File size: 27,980 Bytes
4577f71 df3c5b3 4577f71 df3c5b3 4577f71 df3c5b3 058c80a 4577f71 df3c5b3 4577f71 fe70438 df3c5b3 0a1b314 7cdc7d0 cc5f321 df3c5b3 7cdc7d0 df3c5b3 7cdc7d0 cc5f321 7cdc7d0 df3c5b3 4577f71 cc5f321 4577f71 cc5f321 fe70438 df3c5b3 0a1b314 df3c5b3 5ae215a df3c5b3 5ae215a df3c5b3 0a1b314 df3c5b3 5ae215a df3c5b3 0a1b314 df3c5b3 5ae215a df3c5b3 0a1b314 df3c5b3 5ae215a df3c5b3 4577f71 cc5f321 4577f71 fe70438 4577f71 fe70438 4577f71 cc5f321 fe70438 4577f71 fe70438 4577f71 0a1b314 4577f71 0a1b314 4577f71 fe70438 4577f71 cc5f321 fe70438 b462f85 100c2eb fe70438 100c2eb fe70438 100c2eb f6ebc4f d08fbc6 cc5f321 fe70438 cc5f321 fe70438 cc5f321 fe70438 cc5f321 fe70438 cc5f321 fe70438 cc5f321 fe70438 cc5f321 fe70438 cc5f321 fe70438 cc5f321 fe70438 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 |
"""This section describes unitxt operators for structured data.
These operators are specialized in handling structured data like tables.
For tables, expected input format is:
{
"header": ["col1", "col2"],
"rows": [["row11", "row12"], ["row21", "row22"], ["row31", "row32"]]
}
For triples, expected input format is:
[[ "subject1", "relation1", "object1" ], [ "subject1", "relation2", "object2"]]
For key-value pairs, expected input format is:
{"key1": "value1", "key2": value2, "key3": "value3"}
------------------------
"""
import json
import random
from abc import ABC, abstractmethod
from typing import (
Any,
Dict,
List,
Optional,
)
import pandas as pd
from .augmentors import TypeDependentAugmentor
from .dict_utils import dict_get
from .operators import FieldOperator, InstanceOperator
from .random_utils import new_random_generator
from .serializers import TableSerializer
from .types import Table
from .utils import recursive_copy
def shuffle_columns(table: Table, seed=0) -> Table:
# extract header & rows from the dictionary
header = table.get("header", [])
rows = table.get("rows", [])
# shuffle the indices first
indices = list(range(len(header)))
random_generator = new_random_generator({"table": table, "seed": seed})
random_generator.shuffle(indices)
# shuffle the header & rows based on that indices
shuffled_header = [header[i] for i in indices]
shuffled_rows = [[row[i] for i in indices] for row in rows]
table["header"] = shuffled_header
table["rows"] = shuffled_rows
return table
def shuffle_rows(table: Table, seed=0) -> Table:
# extract header & rows from the dictionary
rows = table.get("rows", [])
# shuffle rows
random_generator = new_random_generator({"table": table, "seed": seed})
random_generator.shuffle(rows)
table["rows"] = rows
return table
class SerializeTable(ABC, TableSerializer):
"""TableSerializer converts a given table into a flat sequence with special symbols.
Output format varies depending on the chosen serializer. This abstract class defines structure of a typical table serializer that any concrete implementation should follow.
"""
seed: int = 0
shuffle_rows: bool = False
shuffle_columns: bool = False
def serialize(self, value: Table, instance: Dict[str, Any]) -> str:
value = recursive_copy(value)
if self.shuffle_columns:
value = shuffle_columns(table=value, seed=self.seed)
if self.shuffle_rows:
value = shuffle_rows(table=value, seed=self.seed)
return self.serialize_table(value)
# main method to serialize a table
@abstractmethod
def serialize_table(self, table_content: Dict) -> str:
pass
# method to process table header
def process_header(self, header: List):
pass
# method to process a table row
def process_row(self, row: List, row_index: int):
pass
# Concrete classes implementing table serializers
class SerializeTableAsIndexedRowMajor(SerializeTable):
"""Indexed Row Major Table Serializer.
Commonly used row major serialization format.
