File size: 32,647 Bytes
c77cd1f
ccff8c6
b462f85
371536d
d321246
b462f85
d389578
1b7c63c
9d5b4c0
 
fe70438
ccff8c6
7cdc7d0
 
 
 
 
 
 
 
fe70438
7cdc7d0
d08fbc6
fe70438
dae2dfd
d08fbc6
 
dae2dfd
9d5b4c0
129744e
 
 
 
9d5b4c0
 
129744e
 
 
0a1b314
ccff8c6
dae2dfd
ccff8c6
88a9416
 
 
 
f6ebc4f
88a9416
 
ccff8c6
dae2dfd
ccff8c6
 
 
 
129744e
 
 
7cdc7d0
 
 
 
fe70438
7cdc7d0
 
 
 
 
 
129744e
fe70438
 
 
 
 
 
f6ebc4f
129744e
7cdc7d0
129744e
 
f6ebc4f
 
 
 
129744e
 
dae2dfd
f6ebc4f
 
b462f85
f6ebc4f
b462f85
7cdc7d0
 
 
 
 
 
161e5a1
 
 
ccff8c6
 
 
 
 
 
 
 
f6ebc4f
 
7cdc7d0
 
 
 
 
 
 
ccff8c6
f6ebc4f
7cdc7d0
 
 
 
f6ebc4f
7cdc7d0
f6ebc4f
dae2dfd
d08fbc6
dae2dfd
 
88a9416
129744e
9d5b4c0
dae2dfd
 
d08fbc6
7cdc7d0
d08fbc6
 
 
 
7cdc7d0
 
 
 
 
 
d08fbc6
7cdc7d0
d08fbc6
 
 
 
 
7cdc7d0
 
 
 
 
 
 
 
 
d08fbc6
ccff8c6
f6ebc4f
ccff8c6
dae2dfd
129744e
 
 
 
ccff8c6
f6ebc4f
 
ccff8c6
 
60ab03e
129744e
7cdc7d0
129744e
 
9d5b4c0
 
7cdc7d0
9d5b4c0
 
129744e
 
 
 
 
 
dae2dfd
9d5b4c0
 
 
 
 
 
 
d08fbc6
 
 
 
 
 
 
9d5b4c0
 
 
 
 
 
 
 
 
 
cc5f321
9d5b4c0
 
 
d08fbc6
9d5b4c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7cdc7d0
4d23392
dae2dfd
7cdc7d0
129744e
f6ebc4f
 
 
 
129744e
0259a82
7cdc7d0
 
 
 
f6ebc4f
 
 
129744e
f6ebc4f
 
 
 
129744e
ccff8c6
 
 
 
7cdc7d0
 
 
 
 
 
 
 
 
59be457
88a9416
 
f6ebc4f
 
 
129744e
f6ebc4f
 
 
 
129744e
 
f6ebc4f
 
 
 
129744e
 
88a9416
 
b462f85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d08fbc6
 
 
f6ebc4f
 
b462f85
 
f6ebc4f
b462f85
f6ebc4f
b462f85
f6ebc4f
b462f85
f6ebc4f
b462f85
f6ebc4f
 
 
 
 
b462f85
 
f6ebc4f
 
b462f85
f6ebc4f
 
b462f85
f6ebc4f
b462f85
 
 
 
 
 
f6ebc4f
b462f85
f6ebc4f
b462f85
f6ebc4f
b462f85
f6ebc4f
 
b462f85
f6ebc4f
 
 
 
 
b462f85
 
 
 
 
 
 
 
 
 
 
 
 
 
f6ebc4f
b462f85
f6ebc4f
b462f85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6ebc4f
 
b462f85
7cdc7d0
 
b462f85
 
 
7cdc7d0
b462f85
 
f6ebc4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7cdc7d0
4e6e650
 
ccff8c6
 
 
5f04977
ccff8c6
 
 
a987537
ccff8c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7cdc7d0
ccff8c6
 
 
 
 
 
 
 
 
 
 
7cdc7d0
f6ebc4f
129744e
 
7cdc7d0
 
f6ebc4f
129744e
f6ebc4f
 
5f04977
ccff8c6
129744e
7cdc7d0
 
ccff8c6
7cdc7d0
f6ebc4f
a987537
 
 
f6ebc4f
a987537
9d5b4c0
 
 
a987537
 
 
7cdc7d0
f6ebc4f
ccff8c6
 
 
f6ebc4f
ccff8c6
9d5b4c0
 
 
ccff8c6
 
f6ebc4f
ccff8c6
 
 
 
