""" Neuro-Symbolic AI for Cybersecurity Combining neural networks with symbolic reasoning for explainable AI """ import torch import torch.nn as nn import torch.nn.functional as F import numpy as np import json from typing import Dict, List, Optional, Any, Tuple, Union, Set from dataclasses import dataclass, asdict from datetime import datetime, timedelta import logging from abc import ABC, abstractmethod from collections import defaultdict import sqlite3 import pickle from enum import Enum import networkx as nx import ast import re from sympy import symbols, And, Or, Not, Implies, simplify from sympy.logic.boolalg import to_cnf, to_dnf class SymbolicRule: """Symbolic rule for cybersecurity reasoning""" def __init__(self, rule_id: str, premise: str, conclusion: str, confidence: float = 1.0, priority: int = 1): self.rule_id = rule_id self.premise = premise # Logical expression as string self.conclusion = conclusion self.confidence = confidence self.priority = priority self.usage_count = 0 self.success_count = 0 self.created_at = datetime.now().isoformat() def __str__(self): return f"Rule({self.rule_id}): IF {self.premise} THEN {self.conclusion} [conf={self.confidence:.2f}]" @dataclass class SymbolicFact: """Symbolic fact in the knowledge base""" fact_id: str predicate: str arguments: List[str] truth_value: bool confidence: float source: str timestamp: str metadata: Dict[str, Any] @dataclass class InferenceStep: """Single step in symbolic reasoning""" step_id: str rule_applied: str premises_used: List[str] conclusion_derived: str confidence: float timestamp: str class SymbolicKnowledgeBase: """Knowledge base for symbolic reasoning""" def __init__(self): self.facts = {} # fact_id -> SymbolicFact self.rules = {} # rule_id -> SymbolicRule self.predicates = set() self.entities = set() # Initialize with cybersecurity domain knowledge self._init_cybersecurity_knowledge() def _init_cybersecurity_knowledge(self): """Initialize with domain-specific cybersecurity rules""" # Basic cybersecurity rules rules = [ # Network security rules SymbolicRule("net_01", "external_connection(X) & suspicious_activity(X)", "potential_intrusion(X)", 0.8, 1), SymbolicRule("net_02", "port_scan(X) & failed_login(X)", "reconnaissance(X)", 0.9, 2), SymbolicRule("net_03", "large_data_transfer(X) & external_connection(X)", "potential_exfiltration(X)", 0.7, 2), # Malware detection rules SymbolicRule("mal_01", "unknown_process(X) & network_activity(X)", "suspicious_process(X)", 0.6, 1), SymbolicRule("mal_02", "file_modification(X) & system_file(X)", "potential_malware(X)", 0.8, 2), SymbolicRule("mal_03", "encrypted_communication(X) & c2_domain(X)", "malware_communication(X)", 0.9, 3), # User behavior rules SymbolicRule("usr_01", "off_hours_access(X) & privileged_account(X)", "suspicious_access(X)", 0.7, 2), SymbolicRule("usr_02", "multiple_failed_logins(X) & admin_account(X)", "brute_force_attempt(X)", 0.9, 3), SymbolicRule("usr_03", "data_access(X) & unusual_location(X)", "insider_threat(X)", 0.6, 2), # Attack progression rules SymbolicRule("att_01", "reconnaissance(X) & vulnerability_exploit(X)", "initial_compromise(X)", 0.8, 3), SymbolicRule("att_02", "initial_compromise(X) & credential_theft(X)", "lateral_movement(X)", 0.9, 3), SymbolicRule("att_03", "lateral_movement(X) & data_access(X)", "mission_completion(X)", 0.8, 3), # Response rules SymbolicRule("rsp_01", "potential_intrusion(X)", "alert_soc(X)", 1.0, 1), SymbolicRule("rsp_02", "malware_communication(X)", "block_traffic(X)", 1.0, 2), SymbolicRule("rsp_03", "brute_force_attempt(X)", "lock_account(X)", 1.0, 3), ] for rule in rules: self.add_rule(rule) def add_fact(self, fact: SymbolicFact): """Add a fact to the knowledge base""" self.facts[fact.fact_id] = fact self.predicates.add(fact.predicate) self.entities.update(fact.arguments) def