensure_dvc_initialized()
def _ensure_dvc_initialized(self):
"""Ensure DVC is initialized in the repository"""
if not self.dvc_dir.exists():
self.logger.info("Initializing DVC repository")
self._run_dvc_command(["init"])
self._setup_default_config()
def _setup_default_config(self):
"""Setup default DVC configuration"""
# Create default params.yaml
default_params = {
"training": {
"learning_rate": 2e-5,
"batch_size": 8,
"epochs": 3,
"model_name": "microsoft/DialoGPT-medium",
"dataset_version": "v1.0",
"adapter_rank": 16,
"dropout_rate": 0.1,
"warmup_steps": 500
},
"data": {
"train_split": 0.8,
"val_split": 0.1,
"test_split": 0.1,
"max_length": 512,
"min_samples_per_class": 100
},
"evaluation": {
"batch_size": 16,
"max_samples": 1000,
"metrics_threshold": {
"accuracy": 0.85,
"stealth_score": 0.7,
"safety_compliance": 0.95
}
}
}
if not self.params_file.exists():
with open(self.params_file, 'w') as f:
yaml.dump(default_params, f, default_flow_style=False)
self.logger.info("Created default params.yaml")
# Create default dvc.yaml pipeline
default_pipeline = {
"stages": {
"data_preparation": {
"cmd": "python src/training/data_preprocessing.py",
"deps": [
"src/training/data_preprocessing.py",
"data/raw/"
],
"outs": [
"data/processed/train.jsonl",
"data/processed/val.jsonl",
"data/processed/test.jsonl"
],
"params": [
"data.train_split",
"data.val_split",
"data.test_split"
]
},
"training": {
"cmd": "python src/training/train_model.py",
"deps": [
"src/training/train_model.py",
"data/processed/train.jsonl",
"data/processed/val.jsonl"
],
"outs": [
"models/cyber_llm_adapter/"
],
"params": [
"training"
],
"metrics": [
"metrics/training.yaml"
]
},
"evaluation": {
"cmd": "python src/evaluation/evaluate_model.py",
"deps": [
"src/evaluation/evaluate_model.py",
"models/cyber_llm_adapter/",
"data/processed/test.jsonl"
],
"metrics": [
"metrics/evaluation.yaml"
],
"params": [
"evaluation"
]
}
}
}
if not self.dvcfile.exists():
with open(self.dvcfile, 'w') as f:
yaml.dump(default_pipeline, f, default_flow_style=False)
self.logger.info("Created default dvc.yaml pipeline")
def _run_dvc_command(self, args: List[str], check: bool = True) -> subprocess.CompletedProcess:
"""Run DVC command and return result"""
cmd = ["dvc"] + args
try:
result = subprocess.run(
cmd,
cwd=self.repo_path,
capture_output=True,
text=True,
check=check
)
if result.stdout:
self.logger.debug(f"DVC command output: {result.stdout.strip()}")
return result
except subprocess.CalledProcessError as e:
error_msg = f"DVC command failed: {' '.join(cmd)}\nError: {e.stderr}"
self.logger.error(error_msg)
raise CyberLLMError(error_msg, ErrorCategory.SYSTEM)
except FileNotFoundError:
raise CyberLLMError("DVC not found. Please install DVC: pip install dvc", ErrorCategory.SYSTEM)
@retry_with_backoff(max_retries=3)
async def add_data(self, data_path: str, remote: bool = True) -> bool:
"""Add data to DVC tracking"""
try:
# Add to DVC
self._run_dvc_command(["add", data_path])
# Add .dvc file to git
dvc_file = f"{data_path}.dvc"
if os.path.exists(dvc_file):
subprocess.run(["git", "add", dvc_file],
cwd=self.repo_path, check=True)
# Push to remote if requested
if remote:
await self.push_data()
self.logger.info(f"Added data to DVC: {data_path}")
return True
except Exception as e:
self.logger.error(f"Failed to add data to DVC: {data_path}", error=str(e))
return False
async def push_data(self) -> bool:
"""Push data to DVC remote"""
try:
# Run push in background
process = await asyncio.create_subprocess_exec(
"dvc", "push",
cwd=self.repo_path,
stdout=asyncio.subprocess.PIPE,
stderr=asyncio.subprocess.PIPE
)
stdout, stderr = await process.communicate()
if process.returncode == 0:
self.logger.info("Successfully pushed data to DVC remote")
return True
else:
self.logger.error("Failed to push data to DVC remote",
error=stderr.decode())
return False
except Exception as e:
self.logger.error("DVC push failed", error=str(e))
return False
async def pull_data(self) -> bool:
"""Pull data from DVC remote"""
try:
process = await asyncio.create_subprocess_exec(
"dvc", "pull",
cwd=self.repo_path,
stdout=asyncio.subprocess.PIPE,
stderr=asyncio.subprocess.PIPE
)
stdout, stderr = await process.communicate()
if process.returncode == 0:
self.logger.info("Successfully pulled data from DVC remote")
return True