9d5b4c0
 
 
ccff8c6
 
7cdc7d0
 
 
 
 
 
ccff8c6
 
7cdc7d0
 
 
 
 
 
 
 
d08fbc6
7cdc7d0
 
 
d08fbc6
7cdc7d0
 
d08fbc6
7cdc7d0
d08fbc6
7cdc7d0
 
 
f6ebc4f
a987537
 
161e5a1
7cdc7d0
161e5a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6ebc4f
 
 
161e5a1
f6ebc4f
161e5a1
9d5b4c0
f6ebc4f
161e5a1
b462f85
9d5b4c0
b462f85
0259a82
161e5a1
f6ebc4f
161e5a1
9d5b4c0
f6ebc4f
161e5a1
b462f85
9d5b4c0
b462f85
161e5a1
 
ccff8c6
 
dae2dfd
 
a197b4c
4e6e650
 
 
 
 
5f04977
 
a197b4c
5f04977
a197b4c
 
161e5a1
129744e
161e5a1
a197b4c
129744e
ccff8c6
a197b4c
 
 
7cdc7d0
129744e
f6ebc4f
5f04977
 
a197b4c
 
 
f6ebc4f
 
 
ccff8c6
f6ebc4f
5f04977
 
a197b4c
 
ccff8c6
a197b4c
 
0259a82
7cdc7d0
 
 
 
0259a82
7cdc7d0
 
 
 
 
0259a82
 
1b7c63c
 
5f04977
f6ebc4f
ccff8c6
 
1b7c63c
7cdc7d0
 
 
f6ebc4f
ccff8c6
9d5b4c0
 
 
ccff8c6
1b7c63c
 
5f04977
7cdc7d0
161e5a1
 
 
 
ccff8c6
7cdc7d0
 
 
 
 
 
 
 
 
 
 
 
 
161e5a1
f6ebc4f
 
7cdc7d0
f6ebc4f
161e5a1
9d5b4c0
 
 
ccff8c6
 
9d5b4c0
 
 
161e5a1
ccff8c6
 
f6ebc4f
ccff8c6
 
 
 
 
1b7c63c
 
c77cd1f
 
 
 
 
 
 
6de46af
 
 
c77cd1f
6de46af
f6ebc4f
 
 
 
 
6de46af
 
 
c77cd1f
 
6de46af
c77cd1f
 
 
6de46af
7cdc7d0
 
 
f6ebc4f
5f04977
7cdc7d0
6de46af
c77cd1f
 
 
6de46af
c77cd1f
 
 
 
ccff8c6
c77cd1f
 
 
 
 
 
 
 
 
 
 
 
161e5a1
 
 
 
c77cd1f
 
 
 
 
161e5a1
c77cd1f
 
ccff8c6
c77cd1f
 
 
6de46af
 
dae2dfd
 
 
 
 
 
d389578
dae2dfd
d389578
dae2dfd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
import json
from abc import abstractmethod
from random import random
from typing import Any, Dict, List, Optional, Tuple, Union

from .artifact import Artifact
from .collections import DictCollection, ListCollection
from .dataclass import NonPositionalField
from .dict_utils import dict_set
from .error_utils import Documentation, UnitxtError
from .operator import InstanceOperator, Operator
from .random_utils import new_random_generator
from .serializers import (
    DialogSerializer,
    ImageSerializer,
    ListSerializer,
    MultiTypeSerializer,
    NumberQuantizingSerializer,
    Serializer,
    TableSerializer,
    VideoSerializer,
)
from .settings_utils import get_constants
from .type_utils import isoftype, to_type_string

constants = get_constants()


class TemplateFormatKeyError(UnitxtError):
    def __init__(self, template, data, data_type, format_str, format_name):
        keys = ", ".join(data.keys())
        super().__init__(
            f"Available {data_type}s are [{keys}] "
            f"but {template.__class__.__name__}.{format_name} format requires a different ones: '{format_str}'",
            Documentation.ADDING_TEMPLATE,
        )


class Template(InstanceOperator):
    """The role of template is to take the fields of every instance and verbalize it.

    Meaning the template is taking the instance and generating source, target and references.

    Args:
        skip_rendered_instance (bool): if "source", "target", and "references" are already defined fields in the instance, skip its processing
        postprocessors: a list of strings being artifact names of text processors, to be applied on the model output
        instruction: a formatting string that yields an instruction with potential participation of values from the "input_fields" part of the instance
        target_prefix: a string to be used to format the prompt. Not a formatting string.