add_rule(self, rule: SymbolicRule): """Add a rule to the knowledge base""" self.rules[rule.rule_id] = rule def get_facts_by_predicate(self, predicate: str) -> List[SymbolicFact]: """Get all facts with a specific predicate""" return [fact for fact in self.facts.values() if fact.predicate == predicate] def evaluate_premise(self, premise: str, variable_bindings: Dict[str, str]) -> Tuple[bool, float]: """Evaluate a logical premise given variable bindings""" try: # Simple evaluation - replace variables and check facts bound_premise = premise for var, value in variable_bindings.items(): bound_premise = bound_premise.replace(var, f'"{value}"') # Parse logical expression terms = self._parse_logical_expression(bound_premise) # Evaluate each term term_results = [] for term in terms: predicate, args, negated = term fact_exists = self._fact_exists(predicate, args) if negated: term_results.append((not fact_exists, 1.0 if not fact_exists else 0.0)) else: confidence = self._get_fact_confidence(predicate, args) if fact_exists else 0.0 term_results.append((fact_exists, confidence)) # Combine results (simplified - assume AND for now) all_true = all(result[0] for result in term_results) avg_confidence = np.mean([result[1] for result in term_results]) if term_results else 0.0 return all_true, avg_confidence except Exception as e: logging.error(f"Error evaluating premise {premise}: {e}") return False, 0.0 def _parse_logical_expression(self, expression: str) -> List[Tuple[str, List[str], bool]]: """Parse logical expression into terms""" # Simplified parsing - handles basic predicates with AND/OR terms = [] # Split by & (AND) for now clauses = expression.split(" & ") for clause in clauses: clause = clause.strip() negated = clause.startswith("~") or clause.startswith("not ") if negated: clause = clause.replace("~", "").replace("not ", "").strip() # Extract predicate and arguments match = re.match(r'(\w+)\((.*)\)', clause) if match: predicate = match.group(1) args_str = match.group(2) args = [arg.strip().strip('"') for arg in args_str.split(",")] terms.append((predicate, args, negated)) return terms def _fact_exists(self, predicate: str, args: List[str]) -> bool: """Check if a fact exists in the knowledge base""" for fact in self.facts.values(): if fact.predicate == predicate and fact.arguments == args and fact.truth_value: return True return False def _get_fact_confidence(self, predicate: str, args: List[str]) -> float: """Get confidence of a fact""" for fact in self.facts.values(): if fact.predicate == predicate and fact.arguments == args and fact.truth_value: return fact.confidence return 0.0 class NeuralSymbolicIntegrator(nn.Module): """Neural network component that interfaces with symbolic reasoning""" def __init__(self, input_dim: int, symbol_dim: int = 128, hidden_dim: int = 256): super().__init__() self.input_dim = input_dim self.symbol_dim = symbol_dim self.hidden_dim = hidden_dim # Neural feature extractor self.feature_extractor = nn.Sequential( nn.Linear(input_dim, hidden_dim), nn.ReLU(), nn.Dropout(0.3), nn.Linear(hidden_dim, hidden_dim), nn.ReLU(), nn.Dropout(0.3) ) # Symbolic concept embeddings self.concept_embeddings = nn.Embedding(1000, symbol_dim) # Assume up to 1000 concepts # Neural-symbolic fusion layers self.fusion_attention = nn.MultiheadAttention( embed_dim=symbol_dim, num_heads=8, batch_first=True ) self.fusion_network = nn.Sequential( nn.Linear(hidden_dim + symbol_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, hidden_dim) ) # Concept activation predictor self.concept_predictor = nn.Sequential( nn.Linear(hidden_dim, hidden_dim // 2), nn.ReLU(), nn.Linear(hidden_dim // 2, 100), # Predict activation of top 100 concepts nn.Sigmoid() ) # Rule confidence predictor self.rule_confidence_predictor = nn.Sequential( nn.Linear(hidden_dim, hidden_dim // 2), nn.ReLU(), nn.Linear(hidden_dim // 2, 50), # Predict confidence for top 50 rules nn.Sigmoid() ) # Explanation generator self.explanation_encoder = nn.LSTM(symbol_dim, hidden_dim // 2, batch_first=True) self.explanation_decoder = nn.Sequential( nn.Linear(hidden_dim // 2, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, symbol_dim) ) def forward(self, neural_input: torch.Tensor, symbolic_concepts: torch.Tensor = None, concept_weights: torch.Tensor = None) -> Dict[str, torch.Tensor]: """Forward pass combining neural and symbolic processing""" # Extract neural features neural_features = self.feature_extractor(neural_input) # Get symbolic concept embeddings if symbolic_concepts is not None: concept_embeds = self.concept_embeddings(symbolic_concepts) # Apply attention between neural features and symbolic concepts if concept_weights is not None: # Weighted attention attended_concepts, attention_weights = self.fusion_attention( concept_embeds, concept_embeds, concept_embeds, key_padding_mask=(concept_weights == 0) ) else: attended_concepts, attention_weights = self.fusion_attention( concept_embeds, concept_embeds, concept_embeds ) # Pool attended concepts pooled_concepts = attended_concepts.mean(dim=1) # Fuse neural and symbolic representations fused_features = torch.cat([neural_features, pooled_concepts], dim=-1) integrated_features = self.fusion_network(fused_features) else: integrated_features = neural_features pooled_concepts = torch.zeros(neural_features.shape[0], self.symbol_dim, device=neural_features.device) # Predict concept activations concept_activations = self.concept_predictor(integrated_features) # Predict rule confidences rule_confidences = self.rule_confidence_predictor(integrated_features) # Generate explanation features explanation_input = pooled_concepts.unsqueeze(1) # Add sequence dimension explanation_features, _ = self.explanation_encoder(explanation_input) explanation_output = self.explanation_decoder(explanation_features.squeeze(1)) return { 'neural_features': neural_features, 'integrated_features': integrated_features, 'concept_activations': concept_activations, 'rule_confidences': rule_confidences, 'explanation_features': explanation_output, 'attention_weights': attention_weights if symbolic_concepts is not None else None } class SymbolicReasoner: """Symbolic reasoning engine""" def __init__(self, knowledge_base: SymbolicKnowledgeBase): self.kb = knowledge_base self.inference_history = [] self.logger = logging.getLogger(__name__) def forward_chaining(self, max_iterations: int = 100) -> List[InferenceStep]: """Perform forward chaining inference""" inference_steps = [] iteration = 0 while iteration < max_iterations: new_facts_derived = False iteration += 1 # Try to apply each rule for rule in self.kb.rules.values(): # Find variable bindings that satisfy the premise bindings = self._find_variable_bindings(rule.premise) for binding in bindings: # Check if premise is satisfied premise_satisfied, premise_confidence = self.kb.evaluate_premise( rule.premise, binding ) if premise_satisfied and premise_confidence > 0.5: # Derive conclusion conclusion = self._apply_binding(rule.conclusion, binding) # Check if conclusion is already known if not self._conclusion_exists(conclusion): # Add new fact new_fact = self._create_fact_from_conclusion( conclusion, premise_confidence * rule.confidence, rule.rule_id ) if new_fact: self.kb.add_fact(new_fact) # Record inference step step = InferenceStep( step_id=f"step_{len(inference_steps)}", rule_applied=rule.rule_id, premises_used=[rule.premise], conclusion_derived=conclusion, confidence=premise_confidence * rule.confidence, timestamp=datetime.now().isoformat() ) inference_steps.append(step) # Update rule usage rule.usage_count += 1 