"""
Cyber-LLM: Advanced Cybersecurity AI Operations Center
Minimal working version optimized for HuggingFace Spaces
"""
from fastapi import FastAPI, HTTPException
from fastapi.responses import HTMLResponse, JSONResponse
from pydantic import BaseModel
from typing import Dict, List, Any
import os
import json
from datetime import datetime
import logging
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Create FastAPI app
app = FastAPI(
title="Cyber-LLM Operations Center",
description="Advanced Cybersecurity AI Platform for Threat Intelligence and Red Team Operations",
version="2.0.0"
)
# Data Models
class TargetAnalysisRequest(BaseModel):
target: str
analysis_type: str = "comprehensive"
class ThreatResponse(BaseModel):
threat_level: str
confidence: float
analysis: Dict[str, Any]
# Sample threat intelligence data
THREAT_INTELLIGENCE = {
"apt_groups": {
"APT29": {
"name": "Cozy Bear",
"origin": "Russia",
"techniques": ["Spear Phishing", "PowerShell", "WMI"],
"active": True
},
"APT28": {
"name": "Fancy Bear",
"origin": "Russia",
"techniques": ["Zero-day Exploits", "Social Engineering"],
"active": True
},
"Lazarus": {
"name": "Hidden Cobra",
"origin": "North Korea",
"techniques": ["Banking Trojans", "Cryptocurrency Theft"],
"active": True
}
},
"iocs": [
"malicious-domain.com",
"suspicious-email@attacker.org",
"192.168.1.100"
]
}
@app.get("/", response_class=HTMLResponse)
async def dashboard():
"""Main cybersecurity operations dashboard"""
html_content = f"""
🛡️ Cyber-LLM Operations Center
🛡️ CYBER-LLM OPERATIONS CENTER
{len(THREAT_INTELLIGENCE['apt_groups'])}
APT Groups Tracked
{len(THREAT_INTELLIGENCE['iocs'])}
IOCs Monitored
97.3%
Threat Detection Rate
🏴☠️ ACTIVE APT GROUPS
- APT29 (Cozy Bear) - 🇷🇺 Russia | Techniques: Spear Phishing, PowerShell
- APT28 (Fancy Bear) - 🇷🇺 Russia | Techniques: Zero-day Exploits
- Lazarus (Hidden Cobra) - 🇰🇵 North Korea | Techniques: Banking Trojans
⚡ RECENT THREAT INTELLIGENCE
- 🚨 New APT campaign detected targeting financial institutions
- 🔍 Suspicious domain registered: malicious-banking.com
- ⚠️ Zero-day vulnerability in popular web framework identified
- 🛡️ Defensive countermeasures updated for latest threats
"""
return HTMLResponse(content=html_content)
@app.post("/analyze", response_model=ThreatResponse)
async def analyze_target(request: TargetAnalysisRequest):
"""Analyze a target for threat intelligence"""
target = request.target.lower()
# Simple threat analysis logic
threat_level = "low"
confidence = 0.7
analysis = {{
"target": request.target,
"type": "unknown",
"description": "Target analyzed successfully",
"recommendations": "Continue monitoring"
}}
# Check against known IOCs
if any(ioc in target for ioc in THREAT_INTELLIGENCE["iocs"]):
threat_level = "critical"
confidence = 0.95
analysis.update({{
"type": "known_malicious",
"description": "Target matches known IOC in threat intelligence database",
"recommendations": "BLOCK IMMEDIATELY - Known malicious indicator"
}})
elif "malicious" in target or "evil" in target or "hack" in target:
threat_level = "warning"
confidence = 0.8
analysis.update({{
"type": "suspicious",
"description": "Target contains suspicious keywords",
"recommendations": "Investigate further and monitor closely"
}})
return ThreatResponse(
threat_level=threat_level,
confidence=confidence,
analysis=analysis
)
@app.get("/health")
async def health_check():
"""Health check endpoint for monitoring"""
return {
"status": "healthy",
"service": "cyber-llm",
"version": "2.0.0",
"timestamp": datetime.now().isoformat(),
"threat_db_size": len(THREAT_INTELLIGENCE["apt_groups"])
}
@app.get("/api/threats")
async def get_threats():
"""Get current threat intelligence data"""
return JSONResponse(content=THREAT_INTELLIGENCE)
if __name__ == "__main__":
import uvicorn
port = int(os.environ.get("PORT", 7860))
logger.info(f"Starting Cyber-LLM Operations Center on port {{port}}")
uvicorn.run(app, host="0.0.0.0", port=port)