    """

    skip_rendered_instance: bool = NonPositionalField(default=True)
    postprocessors: List[str] = NonPositionalField(
        default_factory=lambda: ["processors.to_string_stripped"]
    )
    instruction: str = NonPositionalField(default="")
    target_prefix: str = NonPositionalField(default="")
    title_fields: List[str] = NonPositionalField(default_factory=list)
    serializer: Serializer = NonPositionalField(
        default_factory=lambda: MultiTypeSerializer(
            serializers=[
                ImageSerializer(),
                VideoSerializer(),
                TableSerializer(),
                DialogSerializer(),
                ListSerializer(),
            ]
        )
    )

    def verify(self):
        super().verify()
        assert isoftype(
            self.postprocessors, List[Union[Operator, str]]
        ), f"The template post processors field '{self.postprocessors}' is not a list of processors. Instead it is of type '{to_type_string(type(self.postprocessors))}'."

    def input_fields_to_instruction_and_target_prefix(self, input_fields):
        instruction = self.apply_formatting(
            input_fields, "input field", self.instruction, "instruction"
        )
        target_prefix = self.apply_formatting(
            input_fields,
            "input field",
            self.target_prefix,
            "target_prefix",
        )
        return instruction, target_prefix

    def preprocess_input_and_reference_fields(
        self, input_fields: Dict[str, Any], reference_fields: Dict[str, Any]
    ) -> Tuple[Dict[str, Any], Dict[str, Any]]:
        return input_fields, reference_fields

    def preprocess_input_fields(self, input_fields: Dict[str, Any]):
        return input_fields

    def preprocess_reference_fields(self, reference_fields: Dict[str, Any]):
        return reference_fields

    def process(
        self, instance: Dict[str, Any], stream_name: Optional[str] = None
    ) -> Dict[str, Any]:
        if self.skip_rendered_instance:
            if (
                "source" in instance
                and "target" in instance
                and "references" in instance
            ):
                return instance

        input_fields = instance.get("input_fields")
        reference_fields = instance.get("reference_fields")

        if stream_name != constants.inference_stream:
            input_fields, reference_fields = self.preprocess_input_and_reference_fields(
                input_fields, reference_fields
            )

        input_fields = self.preprocess_input_fields(input_fields)

        self.set_titles(input_fields)

        serialized_inputs = self.serialize(input_fields, instance)

        source = self.input_fields_to_source(serialized_inputs)
        instruction, target_prefix = self.input_fields_to_instruction_and_target_prefix(
            serialized_inputs
        )

        result = {
            **instance,
            "source": source,
            "instruction": instruction,
            "target_prefix": target_prefix,
            "postprocessors": self.postprocessors,
        }

        if stream_name == constants.inference_stream:
            return self.post_process_instance(result)

        if reference_fields is None:
            raise ValueError("Should have reference_fields")

        reference_fields = self.preprocess_reference_fields(reference_fields)

        serialized_references = self.serialize(
            reference_fields, instance
        )  # Dict[str, str]

        target, references = self.reference_fields_to_target_and_references(
            serialized_references
        )

        result["target"] = target
        result["references"] = references

        return self.post_process_instance(result)

    def post_process_instance(self, instance):
        return instance

    def serialize(
        self, data: Dict[str, Any], instance: Dict[str, Any]
    ) -> Dict[str, str]:
        return {k: self.serializer.serialize(v, instance) for k, v in data.items()}

    @abstractmethod
    def input_fields_to_source(self, input_fields: Dict[str, object]) -> str:
        pass

    def set_titles(self, data):
        for field in self.title_fields:
            data[field] = data[field].title()

    @abstractmethod
    def reference_fields_to_target_and_references(
        self, reference_fields: Dict[str, object]
    ) -> Tuple[str, List[str]]:
        pass

    def apply_formatting(
        self, data: Dict[str, Any], data_type: str, format_str: str, format_name: str
    ) -> str:
        try:
            if format_str is None:
                raise UnitxtError(
                    f"Required field '{format_name}' of class {self.__class__.__name__} not set in {self.__class__.__name__}",
                    Documentation.ADDING_TEMPLATE,
                )
            return format_str.format(**data)
        except KeyError as e:
            raise TemplateFormatKeyError(
                self, data, data_type, format_str, format_name
            ) from e


class ApplyTemplate(InstanceOperator):
    demos_field: Optional[str] = None

    @abstractmethod
    def get_template(self, instance: Dict[str, Any]) -> Template:
        pass