rule.success_count += 1 new_facts_derived = True # Stop if no new facts were derived if not new_facts_derived: break self.inference_history.extend(inference_steps) return inference_steps def _find_variable_bindings(self, premise: str) -> List[Dict[str, str]]: """Find possible variable bindings for a premise""" # Extract variables (uppercase single letters) variables = re.findall(r'\b[A-Z]\b', premise) if not variables: return [{}] # No variables to bind # Generate possible bindings from entities in KB bindings = [] entities_list = list(self.kb.entities) if len(variables) == 1: # Single variable var = variables[0] for entity in entities_list: bindings.append({var: entity}) else: # Multiple variables - simplified approach for entity in entities_list: binding = {} for var in variables: binding[var] = entity bindings.append(binding) return bindings[:100] # Limit to prevent explosion def _apply_binding(self, expression: str, binding: Dict[str, str]) -> str: """Apply variable binding to an expression""" result = expression for var, value in binding.items(): result = result.replace(var, value) return result def _conclusion_exists(self, conclusion: str) -> bool: """Check if a conclusion already exists as a fact""" # Parse conclusion to extract predicate and arguments match = re.match(r'(\w+)\((.*)\)', conclusion) if match: predicate = match.group(1) args_str = match.group(2) args = [arg.strip() for arg in args_str.split(",")] return self.kb._fact_exists(predicate, args) return False def _create_fact_from_conclusion(self, conclusion: str, confidence: float, source: str) -> Optional[SymbolicFact]: """Create a SymbolicFact from a conclusion string""" match = re.match(r'(\w+)\((.*)\)', conclusion) if match: predicate = match.group(1) args_str = match.group(2) args = [arg.strip() for arg in args_str.split(",")] fact_id = f"derived_{len(self.kb.facts)}" return SymbolicFact( fact_id=fact_id, predicate=predicate, arguments=args, truth_value=True, confidence=confidence, source=source, timestamp=datetime.now().isoformat(), metadata={'derived': True} ) return None class NeuroSymbolicCyberAI: """Complete Neuro-Symbolic AI system for cybersecurity""" def __init__(self, input_dim: int = 100, database_path: str = "neurosymbolic.db"): self.input_dim = input_dim self.database_path = database_path self.logger = logging.getLogger(__name__) # Initialize components self.knowledge_base = SymbolicKnowledgeBase() self.symbolic_reasoner = SymbolicReasoner(self.knowledge_base) self.neural_integrator = NeuralSymbolicIntegrator(input_dim) # Device setup self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") self.neural_integrator.to(self.device) # Training setup self.optimizer = torch.optim.Adam(self.neural_integrator.parameters(), lr=1e-4) # Concept mapping self.concept_to_idx = {} self.idx_to_concept = {} self._build_concept_mapping() # Initialize database self._init_database() def _build_concept_mapping(self): """Build mapping between concepts and indices""" concepts = [ # Network concepts 'external_connection', 'port_scan', 'large_data_transfer', 'network_activity', 'suspicious_activity', 'encrypted_communication', 'c2_domain', # System concepts 'unknown_process', 'file_modification', 'system_file', 'privileged_account', 'admin_account', 'failed_login', 'multiple_failed_logins', # Security events 'potential_intrusion', 'reconnaissance', 'potential_exfiltration', 'suspicious_process', 'potential_malware', 'malware_communication', 'suspicious_access', 'brute_force_attempt', 'insider_threat', # Attack stages 'initial_compromise', 'lateral_movement', 'credential_theft', 'vulnerability_exploit', 'mission_completion', 'data_access', # Response actions 'alert_soc', 'block_traffic', 'lock_account' ] for i, concept in enumerate(concepts): self.concept_to_idx[concept] = i