else:
self.logger.error("Failed to pull data from DVC remote",
error=stderr.decode())
return False
except Exception as e:
self.logger.error("DVC pull failed", error=str(e))
return False
def create_experiment(self,
name: str,
parameters: DVCParameters,
description: str = "") -> str:
"""Create a new DVC experiment"""
# Generate experiment ID
exp_id = hashlib.md5(f"{name}_{datetime.now().isoformat()}".encode()).hexdigest()[:8]
# Update params.yaml with experiment parameters
self.update_parameters(asdict(parameters))
# Create experiment branch
try:
self._run_dvc_command(["exp", "run", "--name", name, "--set-param", f"experiment.id={exp_id}"])
self.logger.info(f"Created DVC experiment: {name} (ID: {exp_id})")
return exp_id
except Exception as e:
self.logger.error(f"Failed to create experiment: {name}", error=str(e))
raise
def update_parameters(self, params: Dict[str, Any]):
"""Update parameters file"""
try:
# Load existing params
existing_params = {}
if self.params_file.exists():
with open(self.params_file, 'r') as f:
existing_params = yaml.safe_load(f) or {}
# Deep merge new parameters
def deep_merge(base: dict, update: dict) -> dict:
for key, value in update.items():
if key in base and isinstance(base[key], dict) and isinstance(value, dict):
deep_merge(base[key], value)
else:
base[key] = value
return base
merged_params = deep_merge(existing_params, params)
# Write updated params
with open(self.params_file, 'w') as f:
yaml.dump(merged_params, f, default_flow_style=False)
self.logger.debug("Updated parameters file")
except Exception as e:
self.logger.error("Failed to update parameters", error=str(e))
raise
def log_metrics(self, metrics: DVCMetrics, stage: str = "evaluation"):
"""Log metrics to DVC"""
try:
metrics_dir = self.repo_path / "metrics"
metrics_dir.mkdir(exist_ok=True)
metrics_file = metrics_dir / f"{stage}.yaml"
# Convert metrics to dict
metrics_dict = asdict(metrics)
# Write metrics
with open(metrics_file, 'w') as f:
yaml.dump(metrics_dict, f, default_flow_style=False)
self.logger.info(f"Logged metrics for stage: {stage}")
except Exception as e:
self.logger.error(f"Failed to log metrics for stage: {stage}", error=str(e))
raise
def get_experiments(self) -> List[DVCExperiment]:
"""Get list of DVC experiments"""
try:
result = self._run_dvc_command(["exp", "show", "--json"])
experiments = []
if result.stdout:
exp_data = json.loads(result.stdout)
for exp_info in exp_data:
# Parse experiment data
exp = DVCExperiment(
id=exp_info.get("id", ""),
name=exp_info.get("name", ""),
timestamp=datetime.fromisoformat(exp_info.get("timestamp", datetime.now().isoformat())),
parameters=DVCParameters(**exp_info.get("params", {})),
metrics=DVCMetrics(**exp_info.get("metrics", {})),
git_commit=exp_info.get("rev", ""),
status=exp_info.get("status", "unknown"),
duration=exp_info.get("duration")
)
experiments.append(exp)
return experiments
except Exception as e:
self.logger.error("Failed to get experiments", error=str(e))
return []
def compare_experiments(self, exp_ids: List[str]) -> Dict[str, Any]:
"""Compare multiple experiments"""
try:
cmd = ["exp", "diff"] + exp_ids
result = self._run_dvc_command(cmd)
# Parse diff output (simplified)
comparison = {
"experiments": exp_ids,
"timestamp": datetime.now().isoformat(),
"raw_output": result.stdout
}
self.logger.info(f"Compared experiments: {', '.join(exp_ids)}")
return comparison
except Exception as e:
self.logger.error(f"Failed to compare experiments: {exp_ids}", error=str(e))
return {}
async def run_pipeline(self,
stages: Optional[List[str]] = None,
force: bool = False) -> bool:
"""Run DVC pipeline"""
try:
cmd = ["repro"]
if force:
cmd.append("--force")
if stages:
cmd.extend(stages)
self.logger.info(f"Starting DVC pipeline: {' '.join(cmd)}")
process = await asyncio.create_subprocess_exec(
"dvc", *cmd,
cwd=self.repo_path,
stdout=asyncio.subprocess.PIPE,
stderr=asyncio.subprocess.PIPE
)
stdout, stderr = await process.communicate()
if process.returncode == 0:
self.logger.info("DVC pipeline completed successfully")
if stdout:
self.logger.debug(f"Pipeline output: {stdout.decode()}")
return True
else:
self.logger.error("DVC pipeline failed", error=stderr.decode())
return False
except Exception as e:
self.logger.error("Failed to run DVC pipeline", error=str(e))
return False