Format: col : col1 | col2 | col 3 row 1 : val1 | val2 | val3 | val4 row 2 : val1 | ...
"""
# main method that processes a table
# table_content must be in the presribed input format
def serialize_table(self, table_content: Dict) -> str:
# Extract headers and rows from the dictionary
header = table_content.get("header", [])
rows = table_content.get("rows", [])
assert header and rows, "Incorrect input table format"
# Process table header first
serialized_tbl_str = self.process_header(header) + " "
# Process rows sequentially starting from row 1
for i, row in enumerate(rows, start=1):
serialized_tbl_str += self.process_row(row, row_index=i) + " "
# return serialized table as a string
return serialized_tbl_str.strip()
# serialize header into a string containing the list of column names separated by '|' symbol
def process_header(self, header: List):
return "col : " + " | ".join(header)
# serialize a table row into a string containing the list of cell values separated by '|'
def process_row(self, row: List, row_index: int):
serialized_row_str = ""
row_cell_values = [
str(value) if isinstance(value, (int, float)) else value for value in row
]
serialized_row_str += " | ".join(row_cell_values)
return f"row {row_index} : {serialized_row_str}"
class SerializeTableAsMarkdown(SerializeTable):
"""Markdown Table Serializer.
Markdown table format is used in GitHub code primarily.
Format:
|col1|col2|col3|
|---|---|---|
|A|4|1|
|I|2|1|
...
"""
# main method that serializes a table.
# table_content must be in the presribed input format.
def serialize_table(self, table_content: Dict) -> str:
# Extract headers and rows from the dictionary
header = table_content.get("header", [])
rows = table_content.get("rows", [])
assert header and rows, "Incorrect input table format"
# Process table header first
serialized_tbl_str = self.process_header(header)
# Process rows sequentially starting from row 1
for i, row in enumerate(rows, start=1):
serialized_tbl_str += self.process_row(row, row_index=i)
# return serialized table as a string
return serialized_tbl_str.strip()
# serialize header into a string containing the list of column names
def process_header(self, header: List):
header_str = "|{}|\n".format("|".join(header))
header_str += "|{}|\n".format("|".join(["---"] * len(header)))
return header_str
# serialize a table row into a string containing the list of cell values
def process_row(self, row: List, row_index: int):
row_str = ""
row_str += "|{}|\n".format("|".join(str(cell) for cell in row))
return row_str
class SerializeTableAsDFLoader(SerializeTable):
"""DFLoader Table Serializer.
Pandas dataframe based code snippet format serializer.
Format(Sample):
pd.DataFrame({
"name" : ["Alex", "Diana", "Donald"],
"age" : [26, 34, 39]
},
index=[0,1,2])
"""
# main method that serializes a table.
# table_content must be in the presribed input format.
def serialize_table(self, table_content: Dict) -> str:
# Extract headers and rows from the dictionary
header = table_content.get("header", [])
rows = table_content.get("rows", [])
assert header and rows, "Incorrect input table format"
# Fix duplicate columns, ensuring the first occurrence has no suffix
header = [
f"{col}_{header[:i].count(col)}" if header[:i].count(col) > 0 else col
for i, col in enumerate(header)
]
# Create a pandas DataFrame
df = pd.DataFrame(rows, columns=header)
# Generate output string in the desired format
data_dict = df.to_dict(orient="list")
return (
"pd.DataFrame({\n"
+ json.dumps(data_dict)
+ "},\nindex="
+ str(list(range(len(rows))))
+ ")"
)
class SerializeTableAsJson(SerializeTable):
"""JSON Table Serializer.
Json format based serializer.
Format(Sample):
{
"0":{"name":"Alex","age":26},
"1":{"name":"Diana","age":34},
"2":{"name":"Donald","age":39}
}
"""
# main method that serializes a table.
# table_content must be in the presribed input format.
def serialize_table(self, table_content: Dict) -> str:
# Extract headers and rows from the dictionary
header = table_content.get("header", [])
rows = table_content.get("rows", [])
assert header and rows, "Incorrect input table format"
# Generate output dictionary
output_dict = {}
for i, row in enumerate(rows):
output_dict[i] = {header[j]: value for j, value in enumerate(row)}
# Convert dictionary to JSON string
return json.dumps(output_dict)
class SerializeTableAsHTML(SerializeTable):
"""HTML Table Serializer.