self.idx_to_concept[i] = concept def _init_database(self): """Initialize SQLite database""" with sqlite3.connect(self.database_path) as conn: conn.execute(""" CREATE TABLE IF NOT EXISTS inference_sessions ( id INTEGER PRIMARY KEY AUTOINCREMENT, session_id TEXT NOT NULL, neural_input BLOB, symbolic_facts TEXT, inference_steps TEXT, conclusions TEXT, explanation TEXT, confidence_score REAL, created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP ) """) conn.execute(""" CREATE TABLE IF NOT EXISTS rule_performance ( id INTEGER PRIMARY KEY AUTOINCREMENT, rule_id TEXT NOT NULL, usage_count INTEGER DEFAULT 0, success_count INTEGER DEFAULT 0, avg_confidence REAL DEFAULT 0.0, last_used TIMESTAMP, created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP ) """) conn.execute(""" CREATE TABLE IF NOT EXISTS concept_activations ( id INTEGER PRIMARY KEY AUTOINCREMENT, session_id TEXT NOT NULL, concept_name TEXT NOT NULL, activation_score REAL NOT NULL, neural_confidence REAL, symbolic_confidence REAL, created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP ) """) def add_observations(self, observations: List[Dict[str, Any]]): """Add observed facts to the knowledge base""" for obs in observations: fact = SymbolicFact( fact_id=f"obs_{len(self.knowledge_base.facts)}", predicate=obs['predicate'], arguments=obs['arguments'], truth_value=obs.get('truth_value', True), confidence=obs.get('confidence', 1.0), source="observation", timestamp=datetime.now().isoformat(), metadata=obs.get('metadata', {}) ) self.knowledge_base.add_fact(fact) def analyze_with_explanation(self, neural_input: np.ndarray, observations: List[Dict[str, Any]] = None) -> Dict[str, Any]: """Perform neuro-symbolic analysis with detailed explanation""" session_id = f"session_{datetime.now().strftime('%Y%m%d_%H%M%S_%f')}" # Add new observations if observations: self.add_observations(observations) # Neural processing neural_tensor = torch.FloatTensor(neural_input).unsqueeze(0).to(self.device) # Extract symbolic concepts from current facts active_concepts = [] for fact in self.knowledge_base.facts.values(): if fact.predicate in self.concept_to_idx: active_concepts.append(self.concept_to_idx[fact.predicate]) concept_tensor = torch.LongTensor(active_concepts).to(self.device) if active_concepts else None concept_weights = torch.ones(len(active_concepts)).to(self.device) if active_concepts else None if concept_tensor is not None: concept_tensor = concept_tensor.unsqueeze(0) concept_weights = concept_weights.unsqueeze(0) # Forward pass through neural integrator self.neural_integrator.eval() with torch.no_grad(): neural_output = self.neural_integrator( neural_tensor, concept_tensor, concept_weights ) # Symbolic reasoning inference_steps = self.symbolic_reasoner.forward_chaining() # Extract results concept_activations = neural_output['concept_activations'].cpu().numpy()[0] rule_confidences = neural_output['rule_confidences'].cpu().numpy()[0] # Get top activated concepts top_concepts = [] for i, activation in enumerate(concept_activations): if i < len(self.idx_to_concept) and activation > 0.1: top_concepts.append({ 'concept': self.idx_to_concept[i], 'activation': float(activation), 'source': 'neural' }) top_concepts.sort(key=lambda x: x['activation'], reverse=True) # Get conclusions from symbolic reasoning conclusions = [] for step in inference_steps: conclusions.append({ 'conclusion': step.conclusion_derived, 'rule_used': step.rule_applied, 'confidence': step.confidence, 'source': 'symbolic' }) # Generate explanation explanation = self._generate_explanation( neural_output, inference_steps, top_concepts, conclusions ) # Calculate overall confidence neural_confidence = float(np.mean(concept_activations[concept_activations > 0.1])) if len(concept_activations[concept_activations > 0.1]) > 