    def apply(
        self,
        template: Template,
        instance: Dict[str, Any],
        stream_name: Optional[str] = None,
    ):
        return template.process_instance(instance, stream_name)

    def process(
        self, instance: Dict[str, Any], stream_name: Optional[str] = None
    ) -> Dict[str, Any]:
        template = self.get_template(instance)

        if self.demos_field is not None:
            if self.demos_field not in instance:
                raise ValueError("Demos field is missing.")
            instance[self.demos_field] = [
                self.apply(template, demo_instance)
                for demo_instance in instance[self.demos_field]
            ]
        dict_set(instance, "recipe_metadata/template", template)
        return self.apply(template, instance, stream_name)


class ApplySingleTemplate(ApplyTemplate):
    template: Template

    def get_template(self, instance: Dict[str, Any]) -> Template:
        return self.template


class ApplyRandomTemplate(ApplyTemplate):
    templates: List[Template]

    def get_template(self, instance: Dict[str, Any]) -> Template:
        random_generator = new_random_generator(
            {**instance["input_fields"], **instance["reference_fields"]}
        )
        return random_generator.choice(self.templates)


class InputFormatTemplate(Template):
    input_format: str

    def input_fields_to_source(self, input_fields: Dict[str, object]) -> str:
        return self.apply_formatting(
            input_fields,
            "input field",
            self.input_format,
            "input_format",
        )


class OutputFormatTemplate(Template):
    output_format: str = None

    def reference_fields_to_target_and_references(
        self, reference_fields: Dict[str, object]
    ) -> str:
        target = self.apply_formatting(
            reference_fields,
            "reference field",
            self.output_format,
            "output_format",
        )
        references = [target]
        return target, references


class InputOutputTemplate(InputFormatTemplate, OutputFormatTemplate):
    """Generate field 'source' from fields designated as input, and fields 'target' and 'references' from fields designated as output, of the processed instance.

    Args specify the formatting strings with which to glue together the input and reference fields of the processed instance into one string ('source' and 'target'), and into a list of strings ('references').
    """

    pass


class InputOutputTemplateWithCustomTarget(InputOutputTemplate):
    reference: str

    def reference_fields_to_target_and_references(
        self, reference_fields: Dict[str, object]
    ) -> str:
        target = self.apply_formatting(
            reference_fields,
            "reference field",
            self.output_format,
            "output_format",
        )
        reference = self.apply_formatting(
            reference_fields,
            "reference field",
            self.reference,
            "reference",
        )
        return target, [reference]


class PairwiseChoiceTemplate(InputOutputTemplate):
    """PairwiseChoiceTemplate.

    Requirements:
     The answer field value should be of type Literal["choice_a", "choice_b", "tie"]

    Args:
         choice_a_field (str): The field which contains choice_a value
         choice_b_field (str): The field which contains choice_b value
         answer_field (str): The field which contains the answer value.
           Should be of type Literal["choice_1", "choice_2", "tie"]
         choice_a_label (str): The label of choice A answer as it is verbalized in the template.
         choice_b_label (str): The label of choice B answer as it is verbalized in the template.
         choice_tie_label (str): The label of a tie answer as it should be verbalized in the template.
         shuffle (bool): whether to shuffle the choices or not. This is done to take into account position bias.

    shuffle: 50% of the time:
     1) The values of choice_a_field and choice_b_field will be swapped.
     2) If the values of answer_field is choice_a_label, set it to choice_b_label.
         Else if the values of answer_field is choice_b_label, set it to choice_a_label.
         Else if the value of answer_field is choice_tie_label, do nothing.

    """

    choice_a_field: str
    choice_b_field: str
    answer_field: str
    choice_a_label: str
    choice_b_label: str
    choice_tie_label: str
    shuffle: bool

    def verify(self):
        super().verify()

    def verbalize_answer_field(self, reference_fields: Dict[str, object]):
        answer = reference_fields[self.answer_field]
        assert answer in ["choice_a", "choice_b", "tie"]
        if answer == "choice_a":
            reference_fields[self.answer_field] = self.choice_a_label
        elif answer == "choice_b":
            reference_fields[self.answer_field] = self.choice_b_label
        else:
            reference_fields[self.answer_field] = self.choice_tie_label

        return reference_fields

    def shuffle_values(
        self, input_fields: Dict[str, object], reference_fields: Dict[str, object]
    ):
        if not self.shuffle:
            return input_fields, reference_fields
        outcome = random()  # A float between 0 and 1
        if outcome <= 0.5:
            choice_a_value = input_fields[self.choice_a_field]
            choice_b_value = input_fields[self.choice_b_field]