HTML table format used for rendering tables in web pages.
Format(Sample):
<table>
<thead>
<tr><th>name</th><th>age</th><th>sex</th></tr>
</thead>
<tbody>
<tr><td>Alice</td><td>26</td><td>F</td></tr>
<tr><td>Raj</td><td>34</td><td>M</td></tr>
</tbody>
</table>
"""
# main method that serializes a table.
# table_content must be in the prescribed input format.
def serialize_table(self, table_content: Dict) -> str:
# Extract headers and rows from the dictionary
header = table_content.get("header", [])
rows = table_content.get("rows", [])
assert header and rows, "Incorrect input table format"
# Build the HTML table structure
serialized_tbl_str = "<table>\n"
serialized_tbl_str += self.process_header(header) + "\n"
serialized_tbl_str += self.process_rows(rows) + "\n"
serialized_tbl_str += "</table>"
return serialized_tbl_str.strip()
# serialize the header into an HTML <thead> section
def process_header(self, header: List) -> str:
header_html = " <thead>\n <tr>"
for col in header:
header_html += f"<th>{col}</th>"
header_html += "</tr>\n </thead>"
return header_html
# serialize the rows into an HTML <tbody> section
def process_rows(self, rows: List[List]) -> str:
rows_html = " <tbody>"
for row in rows:
rows_html += "\n <tr>"
for cell in row:
rows_html += f"<td>{cell}</td>"
rows_html += "</tr>"
rows_html += "\n </tbody>"
return rows_html
class SerializeTableAsConcatenation(SerializeTable):
"""Concat Serializer.
Concat all table content to one string of header and rows.
Format(Sample):
name age Alex 26 Diana 34
"""
def serialize_table(self, table_content: Dict) -> str:
# Extract headers and rows from the dictionary
header = table_content["header"]
rows = table_content["rows"]
assert header and rows, "Incorrect input table format"
# Process table header first
serialized_tbl_str = " ".join([str(i) for i in header])
# Process rows sequentially starting from row 1
for row in rows:
serialized_tbl_str += " " + " ".join([str(i) for i in row])
# return serialized table as a string
return serialized_tbl_str.strip()
# truncate cell value to maximum allowed length
def truncate_cell(cell_value, max_len):
if cell_value is None:
return None
if isinstance(cell_value, int) or isinstance(cell_value, float):
return None
if cell_value.strip() == "":
return None
if len(cell_value) > max_len:
return cell_value[:max_len]
return None
class TruncateTableCells(InstanceOperator):
"""Limit the maximum length of cell values in a table to reduce the overall length.
Args:
max_length (int) - maximum allowed length of cell values
For tasks that produce a cell value as answer, truncating a cell value should be replicated
with truncating the corresponding answer as well. This has been addressed in the implementation.
"""
max_length: int = 15
table: str = None
text_output: Optional[str] = None
def process(
self, instance: Dict[str, Any], stream_name: Optional[str] = None
) -> Dict[str, Any]:
table = dict_get(instance, self.table)
answers = []
if self.text_output is not None:
answers = dict_get(instance, self.text_output)
self.truncate_table(table_content=table, answers=answers)
return instance
# truncate table cells
def truncate_table(self, table_content: Dict, answers: Optional[List]):
cell_mapping = {}
# One row at a time
for row in table_content.get("rows", []):
for i, cell in enumerate(row):
truncated_cell = truncate_cell(cell, self.max_length)
if truncated_cell is not None:
cell_mapping[cell] = truncated_cell
row[i] = truncated_cell
# Update values in answer list to truncated values
if answers is not None:
for i, case in enumerate(answers):
answers[i] = cell_mapping.get(case, case)
class TruncateTableRows(FieldOperator):
"""Limits table rows to specified limit by removing excess rows via random selection.
Args:
rows_to_keep (int) - number of rows to keep.