0 else 0.0 symbolic_confidence = float(np.mean([step.confidence for step in inference_steps])) if inference_steps else 0.0 overall_confidence = (neural_confidence + symbolic_confidence) / 2 # Prepare results analysis_result = { 'session_id': session_id, 'timestamp': datetime.now().isoformat(), 'neural_analysis': { 'top_concepts': top_concepts[:10], 'confidence': neural_confidence }, 'symbolic_analysis': { 'inference_steps': len(inference_steps), 'conclusions': conclusions, 'confidence': symbolic_confidence }, 'integrated_analysis': { 'overall_confidence': overall_confidence, 'explanation': explanation, 'recommendations': self._generate_recommendations(conclusions, top_concepts) }, 'metadata': { 'facts_in_kb': len(self.knowledge_base.facts), 'rules_applied': len(set(step.rule_applied for step in inference_steps)), 'processing_time': 'simulated' } } # Save to database self._save_analysis(session_id, analysis_result, neural_input) return analysis_result def _generate_explanation(self, neural_output: Dict[str, torch.Tensor], inference_steps: List[InferenceStep], top_concepts: List[Dict[str, Any]], conclusions: List[Dict[str, Any]]) -> str: """Generate human-readable explanation""" explanation_parts = [] # Neural analysis explanation if top_concepts: explanation_parts.append("Neural Analysis:") explanation_parts.append(f" The neural network identified {len(top_concepts)} relevant cybersecurity concepts:") for concept in top_concepts[:5]: explanation_parts.append(f" - {concept['concept']}: {concept['activation']:.2f} confidence") explanation_parts.append("") # Symbolic reasoning explanation if inference_steps: explanation_parts.append("Symbolic Reasoning:") explanation_parts.append(f" Applied {len(inference_steps)} inference rules to derive new knowledge:") for step in inference_steps[:3]: rule = self.knowledge_base.rules[step.rule_applied] explanation_parts.append(f" - Applied rule {step.rule_applied}: {rule.premise} → {rule.conclusion}") explanation_parts.append(f" Derived: {step.conclusion_derived} (confidence: {step.confidence:.2f})") if len(inference_steps) > 3: explanation_parts.append(f" ... and {len(inference_steps) - 3} more inferences") explanation_parts.append("") # Conclusions explanation if conclusions: explanation_parts.append("Key Findings:") for conclusion in conclusions[:3]: explanation_parts.append(f" - {conclusion['conclusion']} (confidence: {conclusion['confidence']:.2f})") explanation_parts.append("") # Integration explanation explanation_parts.append("Integration:") explanation_parts.append(" The neuro-symbolic system combined neural pattern recognition") explanation_parts.append(" with symbolic logical reasoning to provide explainable conclusions") explanation_parts.append(" based on both learned patterns and expert-defined rules.") return "\n".join(explanation_parts) def _generate_recommendations(self, conclusions: List[Dict[str, Any]], top_concepts: List[Dict[str, Any]]) -> List[str]: """Generate actionable recommendations""" recommendations = [] # Based on conclusions threat_indicators = [c for c in conclusions if 'potential' in c['conclusion'] or 'suspicious' in c['conclusion']] if threat_indicators: recommendations.append("🚨 Potential security threats detected - immediate investigation recommended") for threat in threat_indicators[:3]: if 'intrusion' in threat['conclusion']: recommendations.append(" - Implement network isolation measures") recommendations.append(" - Review network access logs") elif 'malware' in threat['conclusion']: recommendations.append(" - Perform full system scan") recommendations.append(" - Isolate affected systems") elif 'exfiltration' in threat['conclusion']: recommendations.append(" - Monitor outbound network traffic") recommendations.append(" - Review data access patterns") # Based on