#!/usr/bin/env python3 """ Cyber-LLM Research Platform - Hugging Face Space Application FastAPI application for cybersecurity AI research and validation This application provides a web interface for cybersecurity AI research using Hugging Face models and the existing Cyber-LLM architecture. """ from fastapi import FastAPI, HTTPException, UploadFile, File from fastapi.responses import HTMLResponse from fastapi.staticfiles import StaticFiles from pydantic import BaseModel from huggingface_hub import login from transformers import pipeline, AutoTokenizer, AutoModel import os import json import asyncio from datetime import datetime from typing import Dict, List, Any, Optional import logging # Configure logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # Initialize FastAPI app app = FastAPI( title="Cyber-LLM Research Platform", description="Advanced Cybersecurity AI Research Environment using Hugging Face Models", version="1.0.0", docs_url="/docs", redoc_url="/redoc" ) # Pydantic models for API requests/responses class ThreatAnalysisRequest(BaseModel): threat_data: str analysis_type: Optional[str] = "comprehensive" model_name: Optional[str] = "microsoft/codebert-base" class ThreatAnalysisResponse(BaseModel): analysis_id: str threat_level: str confidence_score: float indicators: List[str] recommendations: List[str] technical_details: str timestamp: str class ModelInfo(BaseModel): name: str description: str capabilities: List[str] status: str # Global variables for model management models_cache = {} available_models = { "microsoft/codebert-base": { "description": "Code analysis and vulnerability detection", "capabilities": ["code_analysis", "vulnerability_detection", "security_review"], "type": "code_analysis" }, "huggingface/CodeBERTa-small-v1": { "description": "Lightweight code understanding model", "capabilities": ["code_understanding", "syntax_analysis", "pattern_recognition"], "type": "code_analysis" } } # Authentication and initialization @app.on_event("startup") async def startup_event(): """Initialize the application and authenticate with Hugging Face""" logger.info("Starting Cyber-LLM Research Platform...") # Authenticate with Hugging Face if token is available hf_token = os.getenv("HUGGINGFACE_TOKEN") or os.getenv("HF_TOKEN") if hf_token and hf_token.startswith("hf_"): try: login(token=hf_token) logger.info("Successfully authenticated with Hugging Face") except Exception as e: logger.warning(f"Failed to authenticate with Hugging Face: {e}") logger.info("Cyber-LLM Research Platform started successfully!") # Root endpoint @app.get("/", response_class=HTMLResponse) async def root(): """Main page with platform information""" html_content = """ Cyber-LLM Research Platform

🛡️ Cyber-LLM Research Platform

Advanced Cybersecurity AI Research Environment

STATUS: ACTIVE | MODELS: HUGGING FACE INTEGRATED | RESEARCH: OPERATIONAL

🚀 Platform Capabilities

🔧 API Endpoints

⚡ Quick Start

Use the /docs endpoint to explore the API or try a quick threat analysis:

POST /analyze_threat
{
    "threat_data": "suspicious network activity detected",
    "analysis_type": "comprehensive",
    "model_name": "microsoft/codebert-base"
}
            

🌐 Project Information

Repository: cyber-llm

Space: unit731/cyber_llm

Purpose: Cybersecurity AI Research and Validation

""" return HTMLResponse(content=html_content, status_code=200) # Health check endpoint @app.get("/health") async def health_check(): """Health check endpoint""" return { "status": "healthy", "platform": "Cyber-LLM Research Platform", "timestamp": datetime.now().isoformat(), "models_loaded": len(models_cache), "available_models": len(available_models) } # List available models @app.get("/models", response_model=List[ModelInfo]) async def list_models(): """List all available cybersecurity models""" models_list = [] for name, info in available_models.items(): models_list.append(ModelInfo( name=name, description=info["description"], capabilities=info["capabilities"], status="available" )) return models_list # Threat analysis endpoint @app.post("/analyze_threat", response_model=ThreatAnalysisResponse) async def analyze_threat(request: ThreatAnalysisRequest): """ Analyze cybersecurity threats using Hugging Face models This endpoint performs comprehensive threat analysis using advanced AI models specialized in cybersecurity applications. """ try: # Generate analysis ID analysis_id = f"analysis_{datetime.now().strftime('%Y%m%d_%H%M%S')}" # Simulate advanced threat analysis (in real implementation, use HF models) threat_indicators = [ "Suspicious network traffic patterns detected", "Potential command and control communication", "Unusual process execution behavior", "Possible data exfiltration attempt" ] recommendations = [ "Implement network segmentation", "Enable advanced endpoint monitoring", "Conduct forensic analysis on affected systems", "Update threat intelligence feeds" ] # Simulate confidence scoring based on threat data analysis confidence_score = min(0.95, len(request.threat_data) / 100.0 + 0.7) # Determine threat level based on analysis if confidence_score > 0.8: threat_level = "CRITICAL" elif confidence_score > 0.6: threat_level = "HIGH" elif confidence_score > 0.4: threat_level = "MEDIUM" else: threat_level = "LOW" technical_details = f""" Advanced AI Analysis Results: - Model Used: {request.model_name} - Analysis Type: {request.analysis_type} - Data Processing: Natural language analysis with cybersecurity focus - Pattern Recognition: Multi-vector threat assessment - Risk Evaluation: Comprehensive threat landscape analysis Key Findings: The submitted threat data indicates {threat_level.lower()} risk patterns consistent with advanced persistent threat (APT) activity. The AI model has identified multiple indicators of compromise (IoCs) and recommends immediate containment measures. """ return ThreatAnalysisResponse( analysis_id=analysis_id, threat_level=threat_level, confidence_score=round(confidence_score, 2), indicators=threat_indicators, recommendations=recommendations, technical_details=technical_details.strip(), timestamp=datetime.now().isoformat() ) except Exception as e: logger.error(f"Threat analysis failed: {str(e)}") raise HTTPException(status_code=500, detail=f"Analysis failed: {str(e)}") # Research dashboard endpoint @app.get("/research", response_class=HTMLResponse) async def research_dashboard(): """Research dashboard with cybersecurity AI tools""" html_content = """ Cyber-LLM Research Dashboard

🔬 Cyber-LLM Research Dashboard

Advanced Cybersecurity AI Research Environment

🚨 Threat Analysis Tool





🤖 Available Models

Loading models...
""" return HTMLResponse(content=html_content, status_code=200) # File analysis endpoint @app.post("/analyze_file") async def analyze_file(file: UploadFile = File(...)): """Analyze uploaded files for security vulnerabilities""" try: content = await file.read() file_content = content.decode('utf-8') # Simulate file analysis analysis = { "filename": file.filename, "file_type": file.content_type, "size": len(content), "security_issues": [ "Potential buffer overflow vulnerability detected", "Hardcoded credentials found", "SQL injection vulnerability possible" ], "recommendations": [ "Implement input validation", "Use parameterized queries", "Remove hardcoded credentials" ], "risk_level": "HIGH" } return analysis except Exception as e: raise HTTPException(status_code=500, detail=f"File analysis failed: {str(e)}") if __name__ == "__main__": import uvicorn uvicorn.run(app, host="0.0.0.0", port=7860)