            input_fields[self.choice_a_field] = choice_b_value
            input_fields[self.choice_b_field] = choice_a_value

            answer = reference_fields[self.answer_field]
            assert answer in [
                self.choice_a_label,
                self.choice_b_label,
                self.choice_tie_label,
            ]
            if answer == self.choice_a_label:
                reference_fields[self.answer_field] = self.choice_b_label
            elif answer == self.choice_b_label:
                reference_fields[self.answer_field] = self.choice_a_label

        return input_fields, reference_fields

    def preprocess_input_and_reference_fields(
        self, input_fields: Dict[str, Any], reference_fields: Dict[str, Any]
    ) -> Tuple[Dict[str, Any], Dict[str, Any]]:
        reference_fields = self.verbalize_answer_field(reference_fields)
        input_fields, reference_fields = self.shuffle_values(
            input_fields, reference_fields
        )
        return input_fields, reference_fields


class DialogFieldsData(Artifact):
    user_role_label: str
    assistant_role_label: str
    system_role_label: str
    dialog_field: str


class DialogTemplate(InputOutputTemplate):
    dialog_fields: List[DialogFieldsData]
    turns_separator: str = "\n\n"
    label_separator: str = " "

    def process_dialog(self, input_fields: Dict[str, object]):
        for dialog_fields in self.dialog_fields:
            dialog = input_fields[dialog_fields.dialog_field]
            # TODO: update isoftype method to support Literal verification and check
            #  it's List[Tuple[Literal["user", "assistant", "system"], str]] (Issue #799)
            assert isoftype(dialog, List[Tuple[str, str]])

            user_role_label = dialog_fields.user_role_label
            assistant_role_label = dialog_fields.assistant_role_label
            system_role_label = dialog_fields.system_role_label

            dialog_str = ""
            for i, turn in enumerate(dialog):
                (turn_type, turn_text) = turn
                turns_separator = "" if i == 0 else self.turns_separator
                if turn_type == "user":
                    dialog_str += f"{turns_separator}{user_role_label}{self.label_separator}{turn_text}"
                elif turn_type == "assistant":
                    dialog_str += f"{turns_separator}{assistant_role_label}{self.label_separator}{turn_text}"
                elif turn_type == "system":
                    dialog_str += f"{turns_separator}{system_role_label}{self.label_separator}{turn_text}"

            input_fields[dialog_fields.dialog_field] = dialog_str
        return input_fields

    def preprocess_input_fields(self, input_fields: Dict[str, Any]):
        return self.process_dialog(input_fields)


class DialogPairwiseChoiceTemplate(DialogTemplate, PairwiseChoiceTemplate):
    pass


class PairwiseComparativeRatingTemplate(InputOutputTemplate):
    """PairwiseChoiceTemplate.

    Args:
         choice_a_field (str): The field which contains choice_a value
         choice_b_field (str): The field which contains choice_b value
         answer_field (str): The field which contains the answer value. The value should be an int.
          Positive for preferring choice_a, and negative for preferring choice_b
         shuffle (bool): whether to shuffle the choices or not. This is done to take into account position bias.

    shuffle: 50% of the time:
     1) The values of choice_a_field and choice_b_field will be swapped.
     2) Replace the values of answer_field with its mapped value according to the reverse_preference_map Dict.

    """

    choice_a_field: str
    choice_b_field: str
    choice_a_id_field: str
    choice_b_id_field: str
    answer_field: str
    shuffle: bool

    def shuffle_values(
        self, input_fields: Dict[str, object], reference_fields: Dict[str, object]
    ):
        if not self.shuffle:
            return input_fields, reference_fields
        outcome = random()  # A float between 0 and 1
        if outcome <= 0.5:
            choice_a_value = input_fields[self.choice_a_field]
            choice_b_value = input_fields[self.choice_b_field]
            input_fields[self.choice_a_field] = choice_b_value
            input_fields[self.choice_b_field] = choice_a_value

            choice_a_id_value = input_fields[self.choice_a_id_field]
            choice_b_id_value = input_fields[self.choice_b_id_field]
            input_fields[self.choice_a_id_field] = choice_b_id_value
            input_fields[self.choice_b_id_field] = choice_a_id_value

            assert isinstance(reference_fields[self.answer_field], int)
            reference_fields[self.answer_field] = (
                int(reference_fields[self.answer_field]) * -1
            )

        return input_fields, reference_fields

    def preprocess_input_and_reference_fields(
        self, input_fields: Dict[str, Any], reference_fields: Dict[str, Any]
    ) -> Tuple[Dict[str, Any], Dict[str, Any]]:
        input_fields, reference_fields = self.shuffle_values(
            input_fields, reference_fields
        )
        return input_fields, reference_fields


class MultipleChoiceTemplate(InputFormatTemplate):
    """Formats the input (that specifies the question), the multiple choices to select the answer from, and specifies the field with the correct answer."""