neural concepts high_risk_concepts = [c for c in top_concepts if c['activation'] > 0.7] if high_risk_concepts: recommendations.append("šŸ” High-confidence neural detections require attention:") for concept in high_risk_concepts[:2]: recommendations.append(f" - Investigate {concept['concept']} (confidence: {concept['activation']:.2f})") # General recommendations if not recommendations: recommendations.append("āœ… No immediate threats detected") recommendations.append(" - Continue normal monitoring") recommendations.append(" - Regular security updates recommended") return recommendations def _save_analysis(self, session_id: str, analysis_result: Dict[str, Any], neural_input: np.ndarray): """Save analysis results to database""" with sqlite3.connect(self.database_path) as conn: # Save main analysis conn.execute( """INSERT INTO inference_sessions (session_id, neural_input, symbolic_facts, inference_steps, conclusions, explanation, confidence_score) VALUES (?, ?, ?, ?, ?, ?, ?)""", (session_id, pickle.dumps(neural_input), json.dumps([asdict(fact) for fact in self.knowledge_base.facts.values()]), json.dumps(analysis_result['symbolic_analysis']), json.dumps(analysis_result['symbolic_analysis']['conclusions']), analysis_result['integrated_analysis']['explanation'], analysis_result['integrated_analysis']['overall_confidence']) ) # Save concept activations for concept in analysis_result['neural_analysis']['top_concepts']: conn.execute( """INSERT INTO concept_activations (session_id, concept_name, activation_score, neural_confidence) VALUES (?, ?, ?, ?)""", (session_id, concept['concept'], concept['activation'], analysis_result['neural_analysis']['confidence']) ) def get_knowledge_base_summary(self) -> Dict[str, Any]: """Get summary of current knowledge base""" # Fact statistics fact_stats = { 'total_facts': len(self.knowledge_base.facts), 'predicates': len(self.knowledge_base.predicates), 'entities': len(self.knowledge_base.entities) } # Rule statistics rule_stats = { 'total_rules': len(self.knowledge_base.rules), 'rule_usage': {rule.rule_id: rule.usage_count for rule in self.knowledge_base.rules.values()}, 'rule_success': {rule.rule_id: rule.success_count for rule in self.knowledge_base.rules.values()} } # Recent inference history recent_inferences = self.symbolic_reasoner.inference_history[-10:] return { 'fact_statistics': fact_stats, 'rule_statistics': rule_stats, 'recent_inferences': [asdict(inf) for inf in recent_inferences], 'predicates': list(self.knowledge_base.predicates), 'entities': list(self.knowledge_base.entities) } # Example usage and testing if __name__ == "__main__": print("šŸ§ šŸ”— Neuro-Symbolic AI for Cybersecurity Testing:") print("=" * 60) # Initialize the system neurosymbolic_ai = NeuroSymbolicCyberAI(input_dim=50) print(f" Initialized neuro-symbolic system") print(f" Knowledge base: {len(neurosymbolic_ai.knowledge_base.facts)} facts, {len(neurosymbolic_ai.knowledge_base.rules)} rules") # Test knowledge base summary print("\nšŸ“š Knowledge base summary:") kb_summary = neurosymbolic_ai.get_knowledge_base_summary() print(f" Total facts: {kb_summary['fact_statistics']['total_facts']}") print(f" Total rules: {kb_summary['rule_statistics']['total_rules']}") print(f" Predicates: {kb_summary['fact_statistics']['predicates']}") print(f" Sample predicates: {list(kb_summary['predicates'])[:5]}") # Add sample observations print("\nšŸ” Adding sample cybersecurity observations...") sample_observations = [ { 'predicate': 'external_connection', 'arguments': ['host_001'], 'confidence': 0.9, 'metadata': {'ip': '192.168.1.10', 'dest': '8.8.8.8'} }, { 'predicate': 'suspicious_activity', 'arguments': ['host_001'], 'confidence': 0.7, 'metadata': {'activity_type': 'unusual_traffic'} }, { 'predicate': 'port_scan', 'arguments': ['host_002'], 