def setup_remote_storage(self,
storage_type: str,
config: Dict[str, str]) -> bool:
"""Setup DVC remote storage"""
try:
remote_name = config.get("name", "default")
if storage_type == "s3":
url = f"s3://{config['bucket']}/{config.get('prefix', '')}"
self._run_dvc_command(["remote", "add", "-d", remote_name, url])
# Set AWS credentials if provided
if "access_key_id" in config:
self._run_dvc_command(["remote", "modify", remote_name,
"access_key_id", config["access_key_id"]])
if "secret_access_key" in config:
self._run_dvc_command(["remote", "modify", remote_name,
"secret_access_key", config["secret_access_key"]])
if "region" in config:
self._run_dvc_command(["remote", "modify", remote_name,
"region", config["region"]])
elif storage_type == "azure":
url = f"azure://{config['container']}/{config.get('prefix', '')}"
self._run_dvc_command(["remote", "add", "-d", remote_name, url])
if "account_name" in config:
self._run_dvc_command(["remote", "modify", remote_name,
"account_name", config["account_name"]])
elif storage_type == "gcs":
url = f"gs://{config['bucket']}/{config.get('prefix', '')}"
self._run_dvc_command(["remote", "add", "-d", remote_name, url])
elif storage_type == "ssh":
url = f"ssh://{config['host']}{config['path']}"
self._run_dvc_command(["remote", "add", "-d", remote_name, url])
if "user" in config:
self._run_dvc_command(["remote", "modify", remote_name,
"user", config["user"]])
else:
raise ValueError(f"Unsupported storage type: {storage_type}")
self.logger.info(f"Setup DVC remote storage: {storage_type} ({remote_name})")
return True
except Exception as e:
self.logger.error(f"Failed to setup remote storage: {storage_type}", error=str(e))
return False
def get_data_info(self, data_path: str) -> Dict[str, Any]:
"""Get information about tracked data"""
try:
dvc_file = f"{data_path}.dvc"
if not os.path.exists(dvc_file):
return {"tracked": False}
# Parse .dvc file
with open(dvc_file, 'r') as f:
dvc_data = yaml.safe_load(f)
# Get file info
file_info = {
"tracked": True,
"path": data_path,
"dvc_file": dvc_file,
"md5": dvc_data.get("outs", [{}])[0].get("md5", ""),
"size": os.path.getsize(data_path) if os.path.exists(data_path) else 0,
"remote_available": self._check_remote_availability(data_path)
}
return file_info
except Exception as e:
self.logger.error(f"Failed to get data info: {data_path}", error=str(e))
return {"tracked": False, "error": str(e)}
def _check_remote_availability(self, data_path: str) -> bool:
"""Check if data is available in remote storage"""
try:
result = self._run_dvc_command(["status", data_path], check=False)
return "not in cache" not in result.stdout.lower()
except:
return False
# Convenience functions
def init_dvc_project(repo_path: str = ".") -> DVCManager:
"""Initialize DVC project"""
return DVCManager(repo_path=repo_path)
async def track_dataset(dataset_path: str,
dvc_manager: Optional[DVCManager] = None) -> bool:
"""Track dataset with DVC"""
manager = dvc_manager or DVCManager()
return await manager.add_data(dataset_path)
def create_training_experiment(name: str,
learning_rate: float = 2e-5,
batch_size: int = 8,
epochs: int = 3,
dvc_manager: Optional[DVCManager] = None) -> str:
"""Create training experiment"""
manager = dvc_manager or DVCManager()
params = DVCParameters(
learning_rate=learning_rate,
batch_size=batch_size,
epochs=epochs,
model_name="microsoft/DialoGPT-medium",
dataset_version="v1.0"
)
return manager.create_experiment(name, params)
# Example usage
if __name__ == "__main__":
import asyncio
async def main():
# Initialize DVC manager
dvc = DVCManager()
# Track a dataset
success = await dvc.add_data("data/raw/cyber_dataset.jsonl")
print(f"Dataset tracking: {'success' if success else 'failed'}")
# Create experiment
params = DVCParameters(
learning_rate=1e-4,
batch_size=16,
epochs=5,
model_name="microsoft/DialoGPT-medium",
dataset_version="v1.0",
adapter_rank=32
)
exp_id = dvc.create_experiment("experiment_001", params)
print(f"Created experiment: {exp_id}")
# Log metrics
metrics = DVCMetrics(
accuracy=0.87,
precision=0.85,
recall=0.89,
f1_score=0.87,
loss=0.23,
stealth_score=0.73,
safety_compliance=0.96
)
dvc.log_metrics(metrics)
# Run pipeline
success = await dvc.run_pipeline()
print(f"Pipeline execution: {'success' if success else 'failed'}")
asyncio.run(main())