"""
rows_to_keep: int = 10
def process_value(self, table: Any) -> Any:
return self.truncate_table_rows(table_content=table)
def truncate_table_rows(self, table_content: Dict):
# Get rows from table
rows = table_content.get("rows", [])
num_rows = len(rows)
# if number of rows are anyway lesser, return.
if num_rows <= self.rows_to_keep:
return table_content
# calculate number of rows to delete, delete them
rows_to_delete = num_rows - self.rows_to_keep
# Randomly select rows to be deleted
deleted_rows_indices = random.sample(range(len(rows)), rows_to_delete)
remaining_rows = [
row for i, row in enumerate(rows) if i not in deleted_rows_indices
]
table_content["rows"] = remaining_rows
return table_content
class SerializeTableRowAsText(InstanceOperator):
"""Serializes a table row as text.
Args:
fields (str) - list of fields to be included in serialization.
to_field (str) - serialized text field name.
max_cell_length (int) - limits cell length to be considered, optional.
"""
fields: str
to_field: str
max_cell_length: Optional[int] = None
def process(
self, instance: Dict[str, Any], stream_name: Optional[str] = None
) -> Dict[str, Any]:
linearized_str = ""
for field in self.fields:
value = dict_get(instance, field)
if self.max_cell_length is not None:
truncated_value = truncate_cell(value, self.max_cell_length)
if truncated_value is not None:
value = truncated_value
linearized_str = linearized_str + field + " is " + str(value) + ", "
instance[self.to_field] = linearized_str
return instance
class SerializeTableRowAsList(InstanceOperator):
"""Serializes a table row as list.
Args:
fields (str) - list of fields to be included in serialization.
to_field (str) - serialized text field name.
max_cell_length (int) - limits cell length to be considered, optional.
"""
fields: str
to_field: str
max_cell_length: Optional[int] = None
def process(
self, instance: Dict[str, Any], stream_name: Optional[str] = None
) -> Dict[str, Any]:
linearized_str = ""
for field in self.fields:
value = dict_get(instance, field)
if self.max_cell_length is not None:
truncated_value = truncate_cell(value, self.max_cell_length)
if truncated_value is not None:
value = truncated_value
linearized_str = linearized_str + field + ": " + str(value) + ", "
instance[self.to_field] = linearized_str
return instance
class SerializeTriples(FieldOperator):
"""Serializes triples into a flat sequence.
Sample input in expected format:
[[ "First Clearing", "LOCATION", "On NYS 52 1 Mi. Youngsville" ], [ "On NYS 52 1 Mi. Youngsville", "CITY_OR_TOWN", "Callicoon, New York"]]
Sample output:
First Clearing : LOCATION : On NYS 52 1 Mi. Youngsville | On NYS 52 1 Mi. Youngsville : CITY_OR_TOWN : Callicoon, New York
"""
def process_value(self, tripleset: Any) -> Any:
return self.serialize_triples(tripleset)
def serialize_triples(self, tripleset) -> str:
return " | ".join(
f"{subj} : {rel.lower()} : {obj}" for subj, rel, obj in tripleset
)
class SerializeKeyValPairs(FieldOperator):
"""Serializes key, value pairs into a flat sequence.
Sample input in expected format: {"name": "Alex", "age": 31, "sex": "M"}
Sample output: name is Alex, age is 31, sex is M
"""
def process_value(self, kvpairs: Any) -> Any:
return self.serialize_kvpairs(kvpairs)
def serialize_kvpairs(self, kvpairs) -> str:
serialized_str = ""
for key, value in kvpairs.items():
serialized_str += f"{key} is {value}, "
# Remove the trailing comma and space then return
return serialized_str[:-2]
class ListToKeyValPairs(InstanceOperator):
"""Maps list of keys and values into key:value pairs.
Sample input in expected format: {"keys": ["name", "age", "sex"], "values": ["Alex", 31, "M"]}
Sample output: {"name": "Alex", "age": 31, "sex": "M"}
"""
fields: List[str]
to_field: str
def process(
self, instance: Dict[str, Any], stream_name: Optional[str] = None
) -> Dict[str, Any]:
keylist = dict_get(instance, self.fields[0])
valuelist = dict_get(instance, self.fields[1])
output_dict = {}
for key, value in zip(keylist, valuelist):
output_dict[key] = value
instance[self.to_field] = output_dict
return instance
class ConvertTableColNamesToSequential(FieldOperator):
"""Replaces actual table column names with static sequential names like col_0, col_1,...
