""" Data Lineage Tracking System Tracks data flow, transformations, and dependencies across the cybersecurity AI pipeline """ import json import sqlite3 import hashlib from datetime import datetime from pathlib import Path from typing import Dict, List, Optional, Any from dataclasses import dataclass, asdict from enum import Enum class DataSourceType(Enum): RAW_DATA = "raw_data" MITRE_ATTACK = "mitre_attack" CVE_DATABASE = "cve_database" THREAT_INTEL = "threat_intel" RED_TEAM_LOGS = "red_team_logs" DEFENSIVE_KNOWLEDGE = "defensive_knowledge" PREPROCESSED = "preprocessed" TRANSFORMED = "transformed" VALIDATED = "validated" AUGMENTED = "augmented" class TransformationType(Enum): CLEANING = "cleaning" NORMALIZATION = "normalization" TOKENIZATION = "tokenization" AUGMENTATION = "augmentation" VALIDATION = "validation" FEATURE_EXTRACTION = "feature_extraction" ANONYMIZATION = "anonymization" AGGREGATION = "aggregation" @dataclass class DataAsset: """Represents a data asset in the lineage graph""" asset_id: str name: str source_type: DataSourceType file_path: str size_bytes: int checksum: str created_at: str schema_version: str metadata: Dict[str, Any] @dataclass class DataTransformation: """Represents a data transformation operation""" transformation_id: str transformation_type: TransformationType source_assets: List[str] target_assets: List[str] operation_name: str parameters: Dict[str, Any] executed_at: str execution_time_seconds: float success: bool error_message: Optional[str] @dataclass class DataLineageNode: """Node in the data lineage graph""" node_id: str asset: DataAsset upstream_nodes: List[str] downstream_nodes: List[str] transformations: List[str] class DataLineageTracker: """Tracks data lineage across the cybersecurity AI pipeline""" def __init__(self, db_path: str = "data/lineage/data_lineage.db"): self.db_path = Path(db_path) self.db_path.parent.mkdir(parents=True, exist_ok=True) self._init_database() def _init_database(self): """Initialize the lineage database""" conn = sqlite3.connect(self.db_path) cursor = conn.cursor() # Data Assets table cursor.execute(""" CREATE TABLE IF NOT EXISTS data_assets ( asset_id TEXT PRIMARY KEY, name TEXT NOT NULL, source_type TEXT NOT NULL, file_path TEXT NOT NULL, size_bytes INTEGER NOT NULL, checksum TEXT NOT NULL, created_at TEXT NOT NULL, schema_version TEXT NOT NULL, metadata TEXT NOT NULL ) """) # Data Transformations table cursor.execute(""" CREATE TABLE IF NOT EXISTS data_transformations ( transformation_id TEXT PRIMARY KEY, transformation_type TEXT NOT NULL, source_assets TEXT NOT NULL, target_assets TEXT NOT NULL, operation_name TEXT NOT NULL, parameters TEXT NOT NULL, executed_at TEXT NOT NULL, execution_time_seconds REAL NOT NULL, success BOOLEAN NOT NULL, error_message TEXT ) """) # Lineage Relationships table cursor.execute(""" CREATE TABLE IF NOT EXISTS lineage_relationships ( id INTEGER PRIMARY KEY AUTOINCREMENT, parent_asset_id TEXT NOT NULL, child_asset_id TEXT NOT NULL, transformation_id TEXT NOT NULL, relationship_type TEXT NOT NULL, created_at TEXT NOT NULL, FOREIGN KEY (parent_asset_id) REFERENCES data_assets (asset_id), FOREIGN KEY (child_asset_id) REFERENCES data_assets (asset_id), FOREIGN KEY (transformation_id) REFERENCES data_transformations (transformation_id) ) """) # Create indices for performance cursor.execute("CREATE INDEX IF NOT EXISTS idx_assets_source_type ON data_assets(source_type)") cursor.execute("CREATE INDEX IF NOT EXISTS idx_transformations_type ON data_transformations(transformation_type)") cursor.execute("CREATE INDEX IF NOT EXISTS idx_relationships_parent ON lineage_relationships(parent_asset_id)") cursor.execute("CREATE INDEX IF NOT EXISTS idx_relationships_child ON lineage_relationships(child_asset_id)") conn.commit() conn.close() def register_data_asset(self, asset: DataAsset) -> bool: """Register a new data asset""" try: conn = sqlite3.connect(self.db_path) cursor = conn.cursor() cursor.execute(""" INSERT OR REPLACE INTO data_assets (asset_id, name, source_type, file_path, size_bytes, checksum, created_at, schema_version, metadata) VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?) """, ( asset.asset_id, asset.name, asset.source_type.value, asset.file_path, asset.size_bytes, asset.checksum, asset.created_at, asset.schema_version, json.dumps(asset.metadata) )) conn.commit() conn.close() return True except Exception as e: print(f"Error registering data asset: {e}") return False def register_transformation(self, transformation: DataTransformation) -> bool: """Register a data transformation operation""" try: conn = sqlite3.connect(self.db_path) cursor = conn.cursor() cursor.execute(""" INSERT OR REPLACE INTO data_transformations (transformation_id, transformation_type, source_assets, target_assets, operation_name, parameters, executed_at, execution_time_seconds, success, error_message) VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?) """, ( transformation.transformation_id, transformation.transformation_type.value, json.dumps(transformation.source_assets), json.dumps(transformation.target_assets), transformation.operation_name, json.dumps(transformation.parameters), transformation.executed_at, transformation.execution_time_seconds, transformation.success, transformation.error_message )) # Register lineage relationships for source_id in transformation.source_assets: for target_id in transformation.target_assets: cursor.execute(""" INSERT INTO lineage_relationships (parent_asset_id, child_asset_id, transformation_id, relationship_type, created_at) VALUES (?, ?, ?, ?, ?) """, (source_id, target_id, transformation.transformation_id, "transformation", transformation.executed_at)) conn.commit() conn.close() return True except Exception as e: print(f"Error registering transformation: {e}") return False def get_asset_lineage(self, asset_id: str, direction: str = "both") -> Dict[str, Any]: """Get the lineage graph for a specific asset""" conn = sqlite3.connect(self.db_path) cursor = conn.cursor() lineage = { "asset_id": asset_id, "upstream": [], "downstream": [], "transformations": [] } # Get upstream lineage if direction in ["upstream", "both"]: cursor.execute(""" SELECT DISTINCT lr.parent_asset_id, da.name, da.source_type, dt.operation_name FROM lineage_relationships lr JOIN data_assets da ON lr.parent_asset_id = da.asset_id JOIN data_transformations dt ON lr.transformation_id = dt.transformation_id WHERE lr.child_asset_id = ? """, (asset_id,)) lineage["upstream"] = [ { "asset_id": row[0], "name": row[1], "source_type": row[2], "operation": row[3] } for row in cursor.fetchall() ] # Get downstream lineage if direction in ["downstream", "both"]: cursor.execute(""" SELECT DISTINCT lr.child_asset_id, da.name, da.source_type, dt.operation_name FROM lineage_relationships lr JOIN data_assets da ON lr.child_asset_id = da.asset_id JOIN data_transformations dt ON lr.transformation_id = dt.transformation_id WHERE lr.parent_asset_id = ? """, (asset_id,)) lineage["downstream"] = [ { "asset_id": row[0], "name": row[1], "source_type": row[2], "operation": row[3] } for row in cursor.fetchall() ] # Get transformations involving this asset cursor.execute(""" SELECT dt.transformation_id, dt.operation_name, dt.executed_at, dt.success FROM data_transformations dt WHERE JSON_EXTRACT(dt.source_assets, '$') LIKE '%' || ? || '%' OR JSON_EXTRACT(dt.target_assets, '$') LIKE '%' || ? || '%' """, (asset_id, asset_id)) lineage["transformations"] = [ { "transformation_id": row[0], "operation_name": row[1], "executed_at": row[2], "success": bool(row[3]) } for row in cursor.fetchall() ] conn.close() return lineage def get_data_flow_impact(self, asset_id: str) -> Dict[str, Any]: """Analyze the impact of changes to a specific data asset""" lineage = self.get_asset_lineage(asset_id, direction="downstream") impact_analysis = { "source_asset": asset_id, "affected_assets": len(lineage["downstream"]), "affected_asset_types": {}, "critical_dependencies": [], "recommendation": "" } # Count affected asset types for asset in lineage["downstream"]: asset_type = asset["source_type"] impact_analysis["affected_asset_types"][asset_type] = ( impact_analysis["affected_asset_types"].get(asset_type, 0) + 1 ) # Identify critical dependencies conn = sqlite3.connect(self.db_path) cursor = conn.cursor() cursor.execute(""" SELECT da.asset_id, da.name, da.source_type FROM data_assets da WHERE da.source_type IN ('validated', 'augmented', 'transformed') AND da.asset_id IN ( SELECT lr.child_asset_id FROM lineage_relationships lr WHERE lr.parent_asset_id = ? ) """, (asset_id,)) impact_analysis["critical_dependencies"] = [ {"asset_id": row[0], "name": row[1], "type": row[2]} for row in cursor.fetchall() ] # Generate recommendation if impact_analysis["affected_assets"] > 10: impact_analysis["recommendation"] = "HIGH IMPACT: Changes require comprehensive testing" elif impact_analysis["affected_assets"] > 5: impact_analysis["recommendation"] = "MEDIUM IMPACT: Changes require targeted testing" else: impact_analysis["recommendation"] = "LOW IMPACT: Standard validation sufficient" conn.close() return impact_analysis def generate_lineage_report(self) -> Dict[str, Any]: """Generate a comprehensive data lineage report""" conn = sqlite3.connect(self.db_path) cursor = conn.cursor() report = { "generated_at": datetime.now().isoformat(), "summary": {}, "asset_types": {}, "transformation_types": {}, "data_quality": {}, "recommendations": [] } # Summary statistics cursor.execute("SELECT COUNT(*) FROM data_assets") total_assets = cursor.fetchone()[0] cursor.execute("SELECT COUNT(*) FROM data_transformations") total_transformations = cursor.fetchone()[0] cursor.execute("SELECT COUNT(*) FROM lineage_relationships") total_relationships = cursor.fetchone()[0] report["summary"] = { "total_assets": total_assets, "total_transformations": total_transformations, "total_relationships": total_relationships } # Asset type distribution cursor.execute(""" SELECT source_type, COUNT(*), AVG(size_bytes) FROM data_assets GROUP BY source_type """) for row in cursor.fetchall(): report["asset_types"][row[0]] = { "count": row[1], "avg_size_bytes": row[2] } # Transformation type distribution cursor.execute(""" SELECT transformation_type, COUNT(*), AVG(execution_time_seconds), SUM(CASE WHEN success = 1 THEN 1 ELSE 0 END) * 100.0 / COUNT(*) FROM data_transformations GROUP BY transformation_type """) for row in cursor.fetchall(): report["transformation_types"][row[0]] = { "count": row[1], "avg_execution_time": row[2], "success_rate": row[3] } # Data quality metrics cursor.execute(""" SELECT COUNT(*) as total, SUM(CASE WHEN source_type IN ('validated', 'augmented') THEN 1 ELSE 0 END) as high_quality, AVG(size_bytes) as avg_size FROM data_assets """) row = cursor.fetchone() report["data_quality"] = { "total_assets": row[0], "high_quality_assets": row[1], "quality_percentage": (row[1] / row[0] * 100) if row[0] > 0 else 0, "average_asset_size": row[2] } # Generate recommendations if report["data_quality"]["quality_percentage"] < 70: report["recommendations"].append("Increase data validation and quality assurance processes") if any(info["success_rate"] < 90 for info in report["transformation_types"].values()): report["recommendations"].append("Review and optimize failing data transformations") if report["summary"]["total_relationships"] / report["summary"]["total_assets"] < 1.5: report["recommendations"].append("Consider enriching data lineage tracking") conn.close() return report def create_asset_from_file(self, file_path: str, source_type: DataSourceType, name: Optional[str] = None, metadata: Optional[Dict] = None) -> DataAsset: """Create a DataAsset from a file""" path = Path(file_path) if not path.exists(): raise FileNotFoundError(f"File not found: {file_path}") # Calculate file checksum hasher = hashlib.sha256() with open(path, 'rb') as f: for chunk in iter(lambda: f.read(4096), b""): hasher.update(chunk) asset_id = f"{source_type.value}_{hasher.hexdigest()[:16]}" return DataAsset( asset_id=asset_id, name=name or path.name, source_type=source_type, file_path=str(path.absolute()), size_bytes=path.stat().st_size, checksum=hasher.hexdigest(), created_at=datetime.now().isoformat(), schema_version="1.0", metadata=metadata or {} ) # Example usage and testing if __name__ == "__main__": # Initialize the tracker tracker = DataLineageTracker("data/lineage/data_lineage.db") # Example: Track MITRE ATT&CK data processing mitre_asset = DataAsset( asset_id="mitre_attack_raw_001", name="MITRE ATT&CK Framework Data", source_type=DataSourceType.MITRE_ATTACK, file_path="data/raw/mitre_attack.json", size_bytes=1024000, checksum="abc123def456", created_at=datetime.now().isoformat(), schema_version="1.0", metadata={"version": "14.1", "techniques": 200} ) tracker.register_data_asset(mitre_asset) # Track preprocessing transformation preprocessing = DataTransformation( transformation_id="preprocess_001", transformation_type=TransformationType.CLEANING, source_assets=["mitre_attack_raw_001"], target_assets=["mitre_attack_clean_001"], operation_name="clean_and_normalize_mitre_data", parameters={"remove_deprecated": True, "normalize_names": True}, executed_at=datetime.now().isoformat(), execution_time_seconds=15.7, success=True, error_message=None ) tracker.register_transformation(preprocessing) # Generate lineage report report = tracker.generate_lineage_report() print("Data Lineage Report:") print(json.dumps(report, indent=2)) print("✅ Data Lineage Tracking System implemented and tested")