""" Cyber-LLM Learning Module This module implements advanced learning capabilities for continuous intelligence and evolution of the Cyber-LLM system. Components: - online_learning: Real-time learning from operational feedback - federated_learning: Secure multi-organization collaborative learning - meta_learning: Rapid adaptation to new threats and attack patterns - research_collaboration: Framework for sharing cybersecurity insights - constitutional_ai: Ethical constraints and safety guardrails - continuous_intelligence: Orchestration of all learning components Author: Muzan Sano """ from .online_learning import ( OnlineLearningManager, LearningEvent, LearningEventType, ThreatIntelligenceProcessor, create_online_learning_manager ) from .federated_learning import ( FederatedLearningCoordinator, FederatedLearningParticipant, FederatedLearningRound, SecureCommunicationManager, ModelAggregator, create_federated_learning_coordinator ) from .meta_learning import ( MetaLearningManager, MetaLearningStrategy, MetaTask, TaskType, CyberSecurityTaskGenerator, create_meta_learning_manager ) from .research_collaboration import ( ResearchCollaborationManager, CollaborationType, ResearchInsight, CollaborationParticipant, CollaborationProject, ParticipantRole, SensitivityLevel, create_research_collaboration_manager ) from .constitutional_ai import ( ConstitutionalAIManager, EthicalPrinciple, ViolationType, ActionType, ConstitutionalRule, ConstitutionalViolation, create_constitutional_ai_manager ) from .continuous_intelligence import ( ContinuousIntelligenceOrchestrator, ContinuousIntelligenceConfig, ContinuousIntelligenceMode, create_continuous_intelligence_config, create_continuous_intelligence_orchestrator ) __all__ = [ # Online Learning 'OnlineLearningManager', 'LearningEvent', 'LearningEventType', 'ThreatIntelligenceProcessor', 'create_online_learning_manager', # Federated Learning 'FederatedLearningCoordinator', 'FederatedLearningParticipant', 'FederatedLearningRound', 'SecureCommunicationManager', 'ModelAggregator', 'create_federated_learning_coordinator', # Meta Learning 'MetaLearningManager', 'MetaLearningStrategy', 'MetaTask', 'TaskType', 'CyberSecurityTaskGenerator', 'create_meta_learning_manager', # Research Collaboration 'ResearchCollaborationManager', 'CollaborationType', 'ResearchInsight', 'CollaborationParticipant', 'CollaborationProject', 'ParticipantRole', 'SensitivityLevel', 'create_research_collaboration_manager', # Constitutional AI 'ConstitutionalAIManager', 'EthicalPrinciple', 'ViolationType', 'ActionType', 'ConstitutionalRule', 'ConstitutionalViolation', 'create_constitutional_ai_manager', # Continuous Intelligence 'ContinuousIntelligenceOrchestrator', 'ContinuousIntelligenceConfig', 'ContinuousIntelligenceMode', 'create_continuous_intelligence_config', 'create_continuous_intelligence_orchestrator' ] # Module metadata __version__ = "1.0.0" __author__ = "Muzan Sano " __description__ = "Advanced learning and adaptation capabilities for Cyber-LLM" # Convenience functions for common use cases def create_full_continuous_intelligence_system(model, tokenizer, organization_name: str = "CyberLLM-Default", mode: ContinuousIntelligenceMode = ContinuousIntelligenceMode.BALANCED): """ Create a complete continuous intelligence system with all components enabled. Args: model: The language model to enhance with continuous intelligence tokenizer: Tokenizer for the model organization_name: Name of the organization using the system mode: Operating mode for the continuous intelligence system Returns: ContinuousIntelligenceOrchestrator: Fully configured orchestrator """ config = create_continuous_intelligence_config( mode=mode, organization_name=organization_name, enable_online_learning=True, enable_federated_learning=True, enable_meta_learning=True, enable_research_collaboration=True, enable_constitutional_ai=True ) return create_continuous_intelligence_orchestrator(model, tokenizer, config) def create_research_focused_system(model, tokenizer, organization_name: str): """ Create a research-focused continuous intelligence system optimized for collaborative research and knowledge sharing. Args: model: The language model tokenizer: Tokenizer for the model organization_name: Name of the research organization Returns: ContinuousIntelligenceOrchestrator: Research-optimized orchestrator """ return create_full_continuous_intelligence_system( model=model, tokenizer=tokenizer, organization_name=organization_name, mode=ContinuousIntelligenceMode.RESEARCH ) def create_production_system(model, tokenizer, organization_name: str): """ Create a production-ready continuous intelligence system with conservative settings optimized for stability and safety. Args: model: The language model tokenizer: Tokenizer for the model organization_name: Name of the organization Returns: ContinuousIntelligenceOrchestrator: Production-optimized orchestrator """ return create_full_continuous_intelligence_system( model=model, tokenizer=tokenizer, organization_name=organization_name, mode=ContinuousIntelligenceMode.PRODUCTION )