    target_prefix: str = ""
    choices_field: str = "choices"
    target_field: str = "label"
    choices_separator: str = ", "
    source_choice_format: str = "{choice_numeral}. {choice_text}"
    target_choice_format: str = "{choice_numeral}"
    enumerator: str = "capitals"
    shuffle_choices: bool = False

    def prepare(self):
        super().prepare()
        if self.enumerator == "capitals":
            self.enumerator = "ABCDEFGHIJKLMNOP"
        if self.enumerator == "lowercase":
            self.enumerator = "abcdefghijklmnop"
        if self.enumerator == "numbers":
            self.enumerator = [str(i + 1) for i in range(20)]
        if self.enumerator == "roman":
            self.enumerator = [
                "I",
                "II",
                "III",
                "IV",
                "V",
                "VI",
                "VII",
                "VIII",
                "IX",
                "X",
                "XI",
                "XII",
                "XIII",
                "XIV",
                "XV",
                "XVI",
                "XVII",
                "XVIII",
                "XIX",
                "XX",
            ]

    def inputs_to_choices(self, data: Dict[str, Any], choice_format: str) -> str:
        choices = data[self.choices_field]
        enumrated_choices = []
        for i, choice in enumerate(choices):
            enumrated_choices.append(
                choice_format.format(
                    choice_text=choice,
                    choice_numeral=self.enumerator[i],
                )
            )
        return enumrated_choices

    def inputs_to_numerals(self, input_fields: Dict[str, Any]) -> Tuple[str, str]:
        return self.inputs_to_choices(input_fields, "{choice_numeral}")

    def prepare_multiple_choice_inputs(
        self, input_fields: Dict[str, Any]
    ) -> Dict[str, Any]:
        choices = self.inputs_to_choices(input_fields, self.source_choice_format)
        return {
            "numerals": self.inputs_to_numerals(input_fields),
            **input_fields,
            self.choices_field: self.choices_separator.join(choices),
        }

    def preprocess_input_fields(self, input_fields: Dict[str, Any]) -> Dict[str, Any]:
        return self.prepare_multiple_choice_inputs(input_fields)

    def outputs_to_target_index(self, reference_fields: Dict[str, object]) -> int:
        target = reference_fields[self.target_field]

        if not isinstance(target, int):
            try:
                return reference_fields[self.choices_field].index(target)
            except ValueError as e:
                raise UnitxtError(
                    f"MultipleChoiceTemplate could not locate textual target '{target}' in choices list: {reference_fields[self.choices_field]}",
                    Documentation.ADDING_TEMPLATE,
                ) from e
        return target

    def preprocess_reference_fields(self, reference_fields: Dict[str, Any]):
        target = reference_fields[self.target_field]

        if not isinstance(target, int):
            try:
                target = reference_fields[self.choices_field].index(target)
            except ValueError as e:
                raise UnitxtError(
                    f"MultipleChoiceTemplate could not locate textual target '{target}' in choices list: {reference_fields[self.choices_field]}",
                    Documentation.ADDING_TEMPLATE,
                ) from e

        choices = self.inputs_to_choices(reference_fields, self.target_choice_format)

        try:
            target = choices[target]
        except IndexError as e:
            raise UnitxtError(
                f"MultipleChoiceTemplate cannot find index number {target} in choices: {choices}",
                Documentation.ADDING_TEMPLATE,
            ) from e

        return {self.target_field: target}

    def reference_fields_to_target_and_references(
        self, reference_fields: Dict[str, object]
    ) -> str:
        target = reference_fields[self.target_field]
        return target, [target]

    def preprocess_input_and_reference_fields(
        self, input_fields: Dict[str, Any], reference_fields: Dict[str, Any]
    ) -> Tuple[Dict[str, Any], Dict[str, Any]]:
        if self.shuffle_choices:
            target_index = self.outputs_to_target_index(reference_fields)
            original_label_choice = reference_fields[self.choices_field][target_index]
            choices = input_fields[self.choices_field]
            random_seed = {**input_fields}

            random_generator = new_random_generator(random_seed)
            random_generator.shuffle(choices)
            input_fields[self.choices_field] = choices

            reference_fields[self.choices_field] = choices
            reference_fields[self.target_field] = choices.index(original_label_choice)

        return input_fields, reference_fields

    def post_process_instance(self, instance):
        instance["input_fields"]["options"] = self.inputs_to_choices(
            instance["input_fields"], self.target_choice_format
        )
        return instance


class YesNoTemplate(InputFormatTemplate):
    """A template for generating binary Yes/No questions asking whether an input text is of a specific class.