Sample input:
{
"header": ["name", "age"],
"rows": [["Alex", 21], ["Donald", 34]]
}
Sample output:
{
"header": ["col_0", "col_1"],
"rows": [["Alex", 21], ["Donald", 34]]
}
"""
def process_value(self, table: Any) -> Any:
table_input = recursive_copy(table)
return self.replace_header(table_content=table_input)
# replaces header with sequential column names
def replace_header(self, table_content: Dict) -> str:
# Extract header from the dictionary
header = table_content.get("header", [])
assert header, "Input table missing header"
new_header = ["col_" + str(i) for i in range(len(header))]
table_content["header"] = new_header
return table_content
class ShuffleTableRows(TypeDependentAugmentor):
"""Shuffles the input table rows randomly.
Sample Input:
{
"header": ["name", "age"],
"rows": [["Alex", 26], ["Raj", 34], ["Donald", 39]],
}
Sample Output:
{
"header": ["name", "age"],
"rows": [["Donald", 39], ["Raj", 34], ["Alex", 26]],
}
"""
augmented_type = Table
seed = 0
def process_value(self, table: Any) -> Any:
table_input = recursive_copy(table)
return shuffle_rows(table_input, self.seed)
class ShuffleTableColumns(TypeDependentAugmentor):
"""Shuffles the table columns randomly.
Sample Input:
{
"header": ["name", "age"],
"rows": [["Alex", 26], ["Raj", 34], ["Donald", 39]],
}
Sample Output:
{
"header": ["age", "name"],
"rows": [[26, "Alex"], [34, "Raj"], [39, "Donald"]],
}
"""
augmented_type = Table
seed = 0
def process_value(self, table: Any) -> Any:
table_input = recursive_copy(table)
return shuffle_columns(table_input, self.seed)
class LoadJson(FieldOperator):
failure_value: Any = None
allow_failure: bool = False
def process_value(self, value: str) -> Any:
if self.allow_failure:
try:
return json.loads(value)
except json.JSONDecodeError:
return self.failure_value
else:
return json.loads(value)
class DumpJson(FieldOperator):
def process_value(self, value: str) -> str:
return json.dumps(value)
class MapHTMLTableToJSON(FieldOperator):
"""Converts HTML table format to the basic one (JSON).
JSON format
{
"header": ["col1", "col2"],
"rows": [["row11", "row12"], ["row21", "row22"], ["row31", "row32"]]
}
"""
_requirements_list = ["bs4"]
def process_value(self, table: Any) -> Any:
return self.convert_to_json(table_content=table)
def convert_to_json(self, table_content: str) -> Dict:
from bs4 import BeautifulSoup
soup = BeautifulSoup(table_content, "html.parser")
# Extract header
header = []
header_cells = soup.find("thead").find_all("th")
for cell in header_cells:
header.append(cell.get_text())
# Extract rows
rows = []
for row in soup.find("tbody").find_all("tr"):
row_data = []
for cell in row.find_all("td"):
row_data.append(cell.get_text())
rows.append(row_data)
# return dictionary
return {"header": header, "rows": rows}
class MapTableListsToStdTableJSON(FieldOperator):
"""Converts lists table format to the basic one (JSON).
JSON format
{
"header": ["col1", "col2"],
"rows": [["row11", "row12"], ["row21", "row22"], ["row31", "row32"]]
}
"""
def process_value(self, table: Any) -> Any:
return self.map_tablelists_to_stdtablejson_util(table_content=table)
def map_tablelists_to_stdtablejson_util(self, table_content: str) -> Dict:
return {"header": table_content[0], "rows": table_content[1:]}
class ConstructTableFromRowsCols(InstanceOperator):
"""Maps column and row field into single table field encompassing both header and rows.
field[0] = header string as List
field[1] = rows string as List[List]
field[2] = table caption string(optional)
"""
fields: List[str]
to_field: str
def process(
self, instance: Dict[str, Any], stream_name: Optional[str] = None
) -> Dict[str, Any]:
header = dict_get(instance, self.fields[0])
rows = dict_get(instance, self.fields[1])
if len(self.fields) >= 3:
caption = instance[self.fields[2]]
else:
caption = None
import ast
header_processed = ast.literal_eval(header)
rows_processed = ast.literal_eval(rows)
output_dict = {"header": header_processed, "rows": rows_processed}
if caption is not None:
output_dict["caption"] = caption
instance[self.to_field] = output_dict
return instance
class TransposeTable(TypeDependentAugmentor):
"""Transpose a table.
