"""
Cyber-LLM: Advanced Cybersecurity AI Operations Center
Clean minimal version for HuggingFace Spaces deployment
"""
from fastapi import FastAPI, HTTPException
from fastapi.responses import HTMLResponse, JSONResponse
from pydantic import BaseModel
from typing import Dict, List, Any
import os
import json
from datetime import datetime
# Create FastAPI app
app = FastAPI(
title="Cyber-LLM Operations Center",
description="Advanced Cybersecurity AI Platform",
version="2.0.0"
)
# Data Models
class TargetAnalysisRequest(BaseModel):
target: str
analysis_type: str = "comprehensive"
class ThreatResponse(BaseModel):
threat_level: str
confidence: float
analysis: Dict[str, Any]
# Threat Intelligence Database
THREAT_INTELLIGENCE = {
"apt_groups": {
"APT29": {"name": "Cozy Bear", "origin": "Russia", "active": True},
"APT28": {"name": "Fancy Bear", "origin": "Russia", "active": True},
"Lazarus": {"name": "Hidden Cobra", "origin": "North Korea", "active": True}
},
"iocs": ["malicious-domain.com", "suspicious-email@attacker.org", "192.168.1.100"]
}
@app.get("/", response_class=HTMLResponse)
async def dashboard():
"""Main cybersecurity operations dashboard"""
apt_count = len(THREAT_INTELLIGENCE['apt_groups'])
ioc_count = len(THREAT_INTELLIGENCE['iocs'])
html_content = """
🛡️ Cyber-LLM Operations Center
🛡️ CYBER-LLM OPERATIONS CENTER
""" + str(apt_count) + """
APT Groups Tracked
""" + str(ioc_count) + """
IOCs Monitored
🏴☠️ ACTIVE APT GROUPS
- APT29 (Cozy Bear) - 🇷🇺 Russia | Active Threat Actor
- APT28 (Fancy Bear) - 🇷🇺 Russia | Advanced Persistent Threat
- Lazarus (Hidden Cobra) - 🇰🇵 North Korea | Financial Focus
⚡ RECENT INTELLIGENCE
- 🚨 New campaign targeting financial institutions detected
- 🔍 Suspicious domain activity: malicious-banking.com
- ⚠️ Zero-day vulnerability in web frameworks identified
- 🛡️ Defensive countermeasures updated
"""
return HTMLResponse(content=html_content)
@app.post("/analyze", response_model=ThreatResponse)
async def analyze_target(request: TargetAnalysisRequest):
"""Analyze a target for threat intelligence"""
target = request.target.lower()
# Default analysis
threat_level = "low"
confidence = 0.7
analysis = {
"target": request.target,
"type": "clean",
"description": "Target appears benign based on current intelligence",
"recommendations": "Continue monitoring for changes"
}
# Check against known IOCs
if any(ioc in target for ioc in THREAT_INTELLIGENCE["iocs"]):
threat_level = "critical"
confidence = 0.95
analysis.update({
"type": "known_malicious",
"description": "Target matches known IOC in threat intelligence database",
"recommendations": "BLOCK IMMEDIATELY - Known malicious indicator"
})
elif any(keyword in target for keyword in ["malicious", "evil", "hack", "attack", "phish"]):
threat_level = "warning"
confidence = 0.8
analysis.update({
"type": "suspicious",
"description": "Target contains suspicious keywords indicating potential threat",
"recommendations": "Investigate further and implement monitoring"
})
return ThreatResponse(
threat_level=threat_level,
confidence=confidence,
analysis=analysis
)
@app.get("/health")
async def health_check():
"""Health check endpoint for monitoring"""
return {
"status": "healthy",
"service": "cyber-llm",
"version": "2.0.0",
"timestamp": datetime.now().isoformat(),
"threat_db_size": len(THREAT_INTELLIGENCE["apt_groups"])
}
@app.get("/api/threats")
async def get_threats():
"""Get current threat intelligence data"""
return JSONResponse(content=THREAT_INTELLIGENCE)
if __name__ == "__main__":
import uvicorn
port = int(os.environ.get("PORT", 7860))
print(f"🛡️ Starting Cyber-LLM Operations Center on port {port}")
uvicorn.run(app, host="0.0.0.0", port=port)