    input_format:
        Defines the format of the question.
    class_field:
        Defines the field that contains the name of the class that this template
        asks of.
    label_field:
        Defines the field which contains the true label of the input text. If a gold label is equal to the
        value in class_name, then the correct output is self.yes_answer (by default, "Yes").
        Otherwise the correct output is self.no_answer (by default, "No").
    yes_answer:
        The output value for when the gold label equals self.class_name.
        Defaults to "Yes".
    no_answer:
        The output value for when the gold label differs from self.class_name.
        Defaults to "No".
    """

    input_format: str = None
    class_field: str = None
    label_field: str = None
    yes_answer: str = "Yes"
    no_answer: str = "No"

    def reference_fields_to_target_and_references(
        self, reference_fields: Dict[str, object]
    ) -> str:
        try:
            gold_class_names = reference_fields[self.label_field]
        except KeyError as e:
            raise UnitxtError(
                f"Available reference_fields are {list(reference_fields.keys())}, missing required label field: '{self.label_field}'."
            ) from e
        if not isinstance(gold_class_names, list):
            raise UnitxtError(
                f"Unexpected value for gold_class_names: '{gold_class_names}'. Expecting a list."
            )
        try:
            queried_class_name = reference_fields[self.class_field]
        except KeyError as e:
            raise UnitxtError(
                f"Available reference_fields are {list(reference_fields.keys())}, missing required class field: '{self.class_field}'."
            ) from e
        if not queried_class_name or not isinstance(queried_class_name, str):
            raise UnitxtError(
                f"Unexpected value for queried_class_names: '{queried_class_name}'. Expected a string."
            )
        if queried_class_name in gold_class_names:
            return self.yes_answer, [self.yes_answer]
        return self.no_answer, [self.no_answer]


class KeyValTemplate(Template):
    """Generate field 'source' from fields designated as input, and fields 'target' and 'references' from fields designated as output, of the processed instance.

    Args specify with what separators to glue together the input and output designated fields of the processed instance into one string ('source' and 'target'), and into a list of strings ('references').
    """

    pairs_separator: str = ", "
    key_val_separator: str = ": "
    use_keys_for_inputs: bool = True
    outputs_key_val_separator: str = ": "
    use_keys_for_outputs: bool = False

    def process_dict(
        self, data: Dict[str, object], key_val_sep, pairs_sep, use_keys
    ) -> str:
        pairs = []
        for key, val in data.items():
            key_val = [key, str(val)] if use_keys else [str(val)]
            pairs.append(key_val_sep.join(key_val))
        return pairs_sep.join(pairs)

    def input_fields_to_source(self, input_fields: Dict[str, object]) -> str:
        return self.process_dict(
            input_fields,
            key_val_sep=self.key_val_separator,
            pairs_sep=self.pairs_separator,
            use_keys=self.use_keys_for_inputs,
        )

    def reference_fields_to_target_and_references(
        self, reference_fields: Dict[str, object]
    ) -> str:
        target = self.process_dict(
            reference_fields,
            key_val_sep=self.key_val_separator,
            pairs_sep=self.pairs_separator,
            use_keys=self.use_keys_for_outputs,
        )
        return target, [target]


class OutputQuantizingTemplate(InputOutputTemplate):
    serializer: MultiTypeSerializer = NonPositionalField(
        default_factory=MultiTypeSerializer
    )
    quantum: Union[float, int] = 0.1

    def prepare(self):
        super().prepare()
        self.serializer.add_serializers(
            [NumberQuantizingSerializer(quantum=self.quantum)]
        )


class MultiLabelTemplate(InputOutputTemplate):
    labels_field: str = "labels"
    labels_separator: str = ", "
    postprocessors = ["processors.to_list_by_comma"]
    output_format: str = "{labels}"
    empty_label: str = "None"

