""" Simplified Neural-Symbolic AI for Hugging Face Space Based on src/learning/neurosymbolic_ai.py """ import numpy as np import json from datetime import datetime from typing import Dict, List, Any, Optional import logging class SimplifiedNeuroSymbolicAI: """Simplified neural-symbolic AI for cybersecurity analysis in HF Space""" def __init__(self): self.logger = logging.getLogger(__name__) # Cybersecurity knowledge rules (simplified) self.security_rules = { "malware_indicators": [ "suspicious_process_execution", "network_communication_anomaly", "file_modification_pattern", "registry_manipulation" ], "network_threats": [ "port_scanning", "brute_force_attack", "ddos_pattern", "lateral_movement" ], "data_exfiltration": [ "large_data_transfer", "encrypted_communication", "unusual_access_pattern", "external_connection" ] } # Threat severity mapping self.threat_severity = { "critical": {"score": 0.9, "action": "immediate_response"}, "high": {"score": 0.7, "action": "urgent_investigation"}, "medium": {"score": 0.5, "action": "monitor_closely"}, "low": {"score": 0.3, "action": "routine_check"} } def analyze_threat_neural_symbolic(self, threat_data: str, context: Optional[Dict] = None) -> Dict[str, Any]: """Perform neural-symbolic threat analysis""" analysis_id = f"ns_analysis_{datetime.now().strftime('%Y%m%d_%H%M%S')}" # Neural processing (simplified) neural_features = self._extract_neural_features(threat_data) # Symbolic reasoning symbolic_analysis = self._symbolic_reasoning(threat_data, neural_features) # Integration integrated_result = self._integrate_analysis(neural_features, symbolic_analysis) return { "analysis_id": analysis_id, "timestamp": datetime.now().isoformat(), "threat_data": threat_data, "neural_analysis": { "feature_extraction": neural_features, "confidence": neural_features.get("confidence", 0.8) }, "symbolic_analysis": symbolic_analysis, "integrated_result": integrated_result, "recommendations": self._generate_recommendations(integrated_result) } def _extract_neural_features(self, threat_data: str) -> Dict[str, Any]: """Extract neural features from threat data""" # Simulate neural network feature extraction features = { "anomaly_score": min(0.9, len(threat_data) / 100.0 + 0.3), "semantic_features": [], "behavioral_patterns": [], "confidence": 0.8 } # Pattern recognition threat_lower = threat_data.lower() if any(term in threat_lower for term in ["malware", "virus", "trojan", "backdoor"]): features["semantic_features"].append("malware_related") features["anomaly_score"] += 0.2 if any(term in threat_lower for term in ["network", "scan", "port", "connection"]): features["semantic_features"].append("network_activity") features["anomaly_score"] += 0.1 if any(term in threat_lower for term in ["data", "exfiltration", "transfer", "leak"]): features["semantic_features"].append("data_movement") features["anomaly_score"] += 0.3 # Behavioral pattern analysis if "suspicious" in threat_lower: features["behavioral_patterns"].append("suspicious_behavior") if "anomal" in threat_lower: features["behavioral_patterns"].append("anomalous_activity") if "attack" in threat_lower: features["behavioral_patterns"].append("attack_pattern") features["anomaly_score"] = min(0.95, features["anomaly_score"]) return features def _symbolic_reasoning(self, threat_data: str, neural_features: Dict) -> Dict[str, Any]: """Apply symbolic reasoning rules""" conclusions = [] applied_rules = [] confidence_scores = [] threat_lower = threat_data.lower() # Rule 1: Malware detection if any(indicator in neural_features.get("semantic_features", []) for indicator in ["malware_related"]): conclusions.append({ "rule": "malware_detection_rule", "conclusion": "Potential malware activity detected", "confidence": 0.85, "evidence": neural_features["semantic_features"] }) applied_rules.append("malware_detection_rule") confidence_scores.append(0.85) # Rule 2: Network threat assessment if "network_activity" in neural_features.get("semantic_features", []): network_confidence = 0.7 if any(term in threat_lower for term in ["scan", "brute", "ddos"]): network_confidence = 0.9 conclusions.append({ "rule": "network_threat_rule", "conclusion": "Network-based threat activity identified", "confidence": network_confidence, "evidence": ["network_activity_patterns"] }) applied_rules.append("network_threat_rule") confidence_scores.append(network_confidence) # Rule 3: Data exfiltration risk if "data_movement" in neural_features.get("semantic_features", []): conclusions.append({ "rule": "data_exfiltration_rule", "conclusion": "Potential data exfiltration attempt detected", "confidence": 0.8, "evidence": ["unusual_data_transfer_patterns"] }) applied_rules.append("data_exfiltration_rule") confidence_scores.append(0.8) # Rule 4: Behavioral anomaly if neural_features["anomaly_score"] > 0.7: conclusions.append({ "rule": "behavioral_anomaly_rule", "conclusion": "High behavioral anomaly detected", "confidence": neural_features["anomaly_score"], "evidence": neural_features["behavioral_patterns"] }) applied_rules.append("behavioral_anomaly_rule") confidence_scores.append(neural_features["anomaly_score"]) return { "conclusions": conclusions, "applied_rules": applied_rules, "overall_confidence": np.mean(confidence_scores) if confidence_scores else 0.5, "reasoning_steps": len(conclusions) } def _integrate_analysis(self, neural_features: Dict, symbolic_analysis: Dict) -> Dict[str, Any]: """Integrate neural and symbolic analysis results""" # Calculate overall threat level neural_score = neural_features["anomaly_score"] symbolic_score = symbolic_analysis["overall_confidence"] integrated_score = (neural_score + symbolic_score) / 2 # Determine threat level if integrated_score >= 0.8: threat_level = "CRITICAL" severity = "critical" elif integrated_score >= 0.6: threat_level = "HIGH" severity = "high" elif integrated_score >= 0.4: threat_level = "MEDIUM" severity = "medium" else: threat_level = "LOW" severity = "low" return { "threat_level": threat_level, "severity": severity, "integrated_score": round(integrated_score, 3), "neural_contribution": round(neural_score, 3), "symbolic_contribution": round(symbolic_score, 3), "confidence": min(0.95, integrated_score), "explanation": self._generate_explanation(neural_features, symbolic_analysis, threat_level) } def _generate_explanation(self, neural_features: Dict, symbolic_analysis: Dict, threat_level: str) -> str: """Generate human-readable explanation""" explanation_parts = [ f"šŸ” Analysis indicates {threat_level} threat level based on:", "", "🧠 Neural Analysis:", f" • Anomaly Score: {neural_features['anomaly_score']:.2f}", f" • Detected Features: {', '.join(neural_features.get('semantic_features', ['none']))}", f" • Behavioral Patterns: {', '.join(neural_features.get('behavioral_patterns', ['none']))}", "", "šŸ”— Symbolic Reasoning:", f" • Rules Applied: {len(symbolic_analysis['applied_rules'])}", f" • Conclusions: {len(symbolic_analysis['conclusions'])}", f" • Confidence: {symbolic_analysis['overall_confidence']:.2f}", ] if symbolic_analysis["conclusions"]: explanation_parts.append(" • Key Findings:") for conclusion in symbolic_analysis["conclusions"][:3]: explanation_parts.append(f" - {conclusion['conclusion']} (confidence: {conclusion['confidence']:.2f})") return "\n".join(explanation_parts) def _generate_recommendations(self, integrated_result: Dict) -> List[str]: """Generate actionable security recommendations""" severity = integrated_result["severity"] threat_level = integrated_result["threat_level"] recommendations = [] # Base recommendations by severity severity_info = self.threat_severity.get(severity, self.threat_severity["medium"]) if severity == "critical": recommendations.extend([ "🚨 IMMEDIATE ACTION REQUIRED", "• Initiate incident response procedures", "• Isolate affected systems immediately", "• Contact security team and management", "• Begin forensic data collection" ]) elif severity == "high": recommendations.extend([ "āš ļø URGENT INVESTIGATION NEEDED", "• Deploy additional monitoring on affected systems", "• Implement network segmentation if possible", "• Escalate to security analysts", "• Review related security logs" ]) elif severity == "medium": recommendations.extend([ "šŸ” CLOSE MONITORING RECOMMENDED", "• Increase logging and monitoring", "• Schedule security review within 24 hours", "• Implement additional access controls", "• Update threat intelligence feeds" ]) else: recommendations.extend([ "āœ… ROUTINE SECURITY MEASURES", "• Continue normal monitoring", "• Document findings for future reference", "• Regular security updates recommended" ]) # Add specific recommendations based on analysis recommendations.append("\nšŸ›”ļø SPECIFIC SECURITY MEASURES:") recommendations.extend([ "• Update antivirus and security signatures", "• Review network access controls", "• Validate backup and recovery procedures", "• Consider threat hunting activities" ]) return recommendations # Initialize global instance for the Space neuro_symbolic_ai = SimplifiedNeuroSymbolicAI()