'confidence': 0.8, 'metadata': {'ports_scanned': [22, 80, 443]} }, { 'predicate': 'failed_login', 'arguments': ['host_002'], 'confidence': 0.9, 'metadata': {'attempts': 5, 'user': 'admin'} }, { 'predicate': 'large_data_transfer', 'arguments': ['host_003'], 'confidence': 0.6, 'metadata': {'bytes_transferred': 10485760} } ] neurosymbolic_ai.add_observations(sample_observations) print(f" Added {len(sample_observations)} observations") # Generate sample neural input print("\n🧠 Generating sample neural input...") neural_input = np.random.rand(50) neural_input[:10] = np.array([0.8, 0.3, 0.9, 0.7, 0.2, 0.6, 0.4, 0.8, 0.1, 0.5]) # Simulate network features # Perform neuro-symbolic analysis print("\nšŸ”„ Performing neuro-symbolic analysis...") analysis_result = neurosymbolic_ai.analyze_with_explanation(neural_input) # Display results print(f"\nšŸ“Š Analysis Results (Session: {analysis_result['session_id']}):") print(f" Overall confidence: {analysis_result['integrated_analysis']['overall_confidence']:.3f}") print(f"\n🧠 Neural Analysis:") print(f" Confidence: {analysis_result['neural_analysis']['confidence']:.3f}") print(f" Top concepts detected:") for concept in analysis_result['neural_analysis']['top_concepts'][:5]: print(f" - {concept['concept']}: {concept['activation']:.3f}") print(f"\nšŸ”— Symbolic Analysis:") print(f" Inference steps: {analysis_result['symbolic_analysis']['inference_steps']}") print(f" Confidence: {analysis_result['symbolic_analysis']['confidence']:.3f}") print(f" Conclusions derived:") for conclusion in analysis_result['symbolic_analysis']['conclusions'][:3]: print(f" - {conclusion['conclusion']} (conf: {conclusion['confidence']:.3f})") print(f"\nšŸ’” Recommendations:") for rec in analysis_result['integrated_analysis']['recommendations'][:5]: print(f" {rec}") print(f"\nšŸ“ Explanation Preview:") explanation_lines = analysis_result['integrated_analysis']['explanation'].split('\n')[:10] for line in explanation_lines: print(f" {line}") if len(analysis_result['integrated_analysis']['explanation'].split('\n')) > 10: print(f" ... (full explanation available)") # Test another analysis with different observations print("\nšŸ”„ Testing with different scenario...") additional_observations = [ { 'predicate': 'unknown_process', 'arguments': ['host_004'], 'confidence': 0.8, 'metadata': {'process_name': 'suspicious.exe'} }, { 'predicate': 'network_activity', 'arguments': ['host_004'], 'confidence': 0.9, 'metadata': {'connections': 15} }, { 'predicate': 'off_hours_access', 'arguments': ['user_admin'], 'confidence': 0.7, 'metadata': {'time': '02:30:00'} }, { 'predicate': 'privileged_account', 'arguments': ['user_admin'], 'confidence': 1.0, 'metadata': {'role': 'administrator'} } ] analysis_result_2 = neurosymbolic_ai.analyze_with_explanation( neural_input * 0.8, additional_observations ) print(f" New conclusions:") for conclusion in analysis_result_2['symbolic_analysis']['conclusions'][:3]: print(f" - {conclusion['conclusion']} (conf: {conclusion['confidence']:.3f})") # Final knowledge base summary print("\nšŸ“š Final knowledge base status:") final_summary = neurosymbolic_ai.get_knowledge_base_summary() print(f" Total facts: {final_summary['fact_statistics']['total_facts']}") print(f" Recent inferences: {len(final_summary['recent_inferences'])}") if final_summary['recent_inferences']: print(f" Last inference: {final_summary['recent_inferences'][-1]['conclusion_derived']}") print("\nāœ… Neuro-Symbolic AI system implemented and tested") print(f" Database: {neurosymbolic_ai.database_path}") print(f" Concept vocabulary: {len(neurosymbolic_ai.concept_to_idx)} concepts") print(f" Architecture: Neural-Symbolic Integration with Attention-based Fusion") print(f" Capabilities: Explainable AI with logical reasoning and neural pattern recognition")