    def preprocess_reference_fields(
        self, reference_fields: Dict[str, Any]
    ) -> Dict[str, Any]:
        labels = reference_fields[self.labels_field]
        if not isinstance(labels, list):
            raise UnitxtError(
                f"MultiLabelTemplate requires labels field '{self.labels_field}' to be a list. Got {self.labels_field}<{type(labels).__name__}>: {labels}",
                Documentation.ADDING_TEMPLATE,
            )
        if len(labels) == 0:
            labels = [self.empty_label]
        labels_str = self.labels_separator.join(labels)
        return {self.labels_field: labels_str}


class MultiReferenceTemplate(InputOutputTemplate):
    references_field: str = "references"
    random_reference: bool = False
    serializer: Serializer = NonPositionalField(default_factory=MultiTypeSerializer)

    def serialize(
        self, data: Dict[str, Any], instance: Dict[str, Any]
    ) -> Dict[str, str]:
        result = {}
        for k, v in data.items():
            if k == self.references_field:
                v = [self.serializer.serialize(item, instance) for item in v]
            else:
                v = self.serializer.serialize(v, instance)
            result[k] = v
        return result

    def reference_fields_to_target_and_references(
        self, reference_fields: Dict[str, object]
    ) -> Tuple[str, List[str]]:
        references = reference_fields[self.references_field]
        if not isoftype(references, List[str]):
            raise UnitxtError(
                f"MultiReferenceTemplate requires references field '{self.references_field}' to be List[str]. Got {self.references_field}<{type(references).__name__}>: {references}",
                Documentation.ADDING_TEMPLATE,
            )
        if len(references) == 0:
            raise UnitxtError(
                "No references found. MultiReferenceTemplate requires at least one reference.",
                Documentation.ADDING_TEMPLATE,
            )

        if self.random_reference:
            random_generator = new_random_generator(reference_fields)
            target = random_generator.choice(references)
        else:
            target = references[0]

        return target, references


def escape_chars(s, chars_to_escape):
    for char in chars_to_escape:
        s = s.replace(char, f"\\{char}")
    return s


class SpanLabelingBaseTemplate(MultiLabelTemplate):
    spans_starts_field: str = "spans_starts"
    spans_ends_field: str = "spans_ends"
    text_field: str = "text"
    labels_support: list = None

    def extract_span_label_pairs(self, reference_fields):
        spans_starts = reference_fields[self.spans_starts_field]
        spans_ends = reference_fields[self.spans_ends_field]
        text = reference_fields[self.text_field]
        labels = reference_fields[self.labels_field]

        spans = []
        for span_start, span_end, label in zip(spans_starts, spans_ends, labels):
            if self.labels_support is None or label in self.labels_support:
                spans.append((span_start, span_end, text[span_start:span_end], label))

        for span in sorted(spans):
            if self.labels_support is None or span[3] in self.labels_support:
                yield span[2], span[3]

    def preprocess_reference_fields(
        self, reference_fields: Dict[str, Any]
    ) -> Dict[str, Any]:
        span_labels_pairs = self.extract_span_label_pairs(reference_fields)
        targets = self.span_label_pairs_to_targets(span_labels_pairs)
        return super().preprocess_reference_fields({"labels": targets})

    @abstractmethod
    def span_label_pairs_to_targets(self, pairs):
        pass


class SpanLabelingTemplate(SpanLabelingBaseTemplate):
    span_label_format: str = "{span}: {label}"
    escape_characters: List[str] = [":", ","]
    postprocessors: List[str] = ["processors.to_span_label_pairs"]

    def span_label_pairs_to_targets(self, span_label_pairs):
        targets = []
        for span, label in span_label_pairs:
            if self.escape_characters is not None:
                span = escape_chars(span, self.escape_characters)
            target = self.span_label_format.format(span=span, label=label)
            targets.append(target)
        return targets


class SpanLabelingJsonTemplate(SpanLabelingBaseTemplate):
    postprocessors = [
        "processors.load_json",
        "processors.dict_of_lists_to_value_key_pairs",
    ]

    def span_label_pairs_to_targets(self, span_label_pairs):
        groups = {}
        for span, label in span_label_pairs:
            if label not in groups:
                groups[label] = []
            groups[label].append(span)
        if len(groups) > 0:
            targets = [json.dumps(groups, ensure_ascii=False)]
        else:
            targets = []
        return targets


class TemplatesList(ListCollection):
    def verify(self):
        for template in self.items:
            assert isinstance(template, Template)


class TemplatesDict(DictCollection):
    def verify(self):
        for template in self.items.values():
            assert isinstance(template, Template)