Sample Input:
{
"header": ["name", "age", "sex"],
"rows": [["Alice", 26, "F"], ["Raj", 34, "M"], ["Donald", 39, "M"]],
}
Sample Output:
{
"header": [" ", "0", "1", "2"],
"rows": [["name", "Alice", "Raj", "Donald"], ["age", 26, 34, 39], ["sex", "F", "M", "M"]],
}
"""
augmented_type = Table
def process_value(self, table: Any) -> Any:
return self.transpose_table(table)
def transpose_table(self, table: Dict) -> Dict:
# Extract the header and rows from the table object
header = table["header"]
rows = table["rows"]
# Transpose the table by converting rows as columns and vice versa
transposed_header = [" "] + [str(i) for i in range(len(rows))]
transposed_rows = [
[header[i]] + [row[i] for row in rows] for i in range(len(header))
]
return {"header": transposed_header, "rows": transposed_rows}
class DuplicateTableRows(TypeDependentAugmentor):
"""Duplicates specific rows of a table for the given number of times.
Args:
row_indices (List[int]) - rows to be duplicated
times(int) - how many times to duplicate
"""
augmented_type = Table
row_indices: List[int] = []
times: int = 1
def process_value(self, table: Any) -> Any:
# Extract the header and rows from the table
header = table["header"]
rows = table["rows"]
# Duplicate only the specified rows
duplicated_rows = []
for i, row in enumerate(rows):
if i in self.row_indices:
duplicated_rows.extend(
[row] * self.times
) # Duplicate the selected rows
else:
duplicated_rows.append(row) # Leave other rows unchanged
# Return the new table with selectively duplicated rows
return {"header": header, "rows": duplicated_rows}
class DuplicateTableColumns(TypeDependentAugmentor):
"""Duplicates specific columns of a table for the given number of times.
Args:
column_indices (List[int]) - columns to be duplicated
times(int) - how many times to duplicate
"""
augmented_type = Table
column_indices: List[int] = []
times: int = 1
def process_value(self, table: Any) -> Any:
# Extract the header and rows from the table
header = table["header"]
rows = table["rows"]
# Duplicate the specified columns in the header
duplicated_header = []
for i, col in enumerate(header):
if i in self.column_indices:
duplicated_header.extend([col] * self.times)
else:
duplicated_header.append(col)
# Duplicate the specified columns in each row
duplicated_rows = []
for row in rows:
new_row = []
for i, value in enumerate(row):
if i in self.column_indices:
new_row.extend([value] * self.times)
else:
new_row.append(value)
duplicated_rows.append(new_row)
# Return the new table with selectively duplicated columns
return {"header": duplicated_header, "rows": duplicated_rows}
class InsertEmptyTableRows(TypeDependentAugmentor):
"""Inserts empty rows in a table randomly for the given number of times.
Args:
times(int) - how many times to insert
"""
augmented_type = Table
times: int = 0
def process_value(self, table: Any) -> Any:
# Extract the header and rows from the table
header = table["header"]
rows = table["rows"]
# Insert empty rows at random positions
for _ in range(self.times):
empty_row = [""] * len(
header
) # Create an empty row with the same number of columns
insert_pos = random.randint(
0, len(rows)
) # Get a random position to insert the empty row created
rows.insert(insert_pos, empty_row)
# Return the modified table
return {"header": header, "rows": rows}
class MaskColumnsNames(TypeDependentAugmentor):
"""Mask the names of tables columns with dummies "Col1", "Col2" etc."""
augmented_type = Table
def process_value(self, table: Any) -> Any:
masked_header = ["Col" + str(ind + 1) for ind in range(len(table["header"]))]
return {"header": masked_header, "rows": table["rows"]}
class ShuffleColumnsNames(TypeDependentAugmentor):
"""Shuffle table columns names to be displayed in random order."""
augmented_type = Table
def process_value(self, table: Any) -> Any:
shuffled_header = table["header"]
random.shuffle(shuffled_header)
return {"header": shuffled_header, "rows